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Introduction

Repair after an injury to the central nervous system (CNS) 
results in a series of cellular processes, involving astrocytes, 
oligodendrocytes, and microglia. This eventually leads to 
the formation of a scar, which is a clinical problem because 
it interferes with axonal regeneration.4) In order to improve 

brain recovery after an injury, it is necessary to block an im-
portant step in the process of scar formation. However, the 
exact mechanism of scar formation is not yet known.4,7,14,15,19) 
One of the most distinct morphological changes in the pro-
cess of glial scar formation is the increased expression of the 
glial fibrillary acidic protein (GFAP) in the cells surround-
ing the injury site.3)

By studying the time course and expression pattern of the 
GFAP, and several markers of cell proliferation, differenti-
ation, and migration following injury to the brain, we aim 
to show that the activation of the astrocytes contributes to 
the scar formation after brain injury.

Materials and Methods

Twenty-five male Sprague-Dawley rats (180-250 g) were 
used in this study, including 24 rats with cortical cuts and 
two controls. For the surgery, the rats were anesthetized 
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with ketamine (50 mg/kg) and xylazine (8 mg/kg), and 
placed in a prone position in a stereotaxic frame. The body 
temperature was monitored and maintained using a heat-
ing pad. The scalp was incised along the midline, and the 
skull was drilled on both sides, 2 mm posterior to the breg-
ma and 5 mm lateral to the midline. After opening the dura, 
a 3 to 4 mm long and 3 mm deep cortical cut was made with 
a steel micro blade, making an effort to spare the cortical 
blood vessels. The scalp was sutured with 4.0 silk, and the 
rats were allowed to survive for 12 hours and 1, 3, 7, or 14 
days.

For fixation, the rats were anesthetized with sodium pen-
tobarbital (60 mg/kg), and perfused intracardially with 100 
mL of normal saline containing 500 units of heparin sodium, 
followed by 700 mL of freshly depolymerized 4% parafor-
maldehyde in a phosphate buffer (PB; 0.05 M, pH 7.2). The 
brains were removed, post-fixed in the fixative used for 
perfusion for 3 hours, and stored in cold PB. Blocks con-
taining the sites of the cortical injury were cut using a vi-
bratome at 50 μm, and stored in PB at 4ºC. 

Immunohistochemistry required the sections to be pre-
treated with 50% ethanol in phosphate-buffered saline (PBS; 
0.05 M, pH 7.2) for 30 minutes, in order to improve antibody 
penetration. Additionally, the sections were pretreated with 
10% normal donkey serum in PBS, to mask nonspecific 
secondary antibody binding sites, and then incubated in a 
mixture of two primary antibodies. We combined our rabbit 
anti-GFAP antibody (1:150) with either mouse anti-nestin 
(1:200), anti-vimentin (1:200), or anti-A2B5 (1:100) antibod-
ies in PBS overnight, at room temperature. After several 
rinses and incubation in 2 (1:200; Vector). After several rins-
es, the sections were mounted on subbed slides, coverslipped 
with VECTASHIELD (Vector Laboratories, Burlingame, 
CA, USA), and examined using a confocal microscope. The 
confocal images were collected in the TIFF format, while 
the contrast and brightness were adjusted using Photoshop 
(Adobe Systems, San Jose, CA, USA).

For quantification, the degrees of expression of all five 
markers in the cells of the gray and white matter, within 
500 μm of the edges of the wound, were scored on a 4-point 

scale (from “-” to “+++”) in 3-5 confocal images, per 
double staining, per time point. To eliminate observer bias, 
the sets of the images were scored independently by two or 
three investigators blind to the source image; the variation 
between the scores assigned by the different investigators 
was analyzed using the ANOVA (Microsoft Excel, Micro-
soft, Redmond, WA, USA).

Results

The revelation of the protein over time (Table 1)
GFAP, the marker of a mature astrocyte, is a micro-fiber 

protein which is the main component of scar tissue in the CNS. 
An examination was first done 12 hours after the damage, 
revealing GFAP deep in the damaged white matter, while 
24 hours after the damage, there was an increase around the 
damaged cortex. Seven days after the damage, the revela-
tion of the GFAP reached the highest level. The bilateral edge 
of the damaged site began to join and continued to show 
GFAP at seven days after the damage. Finally, at day 14 af-
ter the damage, it decreased remarkably (Figure 1). In the 
case that the damage could not reach the white matter and 
became localized in the gray matter, the revelation of the 
GFAP was increased in the white matter.

Nestin was not revealed in the early state (12 hours after 
damage), and a day later, some was revealed in the vessel 
walls, but not in the astrocytes. Three days after the surgery, 
the nestin was increased around the damaged site, and was 
also revealed in the white matter. Seven days after the sur-
gery, the revelation state was maintained around the near-
by cortex and white matter. However, 14 days after surgery, 
the nestin remained only in the damaged edge, but no longer 
existed in the nearby white matter and gray matter (Figure 2).

