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Mechanisms of Parkinson’s disease-related
proteins in mediating secondary brain
damage after cerebral ischemia

TaeHee Kim1,2 and Raghu Vemuganti1,2,3,4

Abstract

Both Parkinson’s disease (PD) and stroke are debilitating conditions that result in neuronal death and loss of neurological

functions. These two conditions predominantly affect aging populations with the deterioration of the quality of life for

the patients themselves and a tremendous burden to families. While the neurodegeneration and symptomology of PD

develop chronically over the years, post-stroke neuronal death and dysfunction develop rapidly in days. Despite the

discrepancy in the pathophysiological time frame and severity, both conditions share common molecular mechanisms

that include oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and activation of

various cell death pathways (apoptosis/necrosis/autophagy) that synergistically modulate the neuronal death. Emerging

evidence indicates that several proteins associated with early-onset familial PD play critical roles in mediating the

neuronal death. Importantly, mutations in the genes encoding Parkin, PTEN-induced putative kinase 1 and DJ-1 mediate

autosomal recessive forms of PD, whereas mutations in the genes encoding leucine-rich repeat kinase 2 and a-synuclein

are responsible for autosomal dominant PD. This review discusses the significance of these proteins with the emphasis on

the role of a-synuclein in mediating post-ischemic brain damage.
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Introduction

Chronic neurodegenerative conditions that include
Parkinson’s disease (PD), Alzheimer’s disease (AD)
and Huntington’s disease (HD) show a progressive
and irreversible loss of structure or function of neurons
over time with devastating consequences that include
a motor to cognitive dysfunction.1 Although the
pathophysiologic mechanisms responsible for neurode-
generation in chronic disorders are not completely
understood, there are many commonalities including
oxidative stress, mitochondrial dysfunction, endoplasmic
reticulum (ER) stress, inflammation, autophagy, impair-
ment of protein folding and abnormal post-translational
modifications leading to overloading of the ubiquitin-
proteasome system.2–5 Furthermore, several proteins
were shown to be associated with the progression of
these disorders, particularly those that form aggregates
in the CNS over time.6,7 For instance, one of the patho-
logical hallmarks of PD is the presence of Lewy Bodies,
proteinaceous cytoplasmic inclusions mainly composed

of aggregated a-synuclein (a-Syn).8 Similarly, AD is
manifested by the accumulation of abnormally
folded b-amyloid (Ab) and hyperphosphorylated tau in
the brain,9 and mutant and aggregated huntingtin pro-
teins that disrupt retrograde transport in neurons play a
pivotal role in the pathogenesis of HD.10,11

Neurodegeneration associated with acute conditions
like stroke and traumatic brain injury (TBI) is also
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mediated synergistically by oxidative stress, mitochon-
drial dysfunction, apoptosis, inflammation, and autop-
hagy which play critical roles in its pathogenic
progression.12–14 This similarity is surprising as the neur-
onal damage in chronic conditions like PD progresses
over years, whereas acute conditions like stroke occur
in a short span of hours to days. However, the intensity
of mechanisms like oxidative stress, ER stress, and
inflammation matches the time of progression as they
are at a low, consistent level in chronic disorders,
whereas they quickly go to a peak level and dissipate
quickly in acute conditions.15–17 Interestingly, it was
shown that silent strokes could lead to PD via inflam-
matory responses.18 In addition, there is a positive
correlation of oligomeric form of PD-causing protein
in the red blood cell between ischemic stroke and PD
patients.19 Furthermore, several proteins involved in the
pathogenesis of PD have been reported to play proteo-
pathic roles under the ischemic condition. In this review,
we discuss the significance of these proteins with an
emphasis on the role of a-Syn in promoting acute
brain damage after stroke and the putative mechanisms
of action.

Clinical implications of PD and

cerebral ischemia

It has long been suggested that ischemic stroke is asso-
ciated with PD. For instance, vascular Parkinsonism
(VP), a form of atypical Parkinsonism, is produced by
one or more small strokes, rather than by the gradual
loss of nerve cells as seen in the more typical neurode-
generative PD.20 Furthermore, levodopa treatment is
known to be less effective and vascular risk factors
were more common in VP patients compared to typical
PD patients.21 Supporting this phenomenon, a recent
preclinical study revealed that silent striatal stroke
induced by the middle cerebral artery occlusion in
rodents, can cause PD and destroys dopaminergic neu-
rons via inflammation in the substantia nigra.18

Postmortem studies further raised the possibility of
the coexistence of PD and cerebrovascular disease
and suggest that patients with Parkinsonism may
have cerebrovascular disease without the distinct
pathological hallmarks of PD.22,23 Earlier clinical stu-
dies also reported a higher incidence of ischemic stroke
in PD patients compared to control subjects.24,25 In
particular, the proportion of deaths due to vascular
lesions of the brain is significantly higher in male PD
patients 45–64 years of age compared with the general
population.24 Despite such evidence, there is no direct
evidence that PD-causing proteins are involved in the
pathogenesis of clinical stroke cases. Although levels of
oligomeric a-Syn in the red blood cells of ischemic
stroke patients were found to be positively correlated

with that of PD patients,19 prospective studies are
needed to clarify the role of PD proteins in human
stroke cases.

