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Background: In the present study, we used a computational method to identify Guillain–
Barré syndrome (GBS) related genes based on (i) a gene expression profile, and (ii) the
shortest path analysis in a protein–protein interaction (PPI) network.

Materials and Methods: mRNA Microarray analyses were performed on the peripheral
blood mononuclear cells (PBMCs) of four GBS patients and four age- and gender-
matched healthy controls.

Results: Totally 30 GBS-related genes were screened out, in which 20 were
retrieved from PPI analysis of upregulated expressed genes and 23 were from
downregulated expressed genes (13 overlap genes). Gene ontology (GO) enrichment
and KEGG enrichment analysis were performed, respectively. Results showed that
there were some overlap GO terms and KEGG pathway terms in both upregulated
and downregulated analysis, including positive regulation of macromolecule metabolic
process, intracellular signaling cascade, cell surface receptor linked signal transduction,
intracellular non-membrane-bounded organelle, non-membrane-bounded organelle,
plasma membrane, ErbB signaling pathway, focal adhesion, neurotrophin signaling
pathway and Wnt signaling pathway, which indicated these terms may play a critical
role during GBS process.

Discussion: These results provided basic information about the genetic and molecular
pathogenesis of GBS disease, which may improve the development of effective genetic
strategies for GBS treatment in the future.

Keywords: GBS, genes, mRNA microarray analysis, protein–protein interaction, shortest path

BACKGROUND

As a result of damage to the peripheral nervous system, Guillain–Barré syndrome (GBS) is
characterized by rapid-onset muscle weakness. The exact molecular mechanism and epigenetic
feature of this disease are still unclear. Therefore, it is of great importance to identify GBS-related
genes that could be used as a biomarker for early diagnosis and effective genetic strategies for
clinical therapies.
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In biomedicine and genomics, trying to identify the disease
genes has become one of the most critical and challenging
problems. Gene expression profiles can be used to select
differentially expressed genes as disease genes. These methods
are useful resources and have been widely used (Cai et al., 2010;
Huang et al., 2010, 2011; Liu et al., 2010). However, it has not been
well solved about the errors and false-positive problem in the
high-throughput data (Li et al., 2012b). Thus, it is not a good idea
to use only the gene expression profiles to identify novel genes.

According to the “guilt by association” rule, interacting
proteins share the same or similar functions, which may
participate in the same pathway. First proposed by Nabieva et al.
(2005) disease-related genes could be identified from protein–
protein interaction (PPI) networks based on existing PPI data.
Methods based on the PPI data have been widely used for gene
function predictions.

In the present study, we used a computational method to
search GBS-related genes through integrating a gene expression
profile and a weighted functional PPI network, which may
improve the defect of using high-throughput data only. Previous
studies also have successfully applied this integrating method
for identifying novel genes in various diseases, for example, the
influenza A/H7N9 virus infection (Zhang et al., 2014), colorectal
cancer (Li et al., 2012b, 2013a), lung cancer (Li et al., 2013b), HBV
virus infection-related hepatocellular carcinoma (Jiang et al.,
2013), retinoblastoma (Li et al., 2012c), etc.

MATERIALS AND METHODS

Implementation
4273π: Bioinformatics Figure 1 showed the total procedure of
our method. In the following sub-sections, details are as follows:

mRNA Expression Profiles of
Guillain–Barré Syndrome Patients and
Healthy Controls
mRNA Microarray analyses were performed on the peripheral
blood mononuclear cells (PBMCs) of 4 GBS patients and 4 age-
and gender-matched healthy controls. Baseline characteristics are
shown in Table 1. Fulfilled the standard diagnostic criteria, GBS
patients were recruited from Tianjin Medical University General
Hospital (Asbury, 1981). Patients manifested as symmetrical
flaccid weakness and decreased reflexes in the absence of
alternative causes with cerebrospinal fluid albumincytological
dissociation, and electrodiagnostic evidence of neuropathy
(Shahrizaila et al., 2021). Blood samples were collected within the
peak timing of manifesting GBS and before using glucocorticoid,
intravenous immune globulin (IVIG), or plasma exchange.
Before enrollment, informed consent was signed from all
involved patients. This study was approved by the ethical review
committees of Tianjin Medical University General Hospital.
Human peripheral blood mononuclear cells (PBMCs) were
isolated from all GBS patients and healthy controls. RNA
extraction and production of labeled cRNA were conducted as
our previous study (Xu et al., 2016). Standard data analyses

FIGURE 1 | The flowchart of the method developed in this study to identify
GBS-related human genes. Target Human Proteins interacted with
GBS-related genes were obtained based on sharing GO terms. Shortest path
proteins were calculated from the shortest paths between every pair of the
Target Human Proteins, by searching by the Dijkstra algorithm in the network
constructed from STRING. Finally, for shortest path proteins from the analysis
of upregulated genes, top 20 proteins (20 genes) with betweenness > 1,400
were selected, while for downregulated genes the top 24 proteins (23 genes)
with betweenness > 4,000 were selected.

are provided for RNA quality control. The labeled cRNAs were
designed for the global profiling of human lncRNAs, mRNAs,
and protein-coding transcripts by hybridizing onto the human
LncRNA Expression Microarray V3.0 (Arraystar, Rockville, MD).

