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Abstract
Background: Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen that stimulates vasculogenesis. 
It has also been shown to act as a neurotrophic factor in vitro and in vivo. Deletion of the hypoxia response element of 
the promoter region of the gene encoding VEGF in mice causes a reduction in neural VEGF expression, and results in 
adult-onset motor neurone degeneration that resembles amyotrophic lateral sclerosis (ALS). Investigating the 
molecular pathways to neurodegeneration in the VEGFδ/δ mouse model of ALS may improve understanding of the 
mechanisms of motor neurone death in the human disease.

Results: Microarray analysis was used to determine the transcriptional profile of laser captured spinal motor neurones 
of transgenic and wild-type littermates at 3 time points of disease. 324 genes were significantly differentially expressed 
in motor neurones of presymptomatic VEGFδ/δ mice, 382 at disease onset, and 689 at late stage disease. Massive 
transcriptional downregulation occurred with disease progression, associated with downregulation of genes involved 
in RNA processing at late stage disease. VEGFδ/δ mice showed reduction in expression, from symptom onset, of the 
cholesterol synthesis pathway, and genes involved in nervous system development, including axonogenesis, synapse 
formation, growth factor signalling pathways, cell adhesion and microtubule-based processes. These changes may 
reflect a reduced capacity of VEGFδ/δ mice for maintenance and remodelling of neuronal processes in the face of 
demands of neural plasticity. The findings are supported by the demonstration that in primary motor neurone cultures 
from VEGFδ/δ mice, axon outgrowth is significantly reduced compared to wild-type littermates.

Conclusions: Downregulation of these genes involved in axon outgrowth and synapse formation in adult mice 
suggests a hitherto unrecognized role of VEGF in the maintenance of neuronal circuitry. Dysregulation of VEGF may 
lead to neurodegeneration through synaptic regression and dying-back axonopathy.

Background
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-
erative disorder in which selective loss of motor neurones
in the cerebral cortex, brainstem and spinal cord leads to
progressive paralysis. In the majority of cases of ALS, the
cause of motor neurone degeneration is unknown, although
a number of pathogenic processes, including oxidative

stress, excitotoxicity, inflammation, and mitochondrial and
neurofilament dysfunction, are thought to play important
roles. Ten percent of cases of ALS are familial, and in 20%
of these, a causative mutation is found in the gene encoding
superoxide dismutase I (SOD1), a free radical scavenger. In
the SOD1 rodent model of ALS, overexpression of human
mutant SOD1 causes adult onset motor neurone degenera-
tion.

Vascular endothelial growth factor (VEGF) is an endothe-
lial cell mitogen that stimulates angiogenesis in response to
hypoxia, in the developing embryo and in a number of path-
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ological conditions, such as tumour growth. VEGF tran-
scription is upregulated by binding of hypoxia inducible
factor (HIF-1) to a hypoxia response element (HRE) in the
5' promoter region of the gene. In 2001, Oosthuyse et al
deleted the HRE of the VEGF gene in mice, to generate
VEGFδ/δ mice [1], which express reduced levels of Vegf in
neural tissue under both baseline and hypoxic conditions.
VEGFδ/δ mice show 60% mortality at or around birth, and
surviving transgenic mice are slightly smaller than their
wild-type littermates. At 5 months of age, they develop a
motor neurodegenerative phenotype that resembles ALS,
with impairment of motor behaviours and motor tests, such
as the treadmill test. Electrophysiological studies show
signs of denervation and compensatory reinnervation, mus-
cle histology shows neurogenic atrophy, and peripheral
nerves show loss of large myelinated motor axons. In the
spinal cord and brainstem, similar numbers of motor neu-
rones are present until 3 months of age, but by 17 months,
there is a 30% reduction in motor neurone numbers, with a
reactive astrocytosis, and neurofilament inclusions in sur-
viving neurones [1]. The mechanism of neurodegeneration
in VEGFδ/δ mice is unknown. Chronic hypoxia has been
proposed, as although vascular structure in the sciatic nerve
and spinal cord is normal, baseline neural blood flow is
reduced by 44%. In addition to vascular development, how-
ever, VEGF plays a central role in the development of the
nervous system, and may be required for survival of adult
neurones [2]. Disruption of these functions may determine
the development of neuronal degeneration in VEGFδ/δ mice.

VEGF has neurotrophic effects in vitro in a wide range of
culture conditions, promoting cell survival and neurite out-
growth, via its tyrosine kinase receptor, VEGFR2 [3]. In
vivo, VEGF administration prolongs survival in the SOD1
model of ALS [4]. This is likely to be a direct neuroprotec-
tive effect, as SOD1 mice crossed with mice with neuronal
overexpression of VEGFR2 also exhibit delayed disease
progression [5]. In the developing nervous system, VEGF
released by neuroblasts and glia induces the ingrowth of
capillaries, and deletion of a single copy of VEGF is lethal
[6,7]. VEGF stimulates neurogenesis directly [8], and via
endothelial cell proliferation, to form vascular niches in
which neurogenesis is stimulated by endothelial-derived
BDNF [9,10]. Further interaction between vascular and
neuronal development is seen in the closely aligned growth
of blood vessels and peripheral nerves, directed by attrac-
tive and repulsive cues on the growth cone [11]. The VEGF
co-receptor, Neuropilin-1 mediates both repulsive signals
of the semaphorin family, and attractant signals of VEGF
[11,12]. Thus VEGF, with its angiogenic and neurotrophic
actions via VEGFR2, and shared receptor with the sema-
phorin axon guidance factors, may be a key player in the
parallel development of vascular and nervous systems.

A recent meta-analysis of association studies of VEGF
polymorphisms with ALS showed an increased risk of ALS

in male patients with the -2578AA genotype, which lowers
VEGF expression[13]. We have previously shown that lev-
els of expression of VEGF and its main agonist receptor are
reduced in the spinal cord of patients with ALS[14]. This
study aims to clarify the molecular mechanisms of neurode-
generation in the VEGFδ/δ mouse, by determination of the
transcriptional profile of isolated spinal motor neurones in
the transgenic mouse, compared to its wild type littermate.
Understanding the role of VEGF in the survival and death
of motor neurones in this mouse model of ALS may have
implications for the human disease.

We report that adult VEGFδ/δ mice show reduction in
expression, from symptom onset, of genes involved in ner-
vous system development, particularly in axonogenesis and
synapse formation, and that axon outgrowth is reduced in
motor neurone cultures derived from VEGFδ/δ mice. These
changes suggest a role for VEGF in the maintenance of
neuronal circuitry, disruption of which may result in a
dying-back axonopathy.

Methods
Experimental animals
Adult female VEGFδ/δ mice and wild type littermates (Vesa-
lius Research Institute, Leuven, Belgium) were used in this
study. VEGFδ/δ mice, on a Swiss/129 background, had
homozygous deletion of the HIF-1 response element
(hypoxia response element) in the promoter region of the
VEGF gene, and were generated as previously described
[1]. All mice were housed in conventional facilities with a
12 h light/dark cycle with access to food at libitum. The
local animal ethical committee, the Ethische Commissie
Dierproeven (ECD) at the Catholic University Leuven, Bel-
gium, approved the VEGFδ/δ mouse experiments.

