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Tracking individual-cell/object over time is important in understanding drug treatment effects on cancer cells and video
surveillance. A fundamental problem of individual-cell/object tracking is to simultaneously address the cell/object appearance
variations caused by intrinsic and extrinsic factors. In this paper, inspired by the architecture of deep learning, we propose a robust
feature learning method for constructing discriminative appearance models without large-scale pretraining. Specifically, in the
initial frames, an unsupervised method is firstly used to learn the abstract feature of a target by exploiting both classic principal
component analysis (PCA) algorithms with recent deep learning representation architectures. We use learned PCA eigenvectors
as filters and develop a novel algorithm to represent a target by composing of a PCA-based filter bank layer, a nonlinear layer,
and a patch-based pooling layer, respectively. Then, based on the feature representation, a neural network with one hidden layer is
trained in a supervised mode to construct a discriminative appearance model. Finally, to alleviate the tracker drifting problem, a
sample update scheme is carefully designed to keep track of the most representative and diverse samples during tracking. We test
the proposed tracking method on two standard individual cell/object tracking benchmarks to show our tracker's state-of-the-art
performance.

1. Introduction

Individual-cell/object tracking is a fundamental problem in
computational biology [1–4], drug treatment effects on cancer
cells [2], high-content screening [5], and computer vision
[6–8]. Therefore, it has attracted much attention due to the
potential value for its theoretical challenges and practical
applications. Although it has been investigated in the past
decades, designing a robust cell/object tracker to cope with
appearance changes of a cell/object is still a great challeng-
ing task. The appearance changes of a cell/object include
intrinsic (e.g., pose changes, motion blur, scale variations,
and nonrigid deformation) and extrinsic (e.g., illumination
variations, cluttered scenes, and occlusions) factors. Such
appearance changes may make a tracker drift away from
the cell/object. Moreover, because a large number of manual

operations are required in existing cell tracking [9], how to
design an accurate and automatic cell tracker with limited
manual operations [10] is another challenge.

To capture appearance variations, most state-of-the-art
trackers rely on handcrafted features to adaptively construct
and update the generative or discriminative models of object
appearances (e.g., principal component analysis [1, 2, 11, 12],
Hough forest [13], support vectormachine [14], and ensemble
learning [15, 16]). By using various handcrafted features
[16–26], these handcrafted feature-based tracking methods
are developed for certain scenarios. Consequently, they are
unable to capture the rich sematic information of a target as
their generalization is not well. Therefore, they are prone to
tracking failure in some challenging conditions.

Recently, deep learning [27–32] has attractedmuch atten-
tion in computational biology, cell biology, and computer
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vision. Instead of using handcrafted features, deep learning
aims to automatically learn hierarchical feature represen-
tation from raw data. With the impressive performance
achieved by deep learning on speech recognition [28] and
image recognition [29, 31, 32], a few of early researchers
[33–39] have applied it to object tracking and achieved
competitive performance. However, as only the annotation
of a target object in the initial frames is available, the
deep learning-based trackers usually use large-scale training
data to prelearn deep structure and transfer the pretrained
feature representation to the tracking tasks. Consequently, the
large-scale pretraining is time-consuming and the pretrained
feature representationmay be less discriminative for tracking
a specific cell/object. Moreover, they may be sensitive to
partial occlusion and pose changes due to using a single
global bounding box to delineate the entire cell/object.

In this paper, we propose a robust discriminative tracking
method which automatically learns feature representation
without large-scale pretraining and explicitly handles partial
occlusion by fusing a global structure and local details in a
cell/object. Specifically, in the initial frames, an unsupervised
method is firstly used to learn the abstract feature of a
cell/object by exploiting both classic principal component
analysis (PCA) algorithms with recent deep learning repre-
sentation architectures. We use learned PCA eigenvectors as
filters and develop a novel algorithm to represent a target
by composing of a PCA-based filter bank layer, a nonlinear
layer, and a patch-based pooling layer, respectively. Then,
based on the feature learned from the above unsupervised
method, a neural network with one hidden layer is trained
in a supervised mode to construct a discriminative target
appearancemodel. By exploiting the advantage of deep learn-
ing architecture, our method is able to learn a generic and
hierarchical feature representation while performing more
efficiently without large-scale pretraining. Compared with
holistic-basedmodels, ourmethod simultaneouslymaintains
holistic and local appearance information and therefore pro-
vides a compact representation of the target object. Finally,
to alleviate the tracker drifting problem, a simple yet effective
sample update scheme is adopted to keep track of the
most representative and diverse samples while tracking. The
experiments on two standard individual-cell/object tracking
benchmarks (i.e., the Mitocheck cell dataset [40] and the
online tracking benchmark (OTB) [41]) show that our tracker
achieves a promising performance.