The proteopathic basis of
neurodegenerative processes
in PD and ischemic stroke

PD is the second most common neurodegenerative
disease after AD characterized primarily by the loss
of dopaminergic neurons in the substantia nigra pars
compacta leading to a striatal dopamine deficit.
Symptoms of PD include bradykinesia, hypokinesia,
rigidity, resting tremor, postural instability, sleep dis-
turbances, depression and cognitive impairment, indi-
cating a more widespread degenerative process.17 A
pathological hallmark of sporadic PD is the presence
of cytoplasmic proteinaceous inclusions called Lewy
bodies, mainly composed of a-Syn, ubiquitin, neurofi-
laments, and molecular chaperones.26 The role of Lewy
bodies in the disease process and their status as a patho-
genic marker of PD is still a matter of discussion. A
breakthrough in PD research was the identification of
genes which are responsible for monogenic familial
forms. Although familial PD with specific genetic
defects account for <10% of all cases of PD, the iden-
tification of these rare genes and their functions has
provided tremendous insight into the pathogenesis of
PD and opened up new areas of investigation.
Mutations in the genes encoding Parkin, PINK1, and
DJ-1 mediate autosomal recessive forms of PD and
mutations in the genes encoding leucine-rich repeat
kinase 2 (LRRK2) and a-Syn are responsible for auto-
somal dominant PD. Sporadic and monogenic forms
share important clinical, pathological, and biochemical
features, notably the progressive demise of dopamin-
ergic neurons in the substantia nigra. Therefore, insight
into the function and dysfunction of PD-associated
gene products can help elucidate the underlying mech-
anisms and new pathways in cell death.

Cerebral ischemia triggers a series of complex bio-
chemical and molecular events that promote neuronal
death and neurological dysfunction. These include,
but not limited to, excitotoxicity, ionic imbalance,
edema, oxidative stress, ER stress, and inflamma-
tion.14 These mechanisms promote necrosis as well
as apoptosis and autophagy.27 Surprisingly all these
mechanisms are also known to be central in promot-
ing brain damage in chronic conditions like PD
although the intensity and timing are different
between the acute and chronic diseases.
Furthermore, recent studies showed that the chronic
neurodegeneration-related proteins including a-Syn,
DJ-1, Parkin and PINK1 are also involved in the
neuronal death following acute insults like a stroke.
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�-Synuclein

The structure of �-Syn. a-Syn is a small protein (14.5 kDa;
140 amino acid) abundantly expressed in the mamma-
lian brain and localized primarily in presynaptic ter-
minals. a-Syn has three structural domains: the
amphipathic N-terminal region (residues 1 to 60), the
central hydrophobic region (residues 61 to 95; also
known as NAC; non-amyloid component) and the
acidic C-terminal region (residues 96 to 140)
(Figure 1). The N-terminal region is well conserved and
binds to phospholipids to acquire an amphipathic a-helix
structure.28 The central hydrophobic region enables a-
Syn to form aggregates, rich in b-pleated sheets upon
aggregation. The tertiary interactions between the three
domains are known to stabilize and shield the NAC
region from undergoing spontaneous oligomerization of
a-Syn.29,30 At least fivemissensemutations in theN-term-
inal and several post-translational modifications includ-
ing nitroxidation, phosphorylation, and ubiquitination in
both the N- and C-terminals are implicated in the patho-
genesis of PD and other synucleinopathies as they disrupt
the intrinsic autoinhibitory mechanisms leading to oligo-
merization of a-Syn.31–35

Oligomeric �-Syn and the cellular toxicity. a-Syn aggregates,
the major component of Lewy bodies, are implicated in

the cytotoxicity and the pathogenesis of several neuro-
degenerative disorders.36–38 However, soluble oligo-
meric intermediates are considered as the major
precipitators of PD pathology as mature fibrils are
deemed benign precipitates by sequestration of toxic
oligomers.39–41 Biochemical and genetic studies suggest
that a-Syn directly interacts with a number of key
players in the pathogenesis of synucleinopathies
(Figure 2). a-Syn oligomers are thought to form annu-
lar structures and pore-like complexes in the lipid
bilayer of the membranes resulting in disruption of cal-
cium homeostasis.41–45 However, a-Syn oligomers were
also thought to induce membrane permeabilization
independent of pore-like complexes.46,47 a-Syn can
also promote mitochondria-independent reactive
oxygen species (ROS) production, by interacting with
metal ions. In vitro studies showed that a-Syn has sev-
eral binding sites for copper and the redox activities of
a-Syn-Cuþ complexes can generate hydrogen perox-
ide,48,49 and these a-Syn-copper complexes are found
to be neurotoxic and promote further oligomeriza-
tion.50,51 The unfolded protein response (UPR) and
the subsequent ER stress are neuroprotective in mod-
eration. However, prolonged and/or excessive ER stress
leads to neuronal death.52 In the brain of PD patients,
expression of UPR activation markers, phospho-PERK
and phospho-eIF2a, was observed to be increased and