Totally an expression profile dataset of 8 samples,
21,620 probes was obtained. Then signal intensity was log2
transformed and normalized and 14,707 genes were derived
from source probes.

The mRMR Method
The maximum relevance minimum redundancy (mRMR)
method (Peng et al., 2005; Li et al., 2012a,b; Zhang et al., 2012)
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TABLE 1 | Baseline characteristics of GBS patients and healthy controls.

GBS patients Healthy controls

Age (years)

Median (IQR) 55 (49–59) 56 (46–60)

Sex

Men 2 (50%) 2 (50%)

Women 2 (50%) 2 (50%)

Days from onset to PBMC extraction

Mean (range) 5 (4–6) –

was employed to rank the importance of total 14,707 genes
examined, according to the Maximum Relevance Minimum
Redundancy criterion. Each gene was recognized as a feature
during this procedure. Features most important in distinguishing
GBS patients and healthy controls were selected according
to the Maximum Relevance criterion. Meanwhile, features
containing redundant information were excluded by the
Minimum Redundancy criterion, according to the previously
described procedure (Xu et al., 2016). In brief, two values were
calculated using mRMR criteria: value A for relevance and value
B for redundancy. The feature is measured using the value A–B.
The features is correlated with value A–B (Peng et al., 2005; Li
et al., 2012a,b; Zhang et al., 2012).

The mRMR method was used to generate two ordered
list: the MaxRel Table and mRMR Table. All the features
were ranked only by the Maximum Relevance criterion in
the MaxRel Table, while they were ranked by the mRMR
criteria in the mRMR Table. The two tables are provided in
Supplementary Material 1.

Protein–Protein Interaction Data From
Search Tool for the Retrieval of
Interacting Genes
As an online database resource, search tool for the retrieval of
interacting genes (STRING) (Szklarczyk et al., 2011)1 compiles
both experimental and predicted protein–protein interactions
with a confidence score to quantify each interaction confidence.
STRING retrieved a weighted PPI network. The proteins in that
network are expressed as nodes. Edges marked with confidence
scores marked interactions between proteins if they interacted
with each other. Interacting proteins in the PPI network share
much more similar biological functions than non-interactive
proteins (Kourmpetis et al., 2010; Ng et al., 2010; Szklarczyk et al.,
2011). The explanation is the protein and its interactive ones may

1http://string.embl.de/

from the same protein complex carrying a specific function or
may participate in one pathway.

In this study, we used STRING (DAVID 11.5) to construct a
graph G with the PPI data. Pathway analysis was performed using
DAVID.2

In that graph, proteins were represented as nodes. A d
value, not a confidence score (s) was assigned to the weight of
each interaction edge. The d value was calculated according to
the equationd = 1000× (1− s). Therefore, d value represented
protein distances to each other: the smaller distance is
correlated with a higher interaction confidence score and more
similar functions.

In the present work, we analyzed every two protein
interactions from the significant differentially expressed proteins.

Shortest Path Tracing
We used the Dijkstra algorithm to find the shortest path in
the graph G between two given proteins. In this study, the
Dijkstra algorithm was implemented with R package “igraph.”
A shortest path was traced from each 1,619 proteins to all the
other ones in the graph, which was for the upregulated genes.
For downregulated genes, the shortest path of each of the 2,590
proteins to all the other ones was traced in the graph.

Then we picked out all proteins existing on the shortest paths
and ranked these proteins according to their betweenness. For
upregulated genes, 858 shortest path proteins were retrieved,
while for downregulated genes, 1,273 shortest path proteins were
retrieved, as list in Table 2. The 858 and 1,273 shortest path
proteins were sequenced using betweenness, respectively.

The betweenness threshold should be set in order to select
significant ones from a ranked list. By a computational method,
we can set the threshold differently to yield a different number
of gene results. The more the threshold is, the less the genes
are. Generally speaking, it is practical to select the top most
20–30 significant genes for further analysis or for experimental
validation. Furthermore, the threshold values should be different
for upregulated genes and for downregulated ones, because the
number of path tracing proteins and the number of shortest path
proteins were different.