The rest of the paper is organized as follows. Section 2
discusses the most related work to ours. The detailed overall
framework of our tracking method is described in Section 3.
The performance of our tracking method is demonstrated in
Section 4. Finally, Section 5 summarizes our findings.

2. Related Work

Much work has been done in the area of cell/object tracking
and the comprehensive review is beyond the scope of this
paper. Please refer to [3, 4, 6–8] for more complete reviews
on cell/object tracking and recent tracking benchmarks. In
this section we briefly review some representative works on
visual tracking and put our work in a proper context.

2.1. Individual-Cell andObject TrackingwithHandcrafted Fea-
tures. For decades, many trackingmethods with handcrafted
features have been proposed, which focus on constructing
robust cell/object appearance models to handle the inevitable
appearance changes of a cell/object. In [17], a mean shift-
based tracking method using color histograms is proposed.
Li et al. [18] propose a multiple nuclei tracking method
with the intensity features for quantitative cancer cell cycle
analysis. In [19], Danelljan et al. propose an adaptive color
attribute-based tracking method under a coloration filtering
framework. In [26], Lou et al. propose an active structured
learning-based cell tracking method by combining multiple
complementary features, such as position, intensity, and
shape. In [12], an incremental principal component analysis-
based tracking method is proposed for robust visual track-
ing. Recently, a variety of low-rank subspaces and sparse
representations based tracking methods have been proposed
[42–47] for cell/object tracking due to their robustness to
occlusion and image noises. Zhong et al. [48] propose a
weakly supervised learning-based tracking method, in which
multiple complementary trackers are effectively fused to
achieve robust tracking results. Zhou et al. [49] propose a
similarity fusion-based tracking method, in which multiple
features and context structure of unlabeled data are effectively
utilized.

Coupled with designing handcrafted features, numerous
advanced machine learning methods have been developed
to further improve the tracking performances. The typical
learning methods include support vector machine (SVM)
classifiers [14], structured output SVM [21], online boost-
ing [15, 20], P-N learning [50], multiple instance learning
[51], and correlation filters [52–54]. In [55], for improving
the tracking performance, Lou et al. incorporate a shape
prior into a learning method to segment dense cell nuclei.
Dzyubachyk et al. [56] utilize a level set-basedmethod for cell
tracking in time-lapse fluorescence microscopy.

Moreover, to explicitly deal with the occlusion prob-
lem, several part-based models have been proposed. In
[13], Gall et al. propose a part-based voting schema via
Hough forests for robust tracking. In [17], online latent
structural learning is employed for a part-based object
tracking method. However, the part-based tracking methods
still rely on low-level features. Although tracking methods
with handcrafted features usually produce more accurate
results under less complex environments, they may be lim-
ited by using handcrafted features which cannot be simply
adapted according to the new observed data obtained while
tracking.

2.2. Single-Cell and Object Tracking with Deep Learning. In-
spired by the success of deep learning in speech and visual
recognition tasks [27–32], a few of deep learning-based track-
ing methods have been recently proposed [33–39] for robust
cell/object tracking. In [35], based on a pretrained convolu-
tional neural network, Fan et al. propose a tracking method
for human. One of the limitations is that the pretrained
convolutional neural network is fixed during the online track-
ing process. Wang and Yeung [34] propose an autoencoder
based tracking method. Instead of using unrelated images
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for pretraining, Wang et al. [57] propose a tracking method
which prelearns features robust to diverse motion patterns
from auxiliary video sequences. However, they only evaluate
the method on 10 video sequences. In [58], Li et al. effectively
combine multiple convolutional neural networks for robust
tracking. Within a particle filtering framework, Carneiro and
Nascimento [33] use deep learning architectures to cope with
the left ventricle endocardium in ultrasound data. In [36],
based on the deep network of VGG, a fully convolutional
neural network is proposed for robust tracking. In [37], Hong
et al. propose a tracking method by learning discriminative
saliency map with convolutional neural network. In [38],
Ma et al. fuse the correlation filters and pretrained VGG
network for robust tracking. In [39], Nam and Han propose
a multidomain convolutional neural network-based tracking
method.