Tissue collection
Three female VEGFδ/δ transgenic mice, and three gender-
matched wild-type littermate controls were sacrificed at 3
months (pre-symptomatic), 5 months (onset of symptoms)
and 14 months (late stage disease) of age, by overdose of
isoflurane inhalational anaesthetic. Post mortem, animals
were perfused by intracardiac injection of 15 ml sterile
phosphate buffer with 30% sucrose, and the CNS was dis-
sected and frozen in Cryo-M-Bed embedding compound
(Bright, Huntingdon, UK). The procedure of sucrose perfu-
sion and dissection of the spinal cord was conducted rap-
idly, within a maximum of ten minutes from terminal
anaesthesia to snap freezing of tissue, to ensure optimal
preservation of RNA quality. Lumbar spinal cord sections
(10 μm) were fixed in 70% ethanol, washed in DEPC-
treated water, and stained for 1 minute in a solution of 0.1%
w/v Toluidine Blue in 0.1 M sodium phosphate. They were
then washed and dehydrated through graded ethanol con-
centrations (70, 90 and 100%), and xylene.
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Laser capture microdissection, RNA isolation and 
amplification
Spinal motor neurones, identified by staining, anatomical
location, size and morphology, were isolated on Capsure
Macro LCM caps using the Arcturus PixCell II laser cap-
ture microdissection system (Arcturus Bioscience, Moun-
tain View, CA). Approximately 1500 motor neurones were
dissected from each spinal cord, and >50 ng RNA extracted
using the PicoPure™ RNA isolation kit (Arcturus), accord-
ing to manufacturer's instructions. RNA amplification was
carried out using a linear amplification process in 2 cycles,
with the GeneChip two cycle target labelling and control kit
(Affymetrix, Santa Clara, USA), and MEGAscript® T7 kit
(Ambion, Austin, USA). The linear amplification technique
has been shown to generate highly reproducible gene
expression profiles from small starting quantities of RNA
[15]. This procedure produced 50-100 μg of biotin labelled
antisense RNA for each sample, the quality and quantity of
which was assayed using the Agilent bioanalyser and Nano-
drop™ 1000 spectrophotometer (Thermo Scientific, Wilm-
ington, USA).

Quality control parameters
At each stage of extraction, amplification and microarray
analysis, we carried out quality control (QC) measures,
according to Affymetrix protocols, to ensure that RNA was
of sufficient quality and was matched between samples.
Where QC outliers were identified, these samples were
excluded from the analysis. We used visual interpretation of
RNA profiles from bioanalyser traces of extracted and
amplified RNA to determine RNA quality, as the 28S:18S
ratio has been shown to have only weak correlation with
gene expression levels in downstream experiments[16]. The
RNA profiles obtained from laser captured material in this
study were comparable to profiles with modest RNA degra-
dation, that has been shown to have little effect on the
results of microarray analysis [17,18] (Figure 1) Following
amplification, the most frequent length of RNA amplicons,
at 500-1000 kB, was consistent with Affymetrix protocols.
Affymetrix and Bioconductor software was used to gener-
ate, from microarray data, the QC measures of average
background, signal intensity, percent present calls, and
RNA degradation plots, to ensure that samples were com-
parable in all parameters.

Affymetrix GeneChip processing
15 μg amplified cRNA was fragmented by heating to 94°C
for 20 minutes, and spiked hybridization controls were
added. Each sample was hybridized to one mouse 430A2
GeneChip (Affymetrix) according to manufacturer's proto-
cols. Following overnight hybridization at 42°C,
GeneChips underwent stringency washes in a Fluidics Sta-
tion 400, then were scanned in the GeneChip Scanner 3000
to detect fluorescent hybridization signals. These were

analysed by the Affymetrix GeneChip Operating System
(GCOS) to generate an overall hybridization signal for each
transcript from 11 representative perfect match and mis-
match probe pairs.

Microarray data analysis
CEL files generated by GCOS were imported for further
analysis into Array Assist software (Stratagene, La Jolla,
USA), where probe level analysis was carried out using the
GC Robust Multichip Average (GC-RMA) algorithm. Fol-
lowing GCRMA processing, data was filtered to remove
those genes whose expression was at or around the back-
ground signal level of the chip. Any probe set that returned
a signal of <50 on more than 3 chips at each time point was
excluded from further analysis. This signal filter did not
remove genes that were only expressed in one experimental
group. Differential gene expression was determined using
an unpaired t-test, to generate a list of genes that were sig-
nificantly differentially expressed between transgenic mice
and their wild type littermates, at each time point.

Gene ontology analysis
Gene Ontology (GO) terms that reflect the function of the
corresponding genes are assigned to each probe set by
Affymetrix software. This GO information was used to
determine which functionally related groups of genes were
over-represented amongst significantly differentially
expressed genes at each time point. The frequencies of GO
terms represented in the significant gene lists were com-
pared to a denominator list of genes that can be expressed
by motor neurones in health or disease. GO analysis was
carried out without regard for fold change, in order to limit
type II errors and in order to detect more subtle changes in
gene expression, for example in transcriptional regulators,
which may be biologically significant. The denominator list
was generated from the array data for each time point, by
extracting those genes whose representative probe sets
returned a signal of >50 in 3 or more chips. Statistical anal-
ysis of GO term enrichment was carried out using DAVID
software (NIAID/NIH; http://david.abcc.ncifcrf.gov/sum-
mary.jsp, [19]. Literature review was also used to identify
significantly differentially expressed genes with functions
relating to those identified as enriched by DAVID analysis.

Verification of microarray results by Quantitative rt-PCR 
(QPCR)
A proportion of genes identified as significantly differen-
tially expressed were selected for verification by QPCR, on
the basis of robust microarray data confirming differential
gene expression, involvement in a biological process identi-
fied as enriched by GO analysis, or a known function in
neurodegeneration. Verification addresses the possibility of
false positive microarray signals, due to cross-hybridization
with related genes, concern about the accuracy of array
probe sets, and uncertainty about the hybridization kinetics

http://david.abcc.ncifcrf.gov/summary.jsp
http://david.abcc.ncifcrf.gov/summary.jsp
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of multiple reactions occurring on the miniature scale of an
array chip. RNA was extracted from 1000-1500 cells, iso-
lated by laser capture microdissection from the lumbar spi-
nal cord of the population of mice used in the microarray
experiment and, where available, a second population of
transgenic mice with wild-type littermates. RNA was
extracted, quantified as previously described, and reverse
transcribed to cDNA using Superscript II reverse tran-
scriptase, according to manufacturer's protocol (Invitrogen,
San Diego, CA). Primers used in for verification are shown
in Table 1. QPCR was performed using 12.5 ng cDNA,
1×SYBR Green PCR master mix (Applied Biosystems,
Foster City, CA), and forward and reverse primers at opti-
mized concentrations, to a total volume of 20 μl. After an
initial denaturation at 95°C for 10 mins, templates were
amplified by 40 cycles of 95°C for 15 secs and 60°C for 1
minute, on an MX3000P Real-Time PCR system (Strata-
gene). A dissociation curve was then generated to ensure
amplification of a single product, and absence of primer
dimers. For each primer pair, a standard curve was gener-
ated to determine the efficiency of the PCR reaction over a
range of template concentrations from 0.3 ng/μl to 25 ng/μl,
using cDNA synthesized from mouse universal RNA. The
efficiency for each set of primers was 100+/-10%, such that
gene expression values, normalized to ß-actin expression,
could be determined using the ddCt calculation (ABI
PRISM 7700 Sequence Detection System protocol; Applied
Biosystems). An unpaired t-test was used to determine the
statistical significance of any differences in gene expres-
sion. β-actin hybridization signals determined by microar-
ray analysis confirmed that there was no significant
difference in β-actin expression between wild type and
transgenic mice. To determine the effect of the choice of the
normalizing gene on the verification of microarray results
by QPCR, the expression of four genes was also determined

using two alternative normalizing genes, HspB8 and Nme1.
These were identified by microarray analysis as having the
most consistent levels of expression in spinal motor neu-
rones at each time point, with the lowest coefficient of vari-
ation of hybridization signals.

Neural VEGF quantitation
Ten 10 μm sections of cervical cord were taken from each
mouse used in the microarray study. RNA was extracted
using the PicoPure™ RNA isolation kit (Arcturus) and
reverse transcribed to cDNA with Superscript II reverse
transcriptase (Invitrogen), according to manufacturer's pro-
tocols. Neural VEGF expression was assessed by QPCR, as
described above, normalized to the expression of ß-actin.
Primer sequences and concentrations are shown in Table 1.
VEGF expression was compared between VEGFδ/δ and
wild-type mice using an unpaired t test.