Figure 1. The primary structure of a-Syn. a-Syn monomeric protein consists of an amphipathic N-terminal (amino acids 1–60; Red),

a hydrophobic non-amyloid component (NAC; amino acids 61–95; Blue) and an acidic C-terminal (amino acids 96–140; Green). The

N-terminal region is highly conserved between the synuclein family proteins and contains characteristic consensus apolipoprotein

lipid-binding motifs (KTKEGV). This region adopts an amphipathic a-helical structure upon binding to negatively charged lipids, such as

phospholipids present on cellular membranes. The central region is a hydrophobic zone that corresponds to the non-amyloid

component and holds the amyloidogenic properties of the protein which allows a-Syn to undergo fibrillization, rich in b-structures.

The C-terminal region is a negatively charged acidic segment rich in glutamic, aspartic, and proline residues which hosts several post-

translational modification sites including S129. Five missense mutations identified to date (purple) as well as the S129 phosphorylation

site (blue) are marked with arrowheads. KTKEGV repeat motifs within the N-terminal are shown in bold. Amino acids associated with

nitroxidative modifications (methionine, tyrosine, and histidine) present in either the N-terminal or the C-terminal region are

underscored.
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colocalized with a-Syn.53 An in vivo study further
showed that toxic a-Syn oligomers accumulate within
ER lumen and a-Syn oligomer-dependent ER stress can
be rescued by treatment with Salubrinal, which inhibits
eIF2a and thus decreases protein overload54,55. a-Syn
oligomers are also shown to be promote inflammatory
responses56,57 and autophagy.58,59

�-Syn and mitochondrial dysfunction. Mitochondrial
homeostasis are dependent on fusion and fission
dynamics, and their perturbation results in mitochon-
drial dysfunction which is implicated in neurodegenera-
tive disorders.60 In the brains of PD patients,
aggregated a-Syn was observed to be localized in the
inner mitochondrial membranes where it interacts with

complex I resulting in the reduced mitochondrial
complex I activity and increased ROS production.61–63

a-Syn aggregates also interact with other mitochondrial
proteins such as carbonic anhydrase, enolase, and
lactate dehydrogenase which were found to be oxidized
in brains of transgenic mice overexpressing mutant
A30P a-Syn.64 a-Syn overexpression was shown to
significantly increase the translocation of mitochondrial
fission protein Drp1 via extracellular signal-regulated
kinase (ERK) pathway65 and induced mitochon-
drial cytochrome C release and caspase-9 and -3
activities promoting apoptosis.55,66 In contrast, inhib-
ition of a-Syn expression prevented MPPþ-induced
mitochondrial fragmentation in vitro.67 As mitochon-
drial dysfunction is thought to be a key player in

Figure 2. Mechanism of oligomeric a-Syn-mediated cellular toxicity in PD. In a normal physiological condition, a-Syn has long been

known to exist as an unfolded monomer. However, recent evidence suggests that a-Syn under normal physiological state may exist as

tetramers that resist aggregation. Tetrameric a-Syn species become destabilized and prone to aggregation due to several pathologic

factors including point mutations, ROS generated by dysfunctional mitochondria and post-translational modifications like phosphor-

ylation and nitroxidation. Concomitantly, impaired ubiquitin-proteasomal system (UPS) may not effectively clear the misfolded pro-

teins resulting in the accumulation of oligomeric a-Syn species. a-Syn aggregates, in turn, increase cellular toxicity by several

mechanisms. The a-Syn oligomers (1) permeabilize the lipid bilayer by forming Ca2þ-permeable pore-like complexes thereby dis-

turbing intracellular calcium homeostasis, (2) promote mitochondrial fragmentation by directly interacting with mitochondrial com-

plex I, recruiting mitochondrial fission protein Drp1 and inhibiting DJ-1/PINK1/Parkin proteins that are known to maintain

mitochondrial integrity, (3) activate the prolonged unfolded protein response (UPR) by accumulating within the ER lumen, and (4)

generate mitochondria-independent ROS via redox activities with metal ions.
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neurodegeneration, these studies suggest that a-Syn
could potentially play a pathogenic role in a broad
spectrum of neurodegerative diseases.

�-Syn and post-translational modifications. As discussed
above, post-translational modifications are known to
impact the pathological role of a-Syn including its
aggregation, fibrillation, Lewy body formation and
neurotoxicity. Of various post-translational modifica-
tions a-Syn can undergo, serine-129 (S129) phosphor-
ylation is considered as a defining hallmark of PD and
other synucleinopathies.68,69 In the post-mortem PD
patient brains,> 90% of the a-Syn aggregates are
known to be S129 phosphorylated, but its functional
significance is not yet completely elucidated.70 Many
kinases can promote S129 phosphorylation of a-Syn,
and overexpression of GRK2 and GRK6 in
Drosophila71 and rodent PD models72 showed
enhanced and accelerated neuronal death. In contrast,
overexpression of Polo-like kinase 2 (PLK2) which also
mediates a-Syn S129 phosphorylation was shown to
reduce a-Syn-associated dopaminergic neuronal loss
and ameliorate hemiparkinsonian motor impairment
presumably by enhancing autophagy in adult rodents.73

Although further studies are required for elucidating
the exact function of S129 phosphorylation on a-Syn
toxicity, these studies emphasize the significance of the
kinase responsible for the phosphorylation rather than
the phosphorylation itself.