However, these tracking methods are time-consuming
due to the large-scale pretraining. Moreover, the pretrained
feature representationmay be less discriminative for tracking
specific target objects.

3. The Proposed Individual-Cell and
Object Tracking Algorithm

In this section, we develop our discriminative tracking algo-
rithm via a PCANet deep network [32]. Based on a particle
filtering framework, the proposed PCANet-based tracking
method for individual-cell/object is schematically shown in
Algorithm 1.

Specifically, the proposed tracking algorithm works as
follows: the target object is manually selected in the first
frame by a bounding box. Then, an unsupervised method
is used to learn the abstract feature of the target object by
exploiting both classic principal component analysis (PCA)
algorithms with recent deep learning representation archi-
tectures. Furthermore, based on the feature learned from
the above unsupervised method, a neural network with one
hidden layer is trained in a supervised mode to construct
a discriminative object appearance model. Meanwhile, a set
of particles with associated weights is initialized within a
particle filtering framework. For one incoming video frame 𝑡,
we first predict each particle using the dynamic model.Then,
we compute weights for each particle using the observation
model (i.e., the discriminative appearancemodel). According
to the obtained weights, we determine the optimal object
state as the particle with the maximum weight and resample
particles. Finally, the pretrained feature is updated according
to the new observed data. Meanwhile, the discriminative
appearance model is also incrementally updated via a simple
yet effective sample update scheme which keeps track of the
most representative and diverse samples while tracking. The
tracking procedure continues in this iterative fashionuntil the
end of video.

Below we give a detailed description about each compo-
nent of our method.

Algorithm 1. Overview of the proposed PCANet-based track-
ing method for individual-cell/object is shown below.

Input is as follows:

(1) Get one initialized video frame with ground-truth
bounding box on a cell/object.

(2) Pretrain an abstract feature of a cell/object via an
unsupervised method.

(3) Build a neural network-based discriminative appear-
ance model for the cell/object based on the feature
learned from the above unsupervised method.

(4) Initialize a set of particles with associated weights
within a particle filtering framework.

Output is as follows:

(1) Predict each particle using a Gaussian function-based
motion model.

(2) Compute weights for each particle using a PCANet-
based discriminative appearance model.

(3) Determine the optimal cell/object state as the particle
with the maximum weight.

(4) Resample particles based on their corresponding
weights.

(5) Update the pretrained feature and the PCANet-based
discriminative appearance model according to the
newly observed data.

3.1. Particle Filtering. Theproposed tracking algorithm is car-
ried out using the particle filtering framework which is a
Markov model with hidden state variables. Supposing that
we have observations of the target object 𝑍

𝑡
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1
, . . . , 𝑧

𝑡
]

up to the 𝑡th frame, the hidden state variable 𝑥
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where 𝑥𝑖
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is the 𝑖th sample of the state 𝑥
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is the image
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.

Motion Estimation. In this paper, for simplicity and com-
putational efficiency reasons, we choose to track only the
location and size. Let 𝑥

𝑡
= (𝑙
𝑥
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state parameters including the horizontal coordinate, vertical
coordinate, width, and height, respectively.Weuse aGaussian
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Figure 1: Illustration of the structure of the used PCANet deep network [32].

distribution to model the dynamic model between two
consecutive frames.

Likelihood Evaluation. For each state𝑥
𝑡
, there is a correspond-

ing image patch that is normalized to 32 ∗ 32 pixels by image
scaling. The likelihood function is calculated based on the
proposed discriminative appearance model; that is, 𝑝(𝑧

𝑡
|

𝑥
𝑡
) = 𝑑

𝑡
, where 𝑑

𝑡
is an output score from the proposed

discriminative appearance model.

3.2. The Proposed Discriminative Appearance Model from
PCANet. In this section, we address the problem of how
to learn a data-driven and discriminative appearance model
without large-scale pretraining. In the first frame, an unsu-
pervised method is firstly used to learn the abstract feature of
a target object by exploiting both classic principal component
analysis (PCA) algorithms with recent deep learning repre-
sentation architectures. Then, based on the feature learned
from the above unsupervised method, a neural network with
one hidden layer is trained in a supervised mode to construct
a discriminative target appearance model.