Isolation of embryonic motor neurons and quantification 
of axonal outgrowth
Cultures of spinal motor neurons from E12.5 mice (VEG-
Fwt/wt, n = 8; VEGFδ/wt, n = 14; and VEGFδ/δ, n = 4) were
prepared by a panning technique using a monoclonal anti-
p75NTR antibody (Millipore Bioscience Research
Reagents)[20]. The ventrolateral parts of individual lumbar
spinal cords were dissected and transferred to HBSS con-
taining 10 mM 2-mercaptoethanol. After treatment with
trypsin (0.05%, 10 min), single cell suspensions were gen-
erated by titration. The cells were plated on an anti-
p75NTR coated culture dish (24 well; Greiner) and left at
room temperature for 30 min. The individual wells were
subsequently washed with HBSS (three times), and the
attaching cells were then isolated from the plate with depo-
larizing saline (0.8% NaCl, 35 mM KCl, and 1 mM 2-mer-
captoethanol) and plated at a density of 1500 cells per well
on laminin-coated coverslips in Greiner four-well culture

Figure 1 Representative bioanalyser traces of RNA samples pre- and post-amplification at 3 months, 5 months and 14 months.
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dishes. Motor neurons from single embryos were cultured
for 7 days in quadruplicates in the presence of BDNF and
CNTF (1 ng/ml each, 2000 cells/well initially). Surviving
neurons were counted on day 0, 1 and day 7. Initial count-
ing of plated cells was done when all cells were attached to
the culture dish at 4 h after plating. At day 7, wells were
fixed with fresh 4% paraformaldehyde in phosphate buffer
and subjected to immunocytochemistry. Two coverslips
with motor neurons of each embryo were stained with anti-
bodies against MAP2 and P-Tau to distinguish between
axons and dendrites. Axon lengths of VEGFwt/wt (n = 202),
VEGFδ/wt, (n = 406) and VEGFδ/δ (n = 122) neurones were
measured using the Leica Confocal Software (Leica, Ger-
many), and compared using a t test.

Results
Neural VEGF expression
VEGFδ/δ mice used in this study showed a reduction in
expression of VEGF mRNA in the cervical spinal cord of
33% compared to their wild type littermates (data not
shown). A similar reduction in baseline spinal VEGF pro-
tein expression in the spinal cord, although not of mRNA
expression, was described by Oosthuyse et al [1].

General features of differential gene expression between 
VEGFδ/δ and wild type mice
Between 15 and 18% of probe sets at each time point
passed the signal filter, and their corresponding genes were
considered expressed by motor neurones. Statistical analy-
sis of these genes showed that 324 genes were significantly
differentially expressed (at p < 0.05 level) between VEGFδ/

δ and wild type mice at 3 months, 382 genes at 5 months,
and 689 genes at late stage. The total numbers of genes
which are upregulated and downregulated, with three dif-
ferent p values (0.05, 0.01 and 0.001) are given for each
time point in Table 2. Prior to symptom onset, the majority
of differentially expressed genes were upregulated. At dis-
ease onset, this pattern had reversed, and the majority of
genes were significantly downregulated. At late stage dis-
ease there was marked transcriptional downregulation,
shown in Figure 2. Fold changes between VEGFδ/δ mice
and their littermates were, in general, smaller than those
seen in parallel experimental design using the mutant SOD1
model of ALS [21].

Gene ontology analysis
Gene ontology (GO) terms which were significantly
enriched (at level p < 0.05) amongst genes significantly dif-
ferentially expressed between transgenic and wild type
mice were identified for each time point. Over-represented
GO terms at each time point are given in Tables 3, 4 and 5.

Table 1: Primer pairs used for QPCR experiments

Gene symbol Forward sequence Reverse Sequence Optimal primer 
conc F/R (fmol)

3' Actin GCTCTGGCTCCTAGCACCAT AGCCACCGATCCACACAGAGT 300/300

HspB8 GGGCCTGCTCATCATCGA GAGGAAGCTCGTTGTTGAAGCT 300/300

Nme1 CGCAGAACTGGATCTATGAGTGA CCCCTGCCTGTGAGAACAA 300/300

Zfp101 GGATGAAATCCTGTTCCCATACAT TGTCCTGGATTAGATACTGTATTTTGATA 900/900

Fos ATTGTCGAGGTGGTCTGAATGTT AACGTTTTCATGGAAAACTGTTAATG 300/300

Rln AAGCACTCGCAAACAAAATTACAT CCTAAGCGACCTTCGTCTTCTG 900/900

HspA5 CCTCAGAGTGGAGTTGAAAATGCTA GACCCCAAGACATGTGAGCAA 300/900

Ldlr ACCTGGCTCGGTTTTCATTCT AGAGTATCACCCCAGCCTAACCT 900/900

Scd1 GACCAGTCAAAGTGCAAGACTACCTA AAGGTTTCCTGCAATGGTTTTC 300/300

Nrp1 CGGTAACAACAGGAATCATGTACAA TTACCCAAATGAAACCAAGAGAAGA 300/300

Mtap1B CCGTTGCACCTTTCGTAGCT AGCCAATGCAAGACAAAGGAA 100/100

Alcam GGACACATATCTTGCCCAATCAG ATCCTATGGTGCTCCTAACTCTCAA 300/900

HNRPDL TTGTAAAAGACTTTGTACTCTAGATCAGAGA TGGCAGCTATATAGACTTCCAGAGA 300/900

Tnrc6a ATGTTGGACACCGTAACCTAAGC TATGGACATCAACACACACCGAAT 300/300

VEGF ATGCTCCCCGGGGTGTAT CATAGGAGTCCTTCTGACCCATTC 600/600



Brockington et al. BMC Genomics 2010, 11:203
http://www.biomedcentral.com/1471-2164/11/203

Page 6 of 27
Four GO clusters were identified: Ontology terms con-
cerned with mitochondrial function and energy production,
with steroid metabolism, with axonogenesis and nervous
system development, and with gene expression and RNA
metabolism. There is overlap between GO terms enriched
at 3 months and 5 months, and between 5 months and late
stage disease, suggesting that the processes represented by
these terms are affected in transgenic mice in a sequential
manner, as disease progresses.

Mitochondrial function and energy production
In presymptomatic mice, fewer transcriptional changes
were seen in transgenic mice, compared to their wild-type
littermates than at the other time points of disease. The
most significantly over-represented GO terms related to
cellular energy production (TCA cycle metabolism, genera-
tion of precursor metabolites and energy and carbohydrate
metabolism). The differentially expressed genes included
several genes encoding TCA cycle enzymes and compo-
nents of the electron transport chain (Table 6). Three genes
encoding TCA cycle enzymes, Mdh2, Ldh2 and Oxct1, are
upregulated, while Ldh1, an isoform that favours glycolysis
over oxidative metabolism [22], is downregulated. In the
electron transport chain, genes that produce components of
4 out of the 5 complexes, and Pcdc8, which is required for
mitochondrial oxidative phosphorylation [23], show upreg-
ulation (Figure 3). These gene expression changes would be
consistent with a small but significant increase in oxidative
metabolism in neurones of VEGFδ/δ mice in the early stages
of disease. Concomitant with this increase, there was upreg-
ulation of the free radical scavenging enzymes, Prdx2 and
Sod2.

Cholesterol metabolism
At disease onset, there was enrichment of genes assigned
GO terms relating to steroid metabolism, all of which were
downregulated (Table 7). These included five genes that
catalyse reactions in the final committed pathway to choles-
terol synthesis pathway (Figure 4). Sqle is a rate limiting
step in this pathway [24]. Prkaa2 is a catalytic subunit of
AMPK, which regulates HMG CoA reductase activity. Ldlr
and Sorl1 have similar functions in binding LDL, the major
cholesterol carrying lipoprotein of plasma, and transporting
it into cells. Hsd17b7 catalyses the synthesis of steroid hor-
mones from cholesterol, while Stard4 promotes transport of
cholesterol across the mitochondrial membrane, and stimu-
lates steroidogenesis [25]. Nr3c1 is the glucocorticoid
receptor.