�-Syn: Unanswered questions. Although extensive research
over the last two decades has provided tremendous
insight into the role of a-Syn in the pathogenesis of
PD, there are still many unanswered questions that
need to be addressed for developing therapies targeting
a-Syn. While the predominant view is that a-Syn exists
as an unfolded monomer under native conditions,
recent studies showed that a-Syn may exist as a helic-
ally folded tetramer that resists aggregation and fibril-
lation in the normal brain.74,75 Neurons derived from
PD patients expressing A53T mutant a-Syn contained
decreased tetramers.76 In vitro studies further showed
that a-Syn missense mutations (A30P, E46K, and
A53T) lower a-Syn tetramer: monomer ratio and
induce neurotoxicity and round inclusions.76 In add-
ition, mutagenesis studies revealed that the a-Syn
KTKEGV repeat motifs present in the N-terminus
mediate physiological tetramerization and perturbing
them causes PD-like neurotoxicity.77 Despite these stu-
dies, it is not convincingly established if a-Syn exists as
a monomer or a tetramer under normal conditions.78,79

Another enigma regarding a-Syn pathology is the
mechanisms that modulate a-Syn expression during
pathological states. Interestingly, microRNAs
miRNA-7 and miRNA-153 were shown to

synergistically target a-Syn mRNA to repress its pro-
tein expression.80,81 In human embryonic kidney cells
(HEK293T) challenged with hydrogen peroxide,
premiR-7 transfection decreased a-Syn protein expres-
sion and cell death.81 In addition to direct effects of
miRNAs on the a-Syn protein expression, these small
non-coding RNAs may also have indirect implications
for the a-Syn pathology in a specific cell type. For
example, miR-155 knockout mice showed reduced
microgliosis and neuroprotection despite a-Syn overex-
pression.82 miR-155 was also observed to be essential
for a-Syn-induced major histocompatibility complex
class II (MHCII) and inducible nitric oxide synthase
(iNOS) expression in microglia.82 Although further stu-
dies are needed, these findings not only provide mech-
anisms by which a-Syn levels are regulated in disease
brains but also raise the possibility that miRNA based
therapy is feasible for a-Synucleinopathies.

�-synuclein and stroke. Interestingly, cellular environment
following cerebral ischemia that includes inflammation,
oxidative stress and ER stress potentially provides
optimal conditions for a-Syn aggregation. In PD and
other chronic neurodegenerative conditions, a-Syn
aggregates exacerbate cellular toxicity by interacting
with lipid membranes,41 metal ions,48 ER,54 and mito-
chondria.63 Stroke can also either initiate or accelerate
progressive neurodegenerative processes and is a
known epidemiologic risk factor for AD.83

Significance of a-Syn in modulating ischemic brain
injury was demonstrated by multiple labs (Table 1).
Ishimaru et al.84 and Polymeropoulos et al.85showed
that a brief global ischemia in gerbils resulted in
increased a-Syn (aka precursor protein of non-Ab com-
ponent of AD amyloid; NACP) immunoreactivity in
the hippocampus where neurons died and proposed
that NACP may be related to several neurodegenera-
tive conditions. Subsequently, Hu et al.86 showed that
hypoxia/ischemia increases a-Syn protein levels in the
rat cerebral cortex, and Yoon et al.87 reported increased
a-Syn immunoreactivity and protein levels in the hip-
pocampal CA1 region following global ischemia in ger-
bils and this process was more prominent in aged than
young animals.87 More importantly, increased a-Syn
expression and neuronal death were attenuated by
treatment with the antioxidant enzyme SOD1, indicat-
ing that ROS promotes a-syn expression and aggrega-
tion.87 Furthermore, global cerebral ischemia in a-Syn
knockout mice resulted in increased prostaglandin
levels indicating the role of a-Syn in mediating
post-ischemic inflammatory responses.88 This study
suggested that a-Syn induction after ischemia may be
neuroprotective by reducing the post-ischemic brain
prostaglandin formation, but later studies challenged
this notion. Although prostaglandin is implicated in
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both pro-inflammatory and anti-inflammatory
responses in different biologic systems,89 a recent
in vivo study showed that stimulation of prostaglandin
D2 receptor DP1 is neuroprotective in the rodent ische-
mic brain.90 Furthermore, Unal-Cevik et al.91 reported
that a brief ischemic insult is sufficient to induce a-Syn
aggregation in neurons in adult mice. When subjected
to a brief ischemia, a-Syn overexpressing transgenic
mice showed exacerbated infarction and enhanced 3-
nitrotyrosine immunoreactivity, indicating oxidative/
nitrative stress as a potential mechanism of a-Syn-
mediated toxicity similar to what was shown in PD.
Recent studies from our laboratory also conclusively
demonstrated that a-Syn induced after transient focal
ischemia plays a detrimental role.92 We observed that
transient focal ischemia induced by MCAO in adult
rats significantly upregulates a-Syn mRNA and protein
levels, and knockdown of a-Syn decreases infarction
and promotes better neurobehavioral recovery.
Knockdown of a-Syn also attenuated known ischemic
pathological markers including mitochondrial dysfunc-
tion (Drp1), apoptosis (cleaved caspase-3), autophagy
(LC-3 II/I ratio) as well as oxidative stress (3-nitrotyr-
osine). In addition, we observed that a-Syn protein
oligomerizes, aggregates, and translocates to neuronal
nuclei in both rat and human post-stroke brain. a-Syn
knockout mice showed curtailed mortality, smaller
infarcts, and better neurological recovery when sub-
jected to transient focal ischemia. Furthermore, we
observed that phosphorylation of a-Syn is responsible
in part for its toxicity in the post-stroke brain as mice
that lack PLK2 (the predominant kinase that mediates
S129 phosphorylation of a-Syn) showed better func-
tional recovery and smaller infarct after transient
focal ischemia.92 These studies show that a-Syn plays
a critical role even in the pathogenesis of ischemic