More specifically, we use the newly proposed PCANet
deep network [32] to prelearn the abstract feature of a target
object. The PCANet is a simple convolutional deep learning
network composed of cascaded PCA, binary hashing, and
block histograms. The work on PCANet shows that applying
arbitrary nonlinearities on top of PCA projections of image
patches can be surprisingly effective for image classification.
Inspired by their work, we propose a PCANet-based unsu-
pervised method to effectively learn the abstract feature of
a target object and the discriminative structure between the
target and background.

The PCANet model is illustrated in Figure 1, and only
the PCA filters need to be learned from the training images.
Following the notations ofHanChan et al. [32], wewill briefly
review the PCANet model.

TheCascaded PCA. Denote {𝐼
𝑖
∈ R𝑚×𝑛}

𝑁
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as𝑁 input training

images and 𝑘
1
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2
as the 2D convolutional filter size. Around

each pixel, PCANet takes 𝑘
1
× 𝑘
2
patch and collects all

(overlapping) patches of the 𝑖th image as the training data.
Then, PCANet computes projection vectors in such away that
most variations in the training data can be retained.The PCA
filters in the PCANet are expressed as the leading principal
eigenvectors. Similar to deep neural network, PCANet can
stack multiple stages of PCA filters to extract higher level
features.

Binary Hashing and Block Histograms. Let 𝐿
1
and 𝐿

2
denote

the number of PCA filters in the first and second stage of
PCANet, respectively. For each of the 𝐿

1
input images 𝐼𝑙

𝑖

for the second state, each input image has 𝐿
2
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2
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}
𝐿2

ℓ=1
from the second stage.These outputs are

binarized via a hashing function, in which an output value is
one for positive entries and zero otherwise.

Around each pixel, the vector of 𝐿
2
binary bits is viewed

as a decimal number.This converts 𝐿
2
outputs of the 𝑖th input

image 𝐼𝑙
𝑖
back into a single integer-valued image 𝑇𝑙
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, where

𝑖 = 1, . . . , 𝐿
1
. Then, each of the 𝐿

1
images 𝑇𝑙

𝑖
is divided into

𝑚 overlapping or nonoverlapping blocks. PCANet compute
the histogram of the decimal values in each block and
concatenate all 𝑚 histograms into one vector and denote
them as𝐻(𝑇𝑙

𝑖
).
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Figure 2: The PCA-based filters learned on the training data from the first frame of woman sequence from the online tracking benchmark
(OTB) [41] and the Mitocheck cell dataset, respectively [40]. The top two rows show the eight PCA-based 7 ∗ 7 filters learned in first layer.
The bottom two rows show the eight PCA-based 7 ∗ 7 filters in second layer.

After this encoding process, the feature of the input image
𝐼
𝑖
is then defined to be the set of block-wise histograms; that

is, 𝑓
𝑖
= [𝐻(𝑇

𝐿

𝑖
), . . . , 𝐻(𝑇

𝐿1

𝑖
)].

To empirically illustrate the efficacy of the learned
PCANet features, we check the fine-tuned filters trained on
the training data from a specific tracking task. In Figure 2,
we show the PCA-based filters learned on the training data
from the first frame of woman sequence from the online
tracking benchmark (OTB) [41] and the Mitocheck cell
dataset, respectively [40]. The top two rows show the eight
PCA-based 7 ∗ 7 filters learned in first layer. The bottom two
rows show the eight PCA-based 7 ∗ 7 filters in second layer.
It is obvious that the proposed PCANet-based model can
effectively learn the useful information from the data, such
as edge and corner and junction detectors.

4. Experiments Evaluation

This section presents our implemental details, experimental
configurations, dataset, and evaluation setting. The effec-
tiveness of our tracking algorithm (named ours-1) is then
demonstrated by quantitative and qualitative analysis on the
online tracking benchmark (OTB) [41] and the Mitocheck
cell dataset, respectively [40]. For the sake of computational
robustness, we further consider the effect of the different PCA
layers in PCANet (i.e., a variety of different numbers of the
PCA layers) on the tracking performance.

4.1. Implementation Details and Experimental Configurations.
To reduce computational cost, we simply consider the object
state information in 2D translation and scaling in a parti-
cle filtering framework, where the corresponding variance
parameters are set to 15, 15, 0.1, and 0.1, respectively. The
proposed tracking method (i.e., ours-1) is implemented in
Matlab without code optimization and runs on a PC with
a 2.40GHz processor and 12G RAM. 1,000 samples are
empirically drawn for particle filtering. For each particle,
there is a corresponding image region normalized to a 32 ∗
32 patch. The buffer size of a temporal sliding window is
set as 25. The typical training time of PCANet-based deep
network is about 10 seconds in Matlab without using GPUs.
Our PCANet-based tracker takes about one second to process
each video frame.