Nervous system development
At all stages of disease, there was differential expression of
genes involved in nervous system development, with prom-
inent enrichment of GO terms relating to nervous system
development in the significant gene lists at both 5 months
and 14 months. Genes with functions relating to nervous
system development at these time points, the majority of
which are downregulated, are shown in Table 8 and Figure
5. Several are identified by more than one probe set or at
more than one time point.

There is downregulation in VEGFδ/δ mice of genes that
promote neurite outgrowth, such as Nrn1 [26], Slitrk1 [27],
RasGrf1[28] and Serpine2, which is an inhibitor of throm-
bin [29]. Thrombin causes neurite retraction and neuronal
death via its receptor F2r, which is upregulated at 3 and 5
months [30]. Tsc1, which inhibits axon growth, is also
upregulated at both time points [31]. Growth factors such
and NGF, BDNF, GDNF and TGFß2 promote neuronal dif-
ferentiation and outgrowth [32,33], There is downregula-
tion in motor neurones of VEGFδ/δ mice of the BDNF
receptor, Ntrk2, and its downstream mediator, Tiam1 [34];
the GDNF receptor, Gfra1; several components of the
TGFß2 signaling pathway; and Lmtk2, a mediator of NGF
signalling [35]. Rufy3 is implicated in the formation of a
single axon, to determine neuronal polarity [36]. Apbb2
interacts with amyloid precursor protein, which is required
for the maintenance of dendrites and synapses [37]. KLF7
is a transcription factor with a key role in neuronal morpho-
genesis. Null mutations in Klf7 lead to deficits in neuronal
outgrowth and axon guidance [38]. The Rho GTPase path-
way controls cytoskeletal reorganization to regulate neu-
rone outgrowth, and the maturation and maintenance of
dendritic spines. The Rho GTPase, Rac, is activated by
vav3 [39]. Cyfip1 interacts with Rac and null mutations lead
to defects in axon growth, guidance and branching, and in
the organization of the neuromuscular junction [40].

The GO category 'microtubule-based process' is over-rep-
resented at 5 months, with downregulation of genes that are

Figure 2 Histogram of fold change values of significantly differ-
entially expressed genes at 3 months (green), 5 months (blue) 
and late stage (red). Upregulated genes are plotted on the positive 
axis, downregulated genes on the negative axis.
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assigned this function. Microtubules are prominent ele-
ments of the neuronal cytoskeleton, involved in the growth
and maintenance of neurites, and along which motor pro-
teins move. Microtubule associated proteins bind to the
tubulin substrate that make up microtubules, and regulate
their stability [41]. Tubulin ß5 and three microtubule asso-
ciated proteins, Maptau, Mtap1b and Mtap6, are downregu-
lated in VEGFδ/δ mice, as are two motor proteins, kinesin 2
and Dnclic2, and BICD2 which binds cargoes to dynein.
Disruption of the dynein-dynactin pathway through preven-
tion of BICD2 uncoupling causes motor neurone degenera-
tion in mice [42]. Ttl causes post-translational
modifications of αtubulin that are essential to neurite exten-
sion and normal brain development [43]. Tbce is a tubulin
chaperone, required for stabilization of neuronal processes,
a mutation of which causes the progressive motor neu-
ronopathy of the pmn mouse [44]. Dystonin is thought to
have a role in cytoskeletal cross-linking leading to axonal
stability [45].

Differentially expressed genes in the VEGFδ/δ model
encode a number of proteins that mediate attractive and
repulsive growth cone signals during axonal guidance,
including Nrp1 and its ligand sema3A [46] and Nrp2 [47].
Two downregulated genes have regulatory functions in the
growth cone tip: Dpysl3 and DCAMKII [48,49].

Cellular adhesion molecules are important in contact-
dependent regulation of axonal growth, and in the control
of neuronal migration. Fourteen adhesion molecules and
related molecules are downregulated in the VEGFδ/δ mouse.
Alcam is a member of the immunoglobulin superfamily
which has a specific role in the guidance of motor axons
and formation of neuromuscular junctions (NMJs) [50].
Both L1 and cd24 interact and cooperate with each other as
potent stimulators of neurite outgrowth [51]. Cd24, and
Numb, which mediates endocytosis of the cell-adhesion
molecule L1 [52] are downregulated in VEGFδ/δ mice. The
DCC (deleted in colon cancer) subgroup of the immuno-
globulin superfamily are ligands for netrin, with roles in the
migration and guidance of axonal growth cones. Igdcc4 is a

Table 2: Numbers of significantly differentially expressed genes at each time point

3 months ALL FC >1.5 >2

PROBE SETS THAT PASS

SIGNAL FILTER

UP DOWN UP DOWN UP DOWN

6563 p < 0.05 207 117 16 27 2 6

p < 0.01 26 28 6 9 1 2

p < 0.001 3 7 2 2 1 1

5 months ALL FC >1.5 >2

PROBE SETS THAT PASS

SIGNAL FILTER

UP DOWN UP DOWN UP DOWN

7236 p < 0.05 73 311 10 138 2 23

p < 0.01 10 60 0 31 0 6

p < 0.001 1 5 0 3 0 1

14 months ALL FC >1.5 >2

PROBE SETS THAT PASS

SIGNAL FILTER

UP DOWN UP DOWN UP DOWN

8200 p < 0.05 75 614 7 120 2 22

p < 0.01 10 146 2 57 0 12

p < 0.001 1 22 0 9 0 2
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newly recognized member of this group, which is downreg-
ulated at 5 months [53], as is the netrin Ntng1[54]. Both
Pip5k1c and Astn1 are required for normal neurone migra-
tion [55,56].

The formation of synapses involves guidance of axonal
processes towards target cells, target recognition, followed
by recruitment of pre- and post-synaptic elements. The syn-
aptic connections between motor neurones and muscle
exhibit both functional and anatomical plasticity after matu-
ration, with changes in synaptic strength, and the formation
and retraction of neuronal sprouts from synaptic terminals
or Nodes of Ranvier. This enables the neuromuscular sys-
tem to compensate for growth, changes in muscle use, and
damage or disease [57]. Adhesion molecules play a central
role in the formation and plasticity of synapses, several of
which are downregulated in the VEGFδ/δ mouse, including
two protocadherins; cadherin 10 [58,59]; two members of
the neurexin family, Nrxn3 and Cntnap2, which bind post-
synaptic neuroligins [60,61]; and SynCAM, a member of the
immunoglobulin superfamily. Rnf6 binds to LIM kinase 1,
which regulates actin dynamics and is important in deter-
mining synaptic structure [62]. Calcitonin-gene-related
peptide, of which both polypeptide chains are downregu-
lated in the VEGFδ/δ mouse, is released from motor neu-
rones to stimulate acetylcholine receptor synthesis by
muscle, at the NMJ [63]. Reelin is an extracellular matrix
protein with a well-recognized function in neuronal migra-
tion. More recently, it has been shown to play a role in syn-
aptic plasticity [64], and in the maturation of synaptic
contacts during development, by refinement of NMDA-
receptor subunit composition [65]. The activation of down-
stream signalling pathways of reelin is cholesterol-depen-

dent [66]. Fos and Jun form the heterodimer, AP-1, which
plays a central role in controlling development, growth, sur-
vival and plasticity of neurones. AP-1 has also been shown
to positively regulate synapse strength and number, acting
upstream of CREB [67]. Both Fos and CREB are downreg-
ulated in the VEGFδ/δ mouse.

Proteins of the canonical wingless signalling pathway
participate in the assembly of the NMJ, with crucial compo-
nents being the wingless co-receptor, arrow, Dishevelled
and GSK3ß. GSK3ß functions by regulating the structure of
the microtubule cytoskeleton, probably via the microtu-
bule-associated protein, MAP1B. Mutations in this pathway
cause aberrant NMJ formation, with reduction in number of
synaptic boutons [68]. Dishevelled, GSK3ß and MAP1B are
downregulated in the VEGFδ/δ model, as is CXXC4 which
regulates the wnt-dishevelled signalling pathway [69].
TGFß also plays role in the development and functioning of
synapses [70]. There is downregulation in the VEGFδ/δ

mouse of TGFß2; D0H4S114, which regulates TGF signal-
ling [71]; Smad4 and ß-spectrin at disease onset, which
associate in response to TGFß, and are required for the
assembly of the NMJ [72,73].