stroke. Prospective studies will elucidate the exact
mechanisms of a-Syn-mediated ischemic cell death.

Parkin

Parkin is a widely expressed cytosolic ubiquitin E3
ligase in the brain that mediates mono- and polyubiqui-
tination of many proteins to regulate a variety of cel-
lular processes. A number of proteins identified as
Parkin substrates are implicated in the pathogenesis
of PD. Among those, Parkin-mediated degradation of
the GTPase cell division control-related protein-1
(CDCrel-1), is known to induce dopaminergic neurode-
generation in the rodent brain.93,94 In addition,
overexpression of Parkin-associated endothelin recep-
tor-like receptor (Pael-R) induces the unfolded stress
response in dopaminergic neurons, and Parkin attenu-
ates insoluble Pael-R-mediated cellular toxicity pre-
sumably through ubiquitination.95 Furthermore, the
a-Syn-interacting protein, synphilin-1, interacts with
and is polyubiquitinated by Parkin leading to the for-
mation of protein aggregates when overexpressed
together with a-Syn.96 Recent studies suggest that
lysine-63-mediated ubiquitination on synphilin-1 may
participate in the degradation of Lewy body inclusion
independent of the UPS, implicating its role in the
inclusion formation.97 Overall, the catalytic activities
of Parkin were shown to be neuroprotective and coun-
ters diverse cellular insults including a-Syn toxicity and
UPS dysfunction,98 accumulation of Pael-R (a sub-
strate of Parkin),95 and kainite-induced excitotoxicity.99

Parkin gene is a common cause of monogenic PD,
and Parkin can undergo> 100 types of mutations
including exonic rearrangements, point mutations,
and small deletions or insertions.100 Furthermore,
Parkin can be inactivated by post-translational

Table 1. Role of a-Syn in cerebral ischemia.

Model Duration Age/Sex Species Expression Observations Ref.

Global ischemia 5 min YA; M Gerbil upregulated " a-Syn around blood vessels in

CA1 on day 4; " a-Synþ tubal

structures on month 6

84

HI 90 min P7; F Rat upregulated 2-fold increase 2 h after HI 86

Global ischemia 5 min 6 m, 24 m; M Gerbil upregulated " a-Syn in CA1 in aged gerbil;

SOD1 inhibited a-Syn

87

Global ischemia 30 sec 9–11 m; M Mouse N/A a-Syn�/� increased brain PG for-

mation following ischemia

88

tMCAO 30 min 8w; M Mouse upregulated Brief ischemia induced a-Syn aggre-

gation, worsened damage

91

tMCAO 60–90 min YA; M Rat, Mouse upregulated # a-Syn reduced infarcts and

improved neurological recovery

92

YA: young adults; M: male; F: female; P: postnatal; m: months; w: weeks; HI: hypoxia/ischemia; tMCAO: transient middle cerebral artery occlusion; PG:

prostaglandin; ": increase; #: decrease.
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modifications due to oxidative and nitrosative stress as
seen in sporadic PD.101,102 Parkin inactivation leads to
accumulation of Parkin substrates like aminoacyl-
tRNA synthetase-interacting multifunctional protein
type 2 (AIMP2) and far upstream element-binding pro-
tein 1 (FBP1) which leads to neurodegeneration in
PD.103,104 The nonreceptor tyrosine kinase c-Abl phos-
phorylates tyr-143 and thus inhibits ubiquitin E3 ligase
activity of Parkin leading to neuronal degeneration in
rodent MPTP model.105 Concomitantly, activated c-
Abl further contributes to a-Syn-induced neurodegen-
eration in the rodent brain.106 Parkin inactivation also
leads to induction of its substrates PARIS (ZNF746)
and RTP801/REDD1, which promote dopaminergic
neurodegeneration. Once accumulated, PARIS
represses the peroxisome proliferator-activated recep-
tor gamma-coactivator 1-alpha (PGC-1a) and its
downstream neuroprotective target gene NRF-1,107

while RTP801/REDD1 is a negative regulator of sur-
vival kinases mTOR and Akt and hence promotes
apoptosis.108 Taken together, these studies indicate
that Parkin is an essential neuroprotective protein,
and its inactivation promotes neurodegeneration.