Vimentin was revealed 12 hours after the damage and one 
day after the damage, and was revealed to be increased near 
the damaged site and white matter. Unlike the nestin, it was 
also revealed in the early state of damage in the white mat-
ter, and was increased until 7 days after the surgery. It was 
then decreased 14 days after the injury (Figures 3 and 4).

Some elevation of the A2B5 was seen around the edge of 

TABLE 1. The expression of the intermediate filament and A2B5

 12 hours 24 hours 3 days 7 days 14 days

Perilesion White 
matter Perilesion White 

matter Perilesion White 
matter Perilesion White 

matter Perilesion White 
matter

GFAP + ++ + ++ ++ +++ +++ +++ ++ +

Nestin - - + - +++ + ++ + + -

Vimentin + + ++ ++ +++ +++ +++ +++ + +

A2B5 + - ++ ± +++ + +++ +++ + +

GFAP: glial fibrillary acidic protein
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FIGURE 1. Glial fibrillary acidic protein upregulation in white matter; proliferation of astrocytes in white matter at the early stage of scar 
formation (×100). A: 12 hours. B: 1 day. C: 3 days. D: 7 days. E: 14 days.

FIGURE 2. Nestin is usually detected in multipotential stem and reactivated astrocytes. This finding suggests that activation and dif-
ferentiation of astrocytes should be involved in the process of scar formation (×100). A: 12 hours. B: 1 day. C: 3 days. D: 7 days. E: 14 
days.
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the damaged site after 12 hours, and one day after the sur-
gery it was revealed around the whole area of the damaged 
fringe. It reached the highest level at 7 days, and decreased 
remarkably at 14 days after the surgery (Figure 5). 

 
Group revelation (Figure 6)

Seven days after the surgical damage, the nestin, vimen-
tin, and A2B5 were revealed, together with GFAP expres-

sion. The group revelation of the nestin, vimentin, and A2B5 
was also seen in high resolution (Figure 6).

In the control rats, the GFAP was expressed in the cells 
throughout the cerebral cortex. After the injury, more as-
trocytes were stained for GFAP around the lesion, especial-
ly in the white matter. At three days post-injury, the ma-
jority of the GFAP positive astrocytes in the white matter 
underlying the lesion expressed the markers for nestin and 

FIGURE 3. Vimentin is an embryonic protein. Its upregulation might be associated with cellular differentiation. It is known that vimen-
tin is involved in cellular motility, so vimentin positive astrocyte might be postulated to migrate from the white matter to the injury site, 
and to constitute scar later (×100). A: 12 hours. B: 1 day. C: 3 days. D: 7 days. E: 14 days.

D

A

E

B C

FIGURE 4. A: Vimentin was in-
creased in the white matter. B: 
Nestin was increased along the 
wound edge (×100). A B
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vimentin, and the marker for the glial precursor cell A2B5. 
The number of GFAP positive cells reached a peak on the 
seventh day post-injury, and then decreased.1) Table 1 sum-
marizes the expression of the intermediate filament and 
A2B5. 

 
Time based characteristic of protein expression

At 12 hours post-injury, the GFAP began to be expressed 
in the white matter underlying the lesion, while the vimen-
tin and A2B5 were expressed in both the white and gray 
matter. The nestin was not expressed. 

At 1 day post-injury, the expressions of the GFAP, vimen-
tin, and A2B5 were more increased, and nestin was detect-
ed in the area surrounding the wound. While the vimentin 
was expressed in the underlying white matter, as well as in 
the perilesional area, the nestin was only expressed in the 
perilesional area. 

At 3 days post-injury, the GFAP expression increased 
along the edge of the wound, while it decreased in the white 
matter. It was expressed not only in the area adjacent to the 
lesion, but also in the area remote from the lesion in the in-
jured hemisphere. 

At 7 days post-injury, the separate margins of the lesion 

were connected, and the scar at the wound edge still had 
strong staining for nestin, vimentin, and A2B5.

At 14 days post-injury, the expressions of the GFAP, nestin, 
vimentin, and A2B5 were markedly decreased. The GFAP 
was co-localized with the nestin, vimentin, and A2B5. 

Although the injury was confined to the cortex, the prolif-
eration and activation of the astrocytes occurred in the white 
matter underlying the lesion,1) prior to the cortical injury site. 

Discussion

Glial scar formation is a necessary bio-response of the 
natural healing process of a wound, but in the CNS, the axon 
of a damaged neuron creates an unregenerable environ-
ment, and it becomes the most important factor in the in-
terruption of the recovery of the nerve function.14,15,17) There-
fore, if one can determine the mechanism of scar formation, 
and block the process in order to delay the time of scar for-
mation and reduce its range, it may help in the recovery of 
the damaged nerve functions. Of course, scar formation plays 
a unique role, which is to recover the original function by 
isolating it from foreign materials and healing it, and if 
one blocks this process, additional side effects may occur. 