Pre-synaptic proteins
Concomitant with the downregulation of genes involved in
the formation and morphological plasticity of synapses, a
reduction was seen in the expression of several genes
encoding proteins that comprise the pre-synaptic machinery
(Table 9), including several genes involved in the fusion of
synaptic vesicles, which is mediated by the SNARE com-
plex of VAMP/synaptobrevin, syntaxin and SNAP25. Both
VAMP3 and Napb were downregulated in VEGFδ/δ mice, as

Table 3: GO terms significantly enriched amongst differentially expressed genes at 3 months

Gene ontology term No. of genes Fold Enrichment p value

Energy production

tricarboxylic acid cycle intermediate metabolic 
process

4 9.8 0.0066

generation of precursor metabolites and energy 18 1.9 0.0128

Carbohydrate metabolic process 14 1.8 0.0454

Other

cardiac muscle cell differentiation 3 12.7 0.0212

striated muscle cell differentiation 4 6.2 0.0246

cardiac cell differentiation 3 9.8 0.0348

response to temperature stimulus 4 4.9 0.0454
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Table 4: GO terms significantly enriched amongst differentially expressed genes at 5 months

Gene ontology term No. of genes Fold Enrichment p value

Nervous system development

axon extension 6 8.1 0.0006

cell part morphogenesis 18 2.4 0.0010

cell projection organization and biogenesis 18 2.4 0.0010

cell projection morphogenesis 18 2.4 0.0010

regulation of axon extension 5 10.2 0.0010

regulation of axonogenesis 6 5.6 0.0035

regulation of neurogenesis 7 4.5 0.0040

cellular morphogenesis during differentiation 13 2.5 0.0055

positive regulation of cell adhesion 4 8.9 0.0087

axonogenesis 11 2.6 0.0090

neurite development 13 2.3 0.0093

nervous system development 27 1.7 0.0105

cell morphogenesis 23 1.7 0.0135

cellular structure morphogenesis 23 1.7 0.0135

neurite morphogenesis 11 2.4 0.0175

neuron morphogenesis during differentiation 11 2.4 0.0175

neuron development 13 2.1 0.0183

microtubule-based process 12 2.1 0.0249

negative regulation of axon extension 3 10.5 0.0304

neuron differentiation 14 1.9 0.0346

negative regulation of neurogenesis 4 5.4 0.0348

Neurogenesis 16 1.7 0.0403

cell migration 13 1.9 0.0413

generation of neurons 15 1.8 0.0457

negative regulation of axonogenesis 3 8.1 0.0493

Cholesterol metabolism

cholesterol metabolic process 7 3.9 0.0083

steroid biosynthetic process 8 4.3 0.0021

sterol biosynthetic process 6 5.9 0.0030

sterol metabolic process 8 3.9 0.0039

steroid metabolic process 10 2.9 0.0064

cholesterol biosynthetic process 5 6.1 0.0078

RNA metabolism

nuclear mRNA splicing, via spliceosome 7 3.4 0.0153

RNA splicing, via transesterification reactions 7 3.4 0.0153

Energy production

generation of precursor metabolites and energy 20 1.7 0.0282

Other
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was the syntaxin-binding protein, Stxbp6; SytI1, one of a
family of calcium-binding proteins that need to be bound to
the SNARE complex for pore opening to occur; the SNAP
associated protein, Snapap, which enhances association of
synaptotagmin with the SNARE complex [74]; Unc13C
which binds to and activates syntaxin [75]; gelsolin which
disassembles the actin network to liberate synaptic vesicles
for release [76]; piccolo, which is a scaffolding protein
involved in the organization of synaptic active zones, where
synaptic vesicles dock and fuse [77]; and synapsins I and II,
which modulate neurotransmitter release, possibly by main-
taining a pool of synaptic vesicles near to the active zone
[78]. PPI controls activity of ion channels and signal trans-
duction enzymes to determine functional synaptic plasticity,
and downregulation of several of its regulatory and cata-
lytic subunits was seen, in addition to Phactr1 and 2, which
regulate PPI activity [79].

RNA processing
At late stage disease, GO terms related to gene expression
and its regulation are enriched amongst significantly differ-
entially expressed genes, including the sub-categories of
mRNA metabolism and processing, and RNA splicing
(Table 10). Of the 651 named genes differentially expressed
at 14 months, 143 (22%) have functions relating to gene
expression, and of these, 132 (92%) are downregulated.
This finding is interesting in light of the massive transcrip-
tional downregulation seen at late stage disease.

Among the changes seen in this functionally category of
genes, was downregulation of a number of splicing factors,
and other genes involved in mRNA processing. Several
ribosomal components also showed reduced expression.
The cAMP responsive element binding protein, CREB1 is a
stimulus-inducible transcription factor which mediates
nuclear responses underlying the development, function
and plasticity of the nervous system [80]. Downregulation
of several members of the CREB family is seen in VEGFδ/δ

mice-CREB1, CREBBP, CREBzf, its interacting partner,
ATF4 (CREB2), and Cri2. Inactivation of neuronal CREB1
has been shown to cause defects in neurone migration, sim-
ilar to those observed with reelin [81], and to stimulate neu-
rodegeneration [82]. There is also downregulation of the
androgen receptor, and related nuclear receptors, Nr1d2,
Nr2c2 and the oestrogen receptor, Esrrg. Steroid hormones
have wide ranging effects on the structure and function of
the nervous system. Androgen receptor function is known
to be important for motor neurone survival, and disruption
of this function in Kennedy's disease contributes to the
motor neurone degeneration seen in this condition [83].

Verification of microarray results by QPCR
The results of QPCR verification for the 15 representative
genes chosen is shown in Table 11. Eight genes showed a
significant downregulation of expression in VEGFδ/δ mice,
which supported the microarray findings. A further 4
showed a trend towards downregulation which failed to
reach significance, while 4 showed no change in expression
despite a finding of significant expression by microarray
analysis. The majority of microarray publications have
indicated that arrays and QPCR analysis usually support
each other qualitatively. However, it is well recognized that
significant quantitative differences occur between microar-
ray and QPCR data [84]. This may be related to gene spe-
cific variation in the hybridization kinetics associated with
the two technologies, low fold changes or hybridization sig-
nals in the microarray experiment, or lack of transcript con-
cordance between the probes used for microarray and
QPCR analysis. The proportion of genes validated by this
study using QPCR, with the larger sample sizes at 3 and 5
months, is comparable to that found by other studies
[85,86]. Although not all changes seen on microarray were
validated by QPCR, it has been argued that where the focus
of microarray analysis is the overall pattern of gene expres-
sion rather than the response of a few genes, as in this study,

protein import 8 3.3 0.0106

leukocyte migration 4 8.1 0.0112

protein import into nucleus 7 3.6 0.0115

leukocyte migration 4 8.1 0.0112

protein import into nucleus 7 3.6 0.0115

nuclear import 7 3.5 0.0140

nucleocytoplasmic transport 9 2.5 0.0249

feeding behaviour 4 6.1 0.0253

nuclear transport 9 2.5 0.0265

alcohol metabolic process 14 1.9 0.0296

Table 4: GO terms significantly enriched amongst differentially expressed genes at 5 months (Continued)
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there is less utility in confirming the expression differences
of individual genes [87].