PINK1

PTEN-induced kinase 1 (PINK1) is a mitochondrial
serine-threonine kinase that is ubiquitously expressed
throughout the brain and is found in most cell types.109

More than 40 mutations in PINK1 gene are known to
promote autosomal recessive PD.110,111 Several lines of
evidence indicate that PINK1 is also a neuroprotective
protein. An early study showed that wild-type, but not
mutant PINK1 protects SH-SY5Y cells against stress-
induced mitochondrial dysfunction and apoptotic cell
death.42 Depletion of PINK1 both in vitro and in vivo
was shown to exacerbate a-Syn aggregation-mediated
toxicity as well as promote proteasomal inhibition.112,113

In contrast, reinstating PINK1 in Drosophila can rescue
a-Syn-induced pathologic phenotypes although the
mechanisms of how PINK1 mitigating a-Syn toxicity
are not clearly known.114 PINK1 colocalizes and phos-
phorylates TRAP1 (TNF receptor-associated protein 1;
HSP75), which is a protein chaperone that protects mito-
chondria from oxidative stress.115 In Drosophila,
TRAP1 overexpression was shown to rescue PINK1
loss-of-function phenotypes.116

Much attention is given to the role of PINK1 in
conjunction with Parkin in promoting the clearance
of impaired mitochondria. Termed mitophagy, it is
the highly selective autophagy-based process represent-
ing a critical mechanism to eliminate damaged and dys-
functional mitochondria, thus protecting cells from
aging, oxidative stress, and even apoptotic cell
death.117 When mitochondria are damaged,

mitochondrial membrane depolarization leads to
PINK1 accumulation on the outer membrane, which
recruits Parkin from cytosol that ubiquitinates mitofu-
sin 1, mitofusin 2 and P62/SQSTM1 that promotes
mitophagy to recycle the healthy mitochondrial compo-
nents.117–124 A recent study suggested that PINK1 can
also promote mitophagy without involving Parkin by
directly phosphorylating autophagy receptors NDP52
and optineurin which in turn recruit the autophagy fac-
tors ULK1, DFCP1, WIPI1 as well as LC3.125 This
evidence indicates that PINK1 and Parkin, the two
genes implicated in the autosomal recessive PD, work
together in the same pathway to govern mitochondrial
quality control, bolstering previous evidence that mito-
chondrial damage is involved in PD.

Similar to their role in PD and other neurodegenera-
tive disorders, even after stroke, Parkin and PINK1 are
thought to regulate the mitochondrial integrity and
thereby protect neurons from stress-induced mitochon-
drial dysfunction.126–128 Transient focal ischemia in
adult mice was shown to markedly downregulate
Parkin protein expression within the first 24 h of reper-
fusion.129 Overexpression of Parkin in primary cortical
neurons further showed that neurons were protected
from injury induced by ER stress which is a known
mediator of post-ischemic secondary brain damage.129

On the contrary, treatment of mice subjected to transi-
ent focal ischemia with ER stress inducers tunicamycin
and thapsigargin prevented post-ischemic Parkin deple-
tion leading to its translocation to mitochondria and
activation of mitophagy.130,131 In addition, the neuro-
protective effects of these ER stress inducers were
reversed by Parkin knockdown and/or knockout.130,131

Surprisingly, recent studies showed that Parkin and
PINK1 were upregulated in cortical penumbra follow-
ing photothrombotic focal ischemia in rats and pro-
mote the survival of penumbral neurons.132 133

Moreover, Parkin protein upregulation was also
shown in the rat brain after transient focal cerebral
ischemia induced by MCAO.134 Thus, it is still prema-
ture to conclude the definitive role of Parkin in ischemic
brain damage.