4.2. Datasets and Evaluation Settings

4.2.1. Datasets. To evaluate the performance of the pro-
posed tracking method (i.e., ours-1) for tracking individual-
cell/object, we use not only the Mitocheck cell dataset
[40] but also the online tracking benchmark (OTB) [41].
The Mitocheck dataset is a time-lapse microscopic image
sequence which contains higher cell density, larger intensity
variability, and illumination variations. The online tracking
benchmark (OTB) [41] is a collection of 50 video sequences
tagged with 11 attributes which covers various challenging
factors in visual tracking, such as deformation, fast motion,
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background clutter, and occlusion. The 50 video sequences
are defined with bounding box annotations.

4.2.2. Evaluation Settings. The OTB benchmark uses two
different evaluation metrics: the precision plot and success
plot. For the precision plot, a target object is considered
to be successfully tracked on a video frame if the distance
between the centers of the estimated box and the ground-
truth bounding box is below a threshold. Thus, numerous
precision plots can be obtained by varying the threshold
values. Typically, the trackers are ranked based on the
precision at threshold of 20 pixels for the precision plot.
On the other hand, for the success plot, a target object is
considered to be successfully located on a video frame if
the predicted bounding box and the ground-truth bounding
box have an intersection-over-union (IoU) overlap higher
than a threshold. The success plot illustrates the percentage
of frames considered to be successful. The area under curve
(AUC) score is used to rank the tracking algorithms. Three
different experiments are performed, that is, one-pass eval-
uation (OPE), temporal robustness evaluation (TRE), and
spatial robustness evaluation (SRE). For TRE, the starting
frame of the evaluation is randomized. For SRE, the initial
bounding boxes are randomly perturbed. Please see the
original paper [41] for more details. For the evaluation on the
Mitocheck cell dataset [40], we just use the qualitative results
to show the tracking performance due to the unavailability of
ground-truth labeling.

4.3. Evaluation Results on the Online Tracking
Benchmark (OTB)

Overall Performance. We quantitatively analysed the overall
tracking performance, and Figure 3 shows the precision and
success plots on all the 50 sequences of the top 10 tracking
methods. In terms of both evaluation metrics, the proposed
tracking method (i.e., ours-1) is able to obtain better results
than any of the comparison methods due to the robust
feature learning via online PCANet deep network. In the
precision plot of OPE, the precision score of the proposed
trackingmethod (i.e., ours-1) is 0.707, which is ranked the first
place. Meanwhile, the other top four tracking methods are
Struck (0.656), SCM (0.649), TLD (0.608), and VTD (0.576),
respectively. In the success plot of OPE, the AUC score of the
proposed trackingmethod (i.e., ours-1) is 0.566, which is also
ranked the first place. Meanwhile, the other top four tracking
methods are SCM (0.499), Struck (0.474), TLD (0.437), and
ASLA (0.434), respectively. According to the precision and
AUC scores, the proposed tracking method (i.e., ours-1) is
comparable to the state-of-the-art tracking methods in both
the precision and success plots.

Performance Analysis on 11 Different Attributes. To further
analyse the proposed tracking method, we validate the per-
formance of the proposed tracker on each attribute provided
in the online tracking benchmark (OTB) [41]. In the OTB,
there are 11 different attributes which describe a variety of
tracking challenges. Each video sequence is annotated by

some attributes. We report the precision and success plots of
one-pass evaluation (OPE) for trackers on the 11 attributes in
Figures 4 and 5, respectively. According to Figures 4 and 5, it is
easy to observe that the proposed trackingmethod (i.e., ours-
1) provides sufficient robustness to the 11 attributes, and our
tracker consistently outperforms the other trackers inmost of
the challenges.

Qualitative Results. In Figure 6, we illustrate the qualitative
results of four typical image sequences. To facilitate more
detailed analysis, we further report the curves of center
distance error per frame in Figure 7. As our tracker can
better capture major variations in the data, we can observe
that the proposed tracking method demonstrates superior
performance over other tracking methods.