In this study, for shortest path proteins from the analysis
of upregulated genes, top 20 proteins (20 genes) with
betweenness > 1,400 were selected, while for downregulated
genes the top 24 proteins (23 genes) with betweenness > 4,000
were selected. These 20+23 genes were regarded as the final
significant GBS-related genes in the present work and they were
list in Tables 3, 4, respectively.

2https://david.ncifcrf.gov/

TABLE 2 | Number of genes or proteins in each step of our computational procedures.

Significant differentially expressed genes by mRMR Shortest path
proteins

Shortest path proteins with
betweenness > threshold

Final GBS related
genes

Genes Proteins(ENSP)

Upregulated 271 1,619 858 20 20

Downregulated 464 2,590 1,273 24 23
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TABLE 3 | The 20 GBS-related genes identified by PPI network from the analysis
of upregulated expressed genes from the expression profiles.

ENSP Gene Betweenness

ENSP00000269305 TP53 13,036

ENSP00000344818 UBC 6,065

ENSP00000344456 CTNNB1 4,569

ENSP00000275493 EGFR 3,294

ENSP00000263253 EP300 2,807

ENSP00000326366 PSEN1 2,456

ENSP00000417281 MDM2 2,445

ENSP00000270202 AKT1 2,350

ENSP00000221494 SF3A2 2,184

ENSP00000264657 STAT3 2,182

ENSP00000339007 GRB2 2,150

ENSP00000324806 GSK3B 2,094

ENSP00000284981 APP 2,046

ENSP00000357879 PSMD4 1,754

ENSP00000350941 SRC 1,655

ENSP00000356425 UCHL5 1,614

ENSP00000361626 YBX1 1,574

ENSP00000338018 HIF1A 1,444

ENSP00000262613 SLC9A3R1 1,438

ENSP00000252486 APOE 1,410

RESULTS AND DISCUSSION

Guillain–Barré Syndrome-Related Genes
In this study, we select the top 5%, i.e., 735 features, from the
mRMR Table. These genes were considered to be significant
differentially expressed genes according to the expression profiles
and were analyzed in further procedures. In the 735 significant
genes, there were 271 upregulated genes and 464 downregulated
genes, producing 1,619 and 2,590 protein products, respectively.
The upregulated genes and downregulated genes were analyzed,
respectively, in the next procedures. The number of the genes and
proteins is summarized in Table 2.

As shown in Tables 3, 4, 20 GBS-related genes were identified
from the analysis of upregulated significant expressed genes from
the gene expression profile data, while 23 GBS-related genes were
identified from the data of downregulated ones.

From Tables 3, 4, it can be seen that there were 13
overlap genes, which were TP53, UBC, CTNNB1, EGFR, EP300,
MDM2, AKT1, SF3A2, STAT3, GRB2, GSK3B, SRC, and YBX1.
These genes were identified both from upregulated analysis
and downregulated analysis, indicating they could play more
important roles in GBS.

As an important tumor suppressor gene, TP53 takes part
in cellular senescence, apoptosis and cell cycle progression
(McCubrey et al., 2016). MDM2 has p53-independent
transcription factor-like effects in nuclear factor-kappa beta (NF-
κB) activation. Therefore, MDM2 promotes tissue inflammation
and MDM2 inhibition has potent anti-inflammatory effects in
tissue injury (Ebrahim et al., 2015). Increased levels of STAT3
proteins were observed in CD4+ T cells from GBS patients (Liu
et al., 2015). Previous study showed that Grb2 promotes the

TABLE 4 | The 23 GBS-related genes identified by PPI network from the analysis
of downregulated expressed genes from the expression profiles.

ENSP Gene Betweenness

ENSP00000269305 TP53 36,055

ENSP00000344818 UBC 15,309

ENSP00000275493 EGFR 12,072

ENSP00000344456 CTNNB1 12,052

ENSP00000270202 AKT1 10,629

ENSP00000339007 GRB2 10,496

ENSP00000221494 SF3A2 9,484

ENSP00000206249 ESR1 8,165

ENSP00000263253 EP300 7,353

ENSP00000264657 STAT3 6,262

ENSP00000350941 SRC 6,111

ENSP00000417281 MDM2 6,002

ENSP00000362649 HDAC1 6,001

ENSP00000348461 RAC1 5,995

ENSP00000329357 SP1 5,560

ENSP00000361626 YBX1 5,343

ENSP00000264033 CBL 5,062

ENSP00000337825 LCK 4,852

ENSP00000314458 CDC42 4,798

ENSP00000304903 CD2BP2 4,549

ENSP00000358490 CD2 4,549

ENSP00000324806 GSK3B 4,281

ENSP00000046794 LCP2 4,043

correlation of FasL with adaptin beta. Moreover, in Schwann
cells, Grb2 also helps FasL sorting to the cell surface. FasL
potentially regulated cell death. Therefore, its cell surface
localization is important for controlling local tissue remodeling
and inflammation (Thornhill et al., 2008).