DJ-1

DJ-1 is a small ubiquitously expressed protein in the
brain that exists as a homodimer in cytoplasm, mito-
chondria, and nucleus.135–137 DJ-1 is an oxidative stress
response protein that defends cells against ROS.138–140

DJ-1 is thought to help maintain the integrity of mito-
chondria, presumably by interacting with complex I,
and thereby minimizing the production of mitochon-
dria-dependent oxidative stress leading to cytoprotec-
tion.141 Loss of DJ-1 leads to pathological
mitochondrial phenotypes including reduced
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membrane potential,142 increased fragmentation,143,144

and accumulation of autophagic markers.145

Studies showed that brains of AD and PD patients
contain high levels of oxidized DJ-1 which is thought to
be neuroprotective.146,147 The neuroprotective potential
of DJ-1 is considered to be due to post-translational
modifications including oxidation of cysteine
C106,148–152 SUMOylation of lysine K130 153,154 and
transnitrosylation of cysteine residues C46, C53, and
C106.155 Especially, from the transnitrosylated C106
residue, the NO group can be transferred to phosphat-
ase and tensin homolog (PTEN) that decreases its phos-
phatase activity leading to neuronal survival.156

Although DJ-1 directly quenches some ROS via oxida-
tion of Cysteine residues, this effect is not deemed a
major contributor to the protective function of DJ-
1.157 The neuroprotective activity of DJ-1 is thought
to be multifactorial that includes chaperoning misfolded
proteins including a-Syn and controlling its aggrega-
tion,158–160 activating SOD1161 and modulating tran-
scriptional regulators like p53,162,163 nuclear factor
erythroid 2-related factor 2 (Nrf2)164,165 and protein-
associated splicing factor (PSF)166 as well as by acting
as a cysteine protease.167,168 DJ-1 acts in parallel with
PINK1/Parkin to protect mitochondria during oxida-
tive stress. Overexpression of Parkin or PINK1 prevents
rotenone-induced mitochondrial fragmentation in the
absence of DJ-1 in human dopaminergic cells.145 On
the contrary, DJ-1 overexpression ameliorates PINK1,
but not Parkin mutant-mediated mitochondrial dys-
function in Drosophila.169 Furthermore, mitochondrial
fragmentation induced by a-syn overexpression in C.
Elegans was shown to be mitigated by coexpression of
wild-type PINK1, Parkin or DJ-1 with a-Syn but not by
mutant forms of PINK1, Parkin or DJ-1.170

DJ-1 is the most studied PD-causing protein in ische-
mic stroke setting due to its known neuroprotective
roles in PD and other neurodegenerative conditions as
an antioxidant as well as redox-sensitive molecular
chaperone. Consistent with previous findings in PD,
several studies showed that focal ischemia in rodents
induces DJ-1 protein expression which prevents ische-
mic neuronal death by suppressing ROS production and
acting as a redox-sensitive molecular chaper-
one.134,171–174 Biochemical and immunocytochemical
studies revealed that when rat primary neuronal cultures
were subjected to oxygen-glucose deprivation, DJ-1
translocates to mitochondria and nucleus which was
thought to protect the cells.175,176 Interestingly, the
translocated mitochondrial DJ-1 was subsequently
observed to be secreted into the medium which is an
essential step in DJ-1-mediated neuroprotection.175,176

In vivo and in vitro studies also showed the significance
of astrocytic DJ-1 in response to post-ischemic oxidative
stress.177 Following focal ischemia, activated astrocytes

induced DJ-1 expression in the rat brain. Furthermore,
when primary astrocytic cells were treated with H2O2,
DJ-1 was observed to be secreted from astrocytes and
scavenged hydroxyl radicals. However, the functional
significance DJ-1 secretion is not clear yet.

Judging from previous evidence from PD and other
neurodegeneration models, a-Syn aggregates might pre-
vent the neuroprotective potential of DJ-1 after ische-
mia (Figure 3). Brain tissue from PD patients was
shown to contain large molecular complexes
(>2000 kDa) of a-Syn and DJ-1.178,179 In addition,
decreased DJ-1 solubility was observed in the brains
of PD patients.178,180 These studies suggest that a-Syn
aggregates recruit DJ-1 to form insoluble inclusions
and thereby attenuate its antioxidant neuroprotective
ability. DJ-1 may also exert cellular protection by reg-
ulating transcription factors involved in the cell death.
In support to this notion, DJ-1 was shown to negatively
regulate p53 in response to oxidative stress.154,162 In
zebrafish model of PD, DJ-1 deficiency resulted in
increased p53 and Bax (apoptosis regulator) expression
when challenged by H2O2.

181 Activation of p53 is also
involved in apoptotic cell death in cerebral ischemia
and in vivo administration of p53 inhibitor pifithrin-a
induced neuroprotection in rats subjected to focal
ischemia.182–184 Taken together, it could be hypothe-
sized that ischemic stress-induced a-Syn accumulation
contributes, at least in part, to the increased p53 levels
via suppressing DJ-1 solubility.