4.4. Effect of Different PCA Layers in PCANet. In this subsec-
tion, we investigate how the number of PCA layers in PCANet
affects the tracking performance of the proposed method.
Specifically, we compare our tracker (i.e., ours-1) with one
different structure. The new variation of ours-1 is denoted as
ours-2. Different to ours-1 tracker which contains two PCA
filtering layers, ours-2 tracker contains three PCA filtering
layers. Figure 8 demonstrates the performance comparison
of the proposed trackingmethod with different PCA layers in
PCANet in terms of the success and precision plots of TRE on
the online tracking benchmark (OTB) [41]. We observe that
ours-2 tracker with three PCA filtering layers obtains a better
result than that of ours-1 trackerwith twoPCAfiltering layers.
This indicates that the performance of the proposed tracking
method can be further improved when the number of PCA
layers in PCANet is increased. However, the improvement is
not significant and is computationally inefficient.

4.5. Qualitative Results on the Mitocheck Cell Dataset. To
evaluate the performance of the proposed tracking method
on individual-cell tracking, we test the proposed tracking
method on the Mitocheck cell dataset [40]. In Figure 9,
we report the qualitative tracking results of four individual-
cells from the Mitocheck dataset. We can observe that the
proposed tracking method simultaneously maintains holistic
and local appearance information and therefore provides
a compact representation of the cells. Consequently, the
proposed tracking method can achieve a good performance
on individual-cell tracking.

4.6. Discussion. In this paper, we focus on learning a robust
PCANet-based appearance model for individual-cell/object
tracking. According to the above experimental results on
challenging dataset, the proposed tracking method has
achieved promising results. However, the performance of the
proposed tracker may be deteriorated when a target object is
occluded over a long period of time. The reason is that the
PCANet-based appearance model is updated via a simple yet
concrete schema which does not explicitly detect occlusion.
To address the problem, more complicated occlusion detec-
tion and forgetting schemas should be incorporated into the
proposed tracker to achieve effective model updating.
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Figure 3: The precision and success plots of one-pass evaluation (OPE), temporal robustness evaluation (TRE), and spatial robustness
evaluation (SRE) for the 50 sequences in the online tracking benchmark (OTB) [41], respectively.The legend lists the corresponding evaluation
score for each tracking method. The proposed tracking method (i.e., ours-1 in red) is ranked first among the state-of-the-art trackers in both
the precision and success plots.
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Figure 4: Continued.
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Figure 4: The precision plots of one-pass evaluation (OPE) for trackers on the 11 attributes. The values next to the attributes denote the
number of video sequences involving the corresponding attribute.
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Figure 5: Continued.
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Figure 5:The success plots of one-pass evaluation (OPE) for trackers on the 11 attributes.The values next to the attributes denote the number
of video sequences involving the corresponding attribute.
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Figure 6: Qualitative results of the proposed tracking method (i.e., ours-1) on several challenging sequences from [41].
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Figure 7: Quantitative results on the center distance error per frame for several challenging sequences from [41].



BioMed Research International 13

Precision plots of TRE

ours-2 [0.810]
ours-1 [0.792]
Struck [0.707]
SCM [0.653]
VTD [0.643]

VTS [0.638]
TLD [0.624]
CXT [0.624]
ASLA [0.620]
CSK [0.618]

Success plots of TRE

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Pr

ec
isi

on

5 10 15 20 25 30 35 40 45 500
Location error threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Su
cc

es
s r

at
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Overlap threshold

ours-2 [0.595]
ours-1 [0.583]
Struck [0.514]
SCM [0.514]
ASLA [0.485]

CXT [0.463]
VTD [0.462]
VTS [0.460]
CSK [0.454]
TLD [0.448]

Figure 8: The precision and success plots of TRE for the proposed tracking method (e.g., ours-1 and ours-2) as the number of PCA filtering
layers in PCANet grows. Please see the text for more details.

Figure 9: Qualitative results on individual-cell from the Mitocheck dataset [40].

5. Conclusion

We have proposed a robust feature learning method via
PCANet deep network for robust individual-cell/object
tracking in the time-lapse and 2D color imaging sequences.
A cell/object is firstly effectively represented by composing
of a PCA-based filter bank layer, a nonlinear layer, and a

patch-based pooling layer, respectively. Then, a discrimina-
tive target appearance model is constructed by training a
neural network with one hidden layer. Finally, to alleviate
the tracker drifting problem, a sample update scheme is
carefully designed to keep track of the most representative
anddiverse sampleswhile tracking. Extensive experiments on
challenging image sequences from theMitocheck cell dataset
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and the online tracking benchmark (OTB) [41] validate the
robustness and effectiveness of the proposed individual-
cell/object tracking method.
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