In recent years, high-throughput studies and candidate gene
studies verified differential expression genes in GBS patients (Safa
et al., 2021). In our previous study, we found 114 differentially
expressed lncRNAs and 310 differentially expressed mRNAs
between GBS patients and healthy controls, in which several gene
ontology (GO) terms, such as cytosol, cellular macromolecular
complex assembly, cell cycle, ligase activity, protein catabolic
process were enriched in gene lists (Xu et al., 2016).

Protein–Protein Interaction Relationship
Between the Guillain–Barré
Syndrome-Related Genes
We mapped all the GBS-related genes to the PPI network
constructed from the STRING database. The PPI relationships
between the GBS-related genes were shown in Figure 2. The
coding genes of the proteins were denoted as nodes. The 20
GBS-related genes identified from upregulated analysis were
represented as red circles, while the 23 genes from downregulated
ones were represented as blue circles. Note that there were 13
overlap genes, which were represented as green circles.

The DAVID results are provided in Supplementary
Material 2. We also plot the GO enrichment results in Figure 3
from the data in Supplementary Material 2. The overlap GO
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FIGURE 2 | PPI relationship between all the GBS-related genes identified in this study. Red circle represents the GBS-related genes identified from upregulated
analysis. Blue circle represents the GBS-related genes identified from downregulated analysis. Green circle represents the overlap GBS-related genes both from
upregulated and downregulated analysis.

terms in both upregulated and downregulated analysis were
listed as follows:

GO:0010604∼positive regulation of macromolecule
metabolic process
GO:0007242∼intracellular signaling cascade
GO:0007166∼cell surface receptor linked signal
transduction
GO:0043232∼intracellular non-membrane-bounded
organelle
GO:0043228∼non-membrane-bounded organelle
GO:0005886∼plasma membrane

KEGG Pathway Enrichment Analysis
Associated signaling pathways were analyzed using DAVID.
Using Benjamin multiple testing correction method, the
enrichment p-value was corrected to control family-wide false
discovery rate under a certain rate (e.g., ≤ 0.05). The results
were provided in Supplementary Material 3. We also plot the
KEGG pathway enrichment results in Figure 4 from the data in
Supplementary Material 3. The overlap KEGG pathway terms
in both upregulated and downregulated analysis were listed as
follows:

hsa05215: Prostate cancer
hsa05200: Pathways in cancer

hsa05213: Endometrial cancer
hsa05210: Colorectal cancer
hsa05214: Glioma
hsa04012: ErbB signaling pathway
hsa04510: Focal adhesion
hsa04722: Neurotrophin signaling pathway
hsa04310: Wnt signaling pathway

As one of the promising biomolecules, neurotrophins
involved in the modulation of synaptic activity, neuronal
survival, and release of neurotransmitters. There were released
naturally post-injury with the potential to exhibit better
functional recovery (Pandey and Mudgal, 2021). In the present
study, we found Neurotrophin signaling pathway in both
upregulated and downregulated pathway, which also indicates
the role of neurotrophin in GBS pathological mechanism
and nerve recovery.

Previous study found that Wnt/β-catenin signals participated
in Schwann cell proliferation and apoptosis and acted as positive
regulators of myelination (Lush and Piotrowski, 2014). Liu et al.
(2020) also demonstrated that Wnt/β-catenin signaling pathway
was upregulated in experimental autoimmune neuritis (EAN)
rats. In the present study, Wnt signaling pathway was found
in both upregulated and downregulated analysis, which was
consistent with the above studies.
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FIGURE 3 | GO term enrichment analysis of the GBS-related genes. GO term enrichment analysis was performed on the 20 genes from upregulated analysis and 23
genes from downregulated analysis, with results plotted in (A,B), respectively. Only pathways with gene count = 10 were shown.
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FIGURE 4 | KEGG term enrichment analysis of the GBS-related genes. KEGG term enrichment analysis was performed on the 20 genes from upregulated analysis
and 23 genes from downregulated analysis, with results plotted in (A,B), respectively. Only pathways with gene count =5 were shown.

CONCLUSION

In biomedicine and genomics, how to identify disease genes
is one of the most critical and challenging problems. In this
study, using the PPI network, we developed a computational
method to search GBS-related genes based on the shortest paths.

Totally, 30 most significant genes were screened out, which
may imply their direct or indirect effects on the development
of GBS, providing clues for further research and experimental
validations. These findings may give a new reference for
research into GBS pathogenesis and for new strategies for
clinical therapies.
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