LRRK2

Leucine-rich repeat kinase 2 (LRRK2) is a multido-
main protein (280 kDa, 2527 amino acid) which con-
tains a central catalytic core that includes a Ras of
complex (ROC), a GTPase protein domain, a car-
boxy-terminal of Roc (COR) domain and a kinase
domain. The central catalytic core is surrounded by
several potential protein–protein interacting domains
including leucine-rich repeats and the WD40
domain.185 Mutations in the LRRK2 (R1441C,
R1441G, and R1441H in the ROC domain, G2019S
and I2020T in the kinase domain and Y1699C in the
COR domain) are thought to be responsible for both
familial and sporadic PD.186 Although the exact func-
tional consequences of various LRRK2 mutations are
not known, mutations in the ROC and COR domains
decrease GTPase activity while mutations in the kinase
domain increases kinase activity.187–189 Among the
known LRRK2 mutations, G2019S mutation in the
kinase domain shows the most prevalence in PD popu-
lation.190,191 As G2019S mutation is the most prevalent
in the PD population, increased LRRK2 kinase activity
by G2019S mutation implicates significance in the
pathogenesis of monogenic PD. In addition,
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polymorphism within the LRRK2 gene is also corre-
lated with sporadic PD risk.192,193 Many studies further
showed that LRRK2 variants that include A419V,
R1628P, and G2385R mutations increase risk for spor-
adic PD in Asians.194–196 Interestingly, there might be
an association between LRRK2 and other PD genes;
and many PD patients with LRRK2 mutations exhibit
a-Syn-positive Lewy bodies and tau-related
pathology.197,198

LRRK2 is known to phosphorylate Tau directly or
indirectly by activating GSK-3b which is a predomin-
ant Tau kinase.199–201 Tau is a microtubule-associated
protein that is predominantly expressed in CNS and
regulates neurite outgrowth and axonal transport by
modulating tubulin assembly and microtubule stabil-
ity.202 Hence, proper functioning of Tau is essential
for neuronal plasticity and memory consolidation.
The microtubule-binding ability of Tau is regulated
by several post-translational modifications.

Particularly, hyperphosphorylation of Tau promotes
neuronal degeneration, and the fibrillar deposits of
highly phosphorylated Tau is a defining marker of neu-
rodegeneration including.203 Studies in PD and
AD models showed co-localization of a-Syn with phos-
pho-GSK-3b and phospho-Tau, and indicated that a-
Syn may act as a scaffolding molecule that is necessary
for the activation of GSK-3b and the subsequent Tau
hyperphosphorylation.204,205 Taken together, these stu-
dies indicate that LRRK2 may be critically involved in
the Tau pathology in PD.

As indicated above, LRRK2 activates GSK-3b by
phosphorylation leading to tau hyperphosphorylation
in PD.204,205 In parallel to this, cerebral ischemia in
rodents was shown to increase GSK-3b-mediated tau
hyperphosphorylation that colocalizes with TUNEL
staining implicating its role in apoptotic cell
death.206,207 Concomitantly, GSK-3b downregulates
Nrf2 following cerebral ischemia,208 which is known

Figure 3. Proposed neuroprotective role of DJ-1 following cerebral ischemia. During the ischemic cascade, glutamate-induced

excitotoxic stimulation of Ca2þ-permeable NMDA receptors and subsequent Ca2þ influx activates intracellular Ca2þ sensitive

enzymes such as nNOS. Oxidative stress produced by ROS damages organelles including mitochondria and promotes aggregation of a-

Syn. Following ischemic insult, DJ-1 translocates into neuronal mitochondria and nuclei to act as an antioxidant and molecular

chaperone. Once translocated, DJ-1 negatively regulates proapoptotic factors like p53 and Bax and inhibits apoptotic cell death. DJ-1 is

also secreted into the extracellular space, but its functional significance is not yet clear. Upon ischemic stress, aggregated a-Syn may

form higher molecular weight complexes with DJ-1 resulting in decreased solubility and bioavailability of DJ-1.
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to reduce levels of hyperphosphorylated tau protein by
inducing autophagy adaptor protein NDP52.209

Furthermore, a-Syn was shown to be induced following
cerebral ischemia and its knockdown decreases post-
ischemic mitochondrial fragmentation and apoptosis.92

Thus, LRRK2 might contribute to post-ischemic apop-
totic cell death as well by modulating tau phosphoryl-
ation in the presence of a-Syn (Figure 4). Future studies
will show the functional significance of LRRK2 to
post-stroke brain damage.

Conclusions

The pathophysiologic mechanisms of neuronal death
and therapeutic development for chronic neurodegen-
erative diseases like PD and acute injuries like stroke
are usually investigated separately. However, many
molecular mechanisms that promote secondary brain
injury like inflammation, oxidative stress, ER stress,
apoptosis, and autophagy can be seen in both chronic
and acute CNS insults although their intensity and
timing are different. Furthermore, observations like
aggregation of a-Syn and depletion of proteins like

DJ-1, PINK1, and Parkin after cerebral ischemia sug-
gest that the mechanisms that are known to promote
pathology in chronic conditions might also contribute
to neuronal death after stroke. However, the causal
relationship between the chronic neurodegeneration-
associated proteins and cell death in stroke remains to
be established beyond doubt. It is possible that neur-
onal cell injury may be caused by a direct toxic effect of
protein aggregates or protein depletion. Conversely,
abnormal protein levels could arise due to the patho-
logical cellular environment created by injured neurons.
Future studies are warranted to elucidate the molecular
mechanisms underlying pathological processes
mediated by mutual key proteins.
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