Reduced axon growth of VEGFδ/δ motor neurones grown in 
vitro
Downregulation of genes involved in nervous system
development and axonogenesis was observed in motor neu-
rones of VEGFδ/δ mice. A functional correlation of this
finding was demonstrated by the growth of primary motor

neurones from VEGFwt/wt, VEGFδ/wt and VEGFδ/δ mice in
vitro. Survival of primary motor neurone cultures grown
under basal conditions for 7 days was unaffected by dele-
tion of the hypoxia response element of the VEGF gene
(data not shown). A significant reduction in the length of
axons was observed in cultures of motor neurones homozy-
gous for the HRE deletion, compared to wild-type motor
neurones (472 ± 26 μm vs 562 ± 31 μm, p = 0.047; figure
6a). The outgrowth of dendrites was unaffected (p = 0.34;

Table 5: GO terms significantly enriched amongst differentially expressed genes at 14 months

Gene ontology term No. of genes Fold Enrichment p value

RNA metabolism and regulation of gene expression

protein-RNA complex assembly 11 2.5 0.011

mRNA metabolic process 23 1.7 0.012

mRNA processing 21 1.8 0.014

gene expression 136 1.2 0.015

RNA splicing 18 1.8 0.018

Regulation of gene expression 98 1.2 0.024

Regulation of transcription 91 1.2 0.032

regulation of nucleoside, nucleotide and nucleic acid metabolic 
process

92 1.2 0.040

transcription 93 1.2 0.047

negative regulation of gene expression, epigenetic 4 4.7 0.048

Nervous system development

neurite morphogenesis 14 2.0 0.018

neuron morphogenesis during differentiation 14 2.0 0.018

axonogenesis 13 2.1 0.019

neurite development 15 1.8 0.037

cellular morphogenesis during differentiation 14 1.8 0.040

neuron development 16 1.7 0.045

Other

nuclear export 8 4.6 0.001

protein export from nucleus 5 6.9 0.004

negative regulation of metabolic process 23 1.6 0.029

phosphatidylinositol metabolic process 4 5.5 0.032

nucleocytoplasmic transport 11 2.1 0.034

macromolecule biosynthetic process 41 1.4 0.034

nuclear transport 11 2.1 0.036

negative regulation of cellular metabolic process 20 1.6 0.046

phospholipid metabolic process 11 2.0 0.047

heme metabolic process 4 4.7 0.048
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figure 6b).

Discussion
Upregulation of oxidative phosphorylation in 
presymptomatic mice
A small but significant upregulation of genes involved in
the TCA cycle and oxidative phosphorylation was observed
in VEGFδ/δ mice in presymptomatic stages. This finding is
not in keeping with the 'chronic ischaemia' hypothesis of
neurodegeneration in the VEGFδ/δ mouse model: were
motor neurones in a state of chronic oxygen deprivation due
to reduced baseline neural blood flow, oxidative phosphory-
lation would have been downregulated. A similar upregula-
tion of oxidative phosphorylation was seen in motor
neurones in the SOD1 mouse model of ALS [21], and this
may be a non-specific adaptation to cellular stress in the
early stages of disease.

Transcriptional downregulation and changes in the 
regulation of gene expression
One of the most marked changes observed in the VEGFδ/δ

mouse model was transcriptional downregulation with dis-
ease progression, which was accompanied in late stage dis-
ease by a reduction in expression of genes involved in the
regulation of gene expression, particularly mRNA process-
ing. Similar transcriptional downregulation was observed in
a study of the SOD1 mouse model of ALS [21], and in the
ageing human brain [88]. The cause of this transcriptional
downregulation is not known, although several mechanisms
may be proposed. Firstly, it may be due to low level oxida-

tive modification of nuclear DNA, which has been shown
to accompany downregulation of gene expression in the
ageing human brain [88]. Secondly, reduction in expression
of VEGF could result in reduced induction of sequence-
specific transcription factors, such as Fos, which was
robustly downregulated in this study, with consequent
downregulation of genes regulated by those factors [89,90].
Thirdly, epigenetic modifications which cause suppression
of gene expression, such as DNA methylation, increase
with age and are accelerated in neurodegenerative diseases
[91].

Downregulation of cholesterol metabolism at disease 
onset
Five genes in the final committed pathway to cholesterol
synthesis, and two receptors which bind cholesterol and
transport it into the cells, were downregulated in the
VEGFδ/δ mouse. Neuronal cholesterol is either synthesised
by neurones or produced by astrocytes, bound to apolipo-
protein E (APOE), and taken up by neurones via the low
density lipoprotein receptor[92]. Cholesterol-rich lipid rafts
in the growth cone are required for downstream signaling of
adhesion molecules and guidance receptors during axon
growth and guidance. Cholesterol stimulates the formation
of synapses, and has important roles in synaptic function,
and the release of neurotransmitters [93-96]. A recent study
showed that the neurotrophic factor, BDNF, promotes syn-
aptic development in cortical neurones via the stimulation
of cholesterol biosynthesis [97], and the findings of this
study suggest that VEGF may have a similar function. Cho-

Figure 3 Diagrammatic representation of the components of the mitochondrial electron transport chain, and the constituent proteins en-
coded by genes significantly upregulated in VEGFδ/δ mice.
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lesterol homeostasis is already implicated in the pathogene-
sis of neurodegenerative disease. There is a strong
association between Alzheimer's disease and the APOE4
allele, which has reduced efficacy in cholesterol delivery to
cells, and in stimulating neurite outgrowth [98]. Downregu-
lation in the expression of genes involved in the cholesterol
synthesis pathway is seen in cortical tissue of patients with
Huntington's disease, and in mouse and cell models of the
disease [99,100].

Neurite outgrowth and synaptogenesis
In adult mice, reduction in neural expression of VEGF,
through deletion of its hypoxia-response element, causes
downregulation of genes which are known to play a role in
the growth of neuronal processes and formation of synapses
during embryonic development. These include promoters
of outgrowth of neuronal processes, components of neu-
rotrophic signalling pathways, cell adhesion molecules, and
the cholesterol synthesis pathway. The most significantly
enriched functional gene categories at 5 months relate to

axon extension and axon maintenance. This finding was
supported by in vitro data: primary motor neurones from
VEGFδ/δ mice show a significant reduction in axon out-
growth compared to their wild-type littermates. This effect
of VEGF was specific to that neuronal compartment, with
no effect on dendrite growth, or on cell survival. Exogenous
VEGF protein stimulates axon outgrowth in cultures of pri-
mary motor neurones [20] although to a lesser degree than
exogenous BDNF and CNTF. Despite addition of BDNF
and CNTF to the primary neurone cultures in this study,
axon outgrowth from VEGFδ/δ motor neurones was signifi-
cantly reduced, indicating that the effect of VEGF on
axonal outgrowth cannot be substituted for by the presence
of other growth factors.

Differential expression of genes relating to the growth of
neuronal processes, and formation of synapses was an
unexpected finding in the adult animal, but there is growing
evidence that changes involved in the plasticity of the ner-
vous system and in the maintenance of neuronal networks

Table 6: Differentially regulated genes involved in cellular energy production at 3 months

Probe ID Gene title Symbol p value FC Regn

Electron transport chain

1438159 NADH dehydrogenase (ubiquinone) 
flavoprotein 2

Ndufv2 0.0330 1.15 up

1435757 Ubiquinol cytochrome C reductase core 
protein 2

Uqcrc2 0.0066 1.21 up

1456588 Cytochrome c oxidase, subunit Vb Cox5b 0.0460 1.16 up

1450561 Surfeit gene 1 Surf1 0.0187 1.16 up

1449710 ATP synthase H+ transporting, 
mitochondrial F1 complex, α subunit, 
isoform 1

Atp5a1 0.0216 1.09 up

1454661 ATP synthase H+ transporting, 
mitochondrial F0 complex, subunit c, 
isoform 3

Atp5g3 0.0309 1.06 up

1418127 Programmed cell death 8 (Apoptosis 
inducing factor)

Pcdc8 0.0185 1.26 up

TCA cycle

1419737 Lactate dehydrogenase 1, A chain Ldh1 0.0077 1.86 down

1433984 Malate dehydrogenase 2, NAD Mdh2 0.0188 1.16 up

1455235 Lactate dehydrogenase 2, B chain Ldh2 0.0216 1.12 up

1436750 3-oxoacid CoA transferase1 Oxct1 0.0441 1.30 up

Free radical scavenging

1430979 Peroxiredoxin 2 Prdx2 0.0397 1.27 up

1444531 Superoxide dismutase 2, mitochondrial Sod2 0.0417 1.20 up
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in the adult animal recapitulate, to some degree, those
underlying the formation of neuronal networks during
development: cell adhesion molecules that mediate target
recognition and synapse formation during embryogenesis
also lead to changes in synaptic efficacy in the adult ner-
vous system [101]; BMP signalling at the Drosophila NMJ
is not only required for normal synaptic growth, but also for
synaptic stabilization, via LIM kinase-1, and disruption of
this pathway leads to synaptic disassembly and retraction
[102]; the wnt signalling pathway maintains activity-depen-
dent axon stability in adult olfactory neurones [103]; neu-
rotrophins were first recognized as target-dependent
survival factors for developing neurones during embryo-
genesis, but they have also been shown to promote synaptic

stability and maintain neuronal processes in response to
mechanical axonal injury [104].