FIGURE 5. A2B5 upregulation surrounding injury site means that the process of activation, differentiation of astrocytes is involved 
in the glial scar formation (×100). A: 12 hours. B: 1 day. C: 3 days. D: 7 days. E: 14 days.
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However, the CNS is isolated by the skull and vertebrae, 
and unlike the other organs (like those of the digestive sys-
tem), it does not have motility. Therefore, if the healing pro-
cess is somehow delayed, the effects on the original func-
tion may not be that great.

The cell which plays the most important role in scar for-
mation after cerebral damage is the astrocyte, and many re-
search studies have been conducted with regard to their in-
creasing processes.

The exact mechanism of glial scar formation is not yet 
known, but it is assumed that the activation and migration 

of astrocytes is involved.8-10,13) However, the origin of the 
activated astrocytes that contribute to the formation of the 
glial scar is unclear. One possibility is that the activated as-
trocytes differentiate from the multipotential progenitor 
cells and migrate to the injury site.12,20) A source for the pro-
genitor cells that has been identified is the area of the gray 
matter surrounding the central canal of the spinal cord, but 
whether other periventricular zones of the brain play simi-
lar roles is unknown. Alternatively, the existing astrocytes 
in the area surrounding the injury site may be activated and 
proliferate.7,11)
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FIGURE 6. Seven days after the surgical damage, the nestin, vimentin, and A2B5 were revealed, together with glial fibrillary acidic 
protein (GFAP) expression (×100). A-C: Colocalization of GFAP and A2B5. D-F: Colocalization of GFAP and nestin. G-I: Colocal-
ization of GFAP and vimentin.
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One of the most distinct morphological changes in the 
process of glial scar formation is the increased expression of 
GFAP in the cells around the injury site. GFAP is a specif-
ic cellular marker for differentiated astrocytes, and is the 
main component of the scar. However, it is present in qui-
escent, non-reactive astrocytes, so it is not used as a marker 
for the activation of the astrocytes.1)

A2B5 is expressed in glial precursor cells and reactive as-
trocytes.6,16) It is a cell surface ganglioside, which was ini-
tially detected in the neurons, but later it was also shown to 
be expressed in non-neural cells, including glial precursor 
cells and reactive astrocytes.6) The proliferating oligoden-
drocyte progenitor cells can differentiate into oligodendro-
cytes or reactive astrocytes, and both of these cell types ex-
press A2B5 during differentiation. The utility of A2B5 as a 
marker is supported by the fact that it is selective for differ-
entiating glia, and is not expressed in non-reactive astro-
cytes.18) A2B5 upregulation surrounding the injury site 
means that the process of the activation and differentiation 
of the astrocytes is involved in scar formation. 

The embryonic intermediate filaments nestin and vimen-
tin are usually expressed in multipotential stem cells, and 
they are upregulated in glial cells following injury to the 
CNS. There is general agreement that nestin and vimentin-
upregulating glial cells play a major role in glial scar forma-
tion.2,5,12) Nestin is known as an embryonic protein that is 
expressed in multipotential stem cells or reactive astrocytes. 
Vimentin has been reported to serve as a source of cytokines, 
or as a physical conduit for migrating cells from distant 
sites.20) While the nestin was usually expressed in the per-
ilesional area, the vimentin was expressed in the white mat-
ter, as well as in the perilesional area. Vimentin-positive as-
trocytes in the white matter may be associated with the 
migration of the astrocytes from the white matter into the 
injury site in the process of scar formation.1)

In cases where the injury has reached the white matter, 
the GFAP expression was more increased in the white mat-
ter than in the gray matter, and the scar size in the white 
matter was also larger than that in the gray matter. This may 
be associated with the fact that GFAP upregulation is more 
distinct in the white matter than in the cerebral cortex in 
the early phase of glial scar formation. The GFAP expres-
sion was also increased throughout the injured cortex, re-
mote from the lesion. 

Douen et al.5) reported that nestin was detected surround-
ing the lesion, and throughout the lateral cortex, after cor-
tical ablation. The exact mechanism for this is not yet known, 
but it might be associated with a global cellular connection.

In this study, the results suggest that the astrocytes are 

activated and proliferated in the white matter underlying 
the lesion, and migrate into the wound site, thus constitut-
ing a scar. The astrocytes which were in the deep portion 
were more activated and proliferated than those in the in-
jured cerebral cortex, while the astrocytes in the white 
matter migrated to the injury site.

In this process, embryonic proteins (nestin and vimentin) 
are upregulated, and they are involved in the differentia-
tion, proliferation, and migration of astrocytes in the pro-
cess of scar formation. 

Conclusion

In the early state after CNS damage, the astrocytes are 
reactivated in the white matter, which is in the deep part of 
the damage. Near the site of the damage, the immature cells 
are differentiated or astrocytes are reactivated to fill in the 
damaged area, forming scars. In this process, nestin, vimen-
tin, and A2B5 were revealed in the astrocytes, and these 
factors may be involved in the division, proliferation, and 
transportation of the astrocytes.
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