Although the NMJ is considered a relatively stable struc-
ture, plasticity of the motor system is seen in response to
changing physiological demands and to pathological condi-
tions. Alterations in synaptic structure and function occur in
the motor cortex, spinal cord and NMJ in response to exer-
cise [105-107], while partial denervation or paralysis
results in sprouting and reinnervation from adjacent nerve
fibres [57]. The observation of fibre-type grouping in age-
ing muscle indicates that denervation and reinnervation of
muscle fibres occurs with normal ageing [108]. Motor units
differ in the plasticity of their synapses. Synapses formed
on Fast Synapsing (FaSyn) muscle, or by fast-fatiguable
(FF)-type motor units exhibit relatively little synaptic plas-
ticity, compared to Delayed Synapsing (DeSyn) or slow
(S)-type motor units. Motor units with less synaptic plastic-
ity exhibit early susceptibility to loss in motor neurone
degenerative disease, and in the SOD1 mouse model of
ALS, a progressive impairment of stimulus-induced synap-
tic sprouting was observed over the course of the disease,
suggesting that the absence of synaptic plasticity, and dis-
ease-induced synaptic loss are mechanistically linked
[109,110].

The transcriptional changes observed in VEGFδ/δ mice
would be predicted to result in a reduced capacity for the
morphological adaptations that occur during plasticity of
the motor unit, resulting in increased vulnerability to
degeneration. As neuronal processes and synapses are
required continuously to retract and reform during the pro-
cess of synaptic plasticity, downregulation of genes
involved in neurite growth and synapse formation would be
likely to result in gradual attrition of synapses and distal
cellular processes. Synapse retraction causes loss of access
of the neurone to trophic signals from target tissue. A recent
study has shown that muscle hypermetabolism is sufficient
to cause degeneration of NMJs, and subsequent loss of spi-

Figure 4 Schematic representation of the cholesterol biosynthe-
sis pathway, with genes that are differentially regulated in VEGFδ/

δ mice at 5 months highlighted in red. Cytochrome B5 reductase is 
an electron carrier for 5-desaturase and methyl sterol oxidase [119]

Table 7: Differentially expressed genes in the category of 'Steroid metabolism' at 5 months

Probe ID Gene Title Symbol p value FC Regn

1416222 NAD(P) dependent steroid dehydrogenase-like Nsdhl 0.0372 1.77 down

1421821 low density lipoprotein receptor Ldlr 0.0172 2.13 down

1422185 cytochrome b5 reductase 3 Cyb5r3 0.0248 2.24 down

1423078 sterol-C4-methyl oxidase-like Sc4mol 0.0161 2.10 down

1429240 StAR-related lipid transfer (START) domain 
containing 4

Stard4 0.0044 1.83 down

1438322 farnesyl diphosphate farnesyl transferase 1 Fdft1 0.0442 1.56 down

1448130 farnesyl diphosphate farnesyl transferase 1 Fdft1 0.0323 1.86 down

1457248 hydroxysteroid (17-beta) dehydrogenase 7 Hsd17b7 0.0250 1.74 down

1460390 sortilin-related receptor, LDLR class A Sorl1 0.0499 1.33 down

1415993 squalene epoxidase Sqle 0.0204 1.97 down
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nal cord motor neurones [111]. Although ALS is character-
ized pathologically by loss of motor neurone somata, and
gliosis in the anterior horn of the spinal cord, these post
mortem findings may not reflect changes occurring earlier
in the disease. There is evidence in both human ALS and in
mouse models, that motor neurone death occurs by the type
of 'dying back' axonal degenerative pathophysiology, that
would be predicted in this model, with defects of neuro-
muscular transmission, end-plate denervation, and 'periph-
eral pruning' of axons as the earliest observed events [112-
114]. VEGFδ/δ mice similarly show relative preservation of
spinal motor neurones, at stages of disease where there is
marked axonal loss [1].

The relevance of this finding in the VEGFδ/δ mouse
model of ALS to the human disease is unknown, but failure
of synaptic plasticity has been proposed as a pathogenic
mechanism in Alzheimer's disease [115]. A failure to main-
tain neuronal processes and synapses in the face of increas-

ing demands of neuronal plasticity would explain two
epidemiological observations in ALS: the associations
between exposure to vigorous physical activity [116,117] or
skeletal fractures [118], and the risk of developing the dis-
ease.

An alternative hypothesis is that the pathogenic insult in
VEGFδ/δ mice occurs during their development, when a
lack of VEGF may lead to aberrant neuronal guidance and
formation of neural networks. Subtle defects in neuronal
positioning and in synaptic circuitry in VEGFδ/δ mice could
result in reduced stability of synaptic connections, or a
reduction in target-derived neurotrophic support, with con-
sequent increased loss of motor neurones during ageing.
This hypothesis is supported by the observation that embry-
onic motor neurones show a reduction in axonal outgrowth
in vitro.

Figure 5 Schematic representation of genes involved in neuronal migration, neurite outgrowth and formation and maintenance of the 
neuromuscular junction, which are all downregulated in the VEGF transgenic mouse.
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Table 8: Differentially expressed genes in the category of 'Nervous system development'

Probe ID Gene Title Symbol p value FC Regn Time 
point

Neurite outgrowth

1428393 neuritin 1 Nrn1 0.0090 3.82 down 14 
months

1428089 SLIT and NTRK-like family, member 1 Slitrk1 0.0156 1.35 down 5 months

1416666 serine peptidase inhibitor, clade E, 
member 2

Serpine2 0.0414 1.65 down 5 months

1437308 coagulation factor II (thrombin) receptor F2r 0.0346 1.59 up 3 months

1437308 coagulation factor II (thrombin) receptor F2r 0.0286 1.22 up 5 months

1455252 tuberous sclerosis 1 Tsc1 0.0073 1.37 up 5 months

1422600 RAS protein-specific guanine nucleotide-
releasing factor 1

Rasgrf1 0.0011 1.63 down 14 
months

1435614 RAS protein-specific guanine nucleotide-
releasing factor 1

Rasgrf1 0.0002 1.44 down 14 
months

1455027 RUN and FYVE domain containing 2 Rufy3 0.0360 1.43 down 5 months

1424402 RUN and FYVE domain containing 2 Rufy3 0.0382 1.32 down 5 months

1452342 amyloid beta precursor protein-binding, 
family B, member 2

Apbb2 0.0415 1.21 down 14 
months

1449439 Kruppel-like factor 7 (ubiquitous) Klf7 0.0008 1.62 down 5 months

Growth factor signalling pathways

1420838 neurotrophic tyrosine kinase, receptor, 
type 2

Ntrk2 0.0067 1.29 down 5 months

1418057 T-cell lymphoma invasion and 
metastasis 1

Tiam1 0.0006 1.66 down 5 months

1418057 T-cell lymphoma invasion and 
metastasis 1

Tiam1 0.0031 1.43 down 14 
months

1439015 glial cell line derived neurotrophic factor 
receptor alpha 1

Gfra1 0.0454 1.95 down 5 months

1455018 lemur tyrosine kinase 2 Lmtk2 0.0107 1.32 down 14 
months

TGFß signalling pathway

1450923 transforming growth factor, beta 2 Tgfb2 0.0397 1.47 down 5 months

1450839 DNA segment, human D4S114 D0H4S11
4

0.0093 2.00 down 3 months

1450839 DNA segment, human D4S114 D0H4S11
4

0.0190 1.98 down 5 months

1450839 DNA segment, human D4S114 D0H4S11
4

0.0025 1.50 down 14 
months

1422487 MAD homolog 4 (Drosophila) Smad4 0.0368 1.41 down 5 months

1452143 spectrin beta 2 Spnb2 0.0023 1.21 down 5 months

1425116 spectrin beta 4 Spnb4 0.0463 1.14 up 14 
months

Rho-GTPase pathway

1416329 cytoplasmic FMR1 interacting protein 1 Cyfip1 0.0158 1.36 down 5 months
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1448600 vav 3 oncogene Vav3 0.0304 1.32 down 5 months

Microtubule-based processes

1455719 tubulin, beta 5 Tubb5 0.0034 1.60 down 5 months

1421851 microtubule-associated protein 1 B Mtap1b 0.0142 2.10 down 5 months

1457316 microtubule-associated protein 6 Mtap6 0.0105 1.75 down 5 months

1424719 microtubule-associated protein tau Mapt 0.0482 1.50 down 5 months

1417005 kinesin 2 Kns2 0.0484 1.17 down 5 months

1433926 dynein, cytoplasmic, light intermediate 
chain 2

Dnclic2 0.0121 1.36 down 5 months

1437875 bicaudal D homolog 2 Bicd2 0.0236 1.45 down 5 months

1451630 tubulin tyrosine ligase Ttl 0.0016 1.45 down 5 months

1428282 tubulin-specific chaperone e Tbce 0.0348 1.24 down 14 
months

1423626 dystonin Dst 0.0358 1.24 down 5 months

Axon guidance

1418084 neuropilin 1 Nrp1 0.0092 2.02 down 5 months

1448944 neuropilin 1 Nrp1 0.0151 1.58 down 5 months

1456778 neuropilin 2 Nrp2 0.0020 1.28 down 5 months

1420416 semaphorin 3A Sema3a 0.0010 1.35 down 5 months

1420416 semaphorin 3A Sema3a 0.0341 1.26 down 14 
months

1415877 dihydropyrimidinase-like 3 Dpysl3 0.0461 2.25 down 5 months

1450863 double cortin and calcium/calmodulin-
dependent protein kinase-like 1

Dcamkl1 0.0364 1.29 down 5 months

Synapse formation and plasticity

1427898 ring finger protein (C3H2C3 type) 6 Rnf6 0.0182 1.59 down 5 months

1452004 calcitonin-related polypeptide, alpha Calca 0.0283 1.26 down 5 months

1422639 calcitonin-related polypeptide, beta Calcb 0.0389 1.78 down 5 months

1449465 reelin Reln 0.0006 2.38 down 3 months

1423100 FBJ osteosarcoma oncogene Fos 0.0313 2.32 down 3 months

1423100 FBJ osteosarcoma oncogene Fos 0.0123 2.17 down 5 months

1452901 cAMP responsive element binding 
protein 1

Creb1 0.0148 1.44 down 14 
months

Wingless signalling pathway

1437301 dishevelled, dsh homolog 1 (Drosophila) Dvl1 0.0166 1.38 down 14 
months

1434439 glycogen synthase kinase 3 beta Gsk3b 0.0023 1.23 down 14 
months

1437351 CXXC finger 4 Cxxc4 0.0462 1.37 down 5 months

1437351 CXXC finger 4 Cxxc4 0.0341 1.30 down 14 
months

Table 8: Differentially expressed genes in the category of 'Nervous system development' (Continued)



Brockington et al. BMC Genomics 2010, 11:203
http://www.biomedcentral.com/1471-2164/11/203

Page 18 of 27
Cell adhesion molecules

1437466 activated leukocyte cell adhesion 
molecule

Alcam 0.0329 1.94 down 5 months

1437467 activated leukocyte cell adhesion 
molecule

Alcam 0.0233 1.60 down 5 months

1437466 activated leukocyte cell adhesion 
molecule

Alcam 0.0400 1.65 down 14 
months

1426301 activated leukocyte cell adhesion 
molecule

Alcam 0.0045 1.51 down 14 
months

1437467 activated leukocyte cell adhesion 
molecule

Alcam 0.0414 1.50 down 14 
months

1416034 CD24a antigen Cd24a 0.0165 1.96 down 5 months

1416891 numb gene homolog (Drosophila) Numb 0.0394 1.45 down 14 
months

1424954 phosphatidylinositol-4-phosphate 5-
kinase, type 1 gamma

Pip5k1c 0.0166 1.14 down 14 
months

1418615 astrotactin 1 Astn1 0.0461 1.65 down 5 months

1416474 immunoglobulin superfamily, DCC 
subclass, member 4

Igdcc4 0.0342 1.19 down 5 months

1449286 netrin G1 Ntng1 0.0119 1.87 down 14 
months

1442659 protocadherin 9 Pcdh9 0.0166 1.64 down 14 
months

1420429 protocadherin beta 3 Pcdhb3 0.0365 1.89 down 14 
months

1425092 cadherin 10 Cdh10 0.0208 1.39 down 14 
months

1433788 neurexin III Nrxn3 0.0021 1.78 down 14 
months

1422798 contactin associated protein-like 2 Cntnap2 0.0077 1.37 down 5 months

1417378 synaptic cell adhesion molecule Syncam 0.0400 1.40 down 14 
months

1417377 synaptic cell adhesion molecule Syncam 0.0191 1.38 down 14 
months

1422445 integrin alpha 6 Itga6 0.0221 1.50 down 5 months

Others

1457015 Neurofilament 3, medium Nef3 0.0209 1.40 up 14 
months

1416533 EGL nine homolog 2 Egln2 0.0203 1.46 down 5 months

1420475 myotrophin Mtpn 0.0120 1.67 down 5 months

1417133 peripheral myelin protein Pmp22 0.0159 1.89 down 5 months

1449353 wild-type p53-induced gene 1 Wig1 0.0249 1.57 down 5 months

1417624 Ngfi-A binding protein 1 Nab1 0.0119 1.44 down 5 months

Table 8: Differentially expressed genes in the category of 'Nervous system development' (Continued)
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Table 9: Genes encoding presynaptic proteins, differentially expressed in VEGFδ/δ mice

Probe 
ID

Gene name Symbol p value FC Reg Time 
point

1456245 vesicle-associated membrane protein 3 Vamp3 0.0159 1.47 down 14 
months

1423173 N-ethylmaleimide sensitive fusion protein ß Napb 0.0021 1.59 down 14 
months

1423172 N-ethylmaleimide sensitive fusion protein ß Napb 0.0024 1.55 down 14 
months

1433788 N-ethylmaleimide sensitive fusion protein ß Napb 0.0021 1.78 down 14 
months

1435396 syntaxin binding protein 6 Stxbp6 0.0290 1.46 down 5 months

1435396 syntaxin binding protein 6 Stxbp6 0.0179 1.33 down 14 
months

1429314 synaptotagmin XI Syt11 0.0274 1.47 down 5 months

1415756 SNAP-associated protein Snapap 0.0058 1.70 down 5 months

1455304 unc-13 homolog C Unc13c 0.0070 2.86 down 14 
months

1436991 gelsolin Gsn 0.0092 1.62 down 5 months

1419392 piccolo Pclo 0.0267 1.47 down 14 
months

1451484 synapsin I Syn1 0.0098 1.49 down 5 months

1435511 synapsin II Syn2 0.0146 1.74 down 5 months

1435667 regulating synaptic membrane exocytosis 1 Rims1 0.0370 1.32 up 3 months

1422880 synaptophysin-like protein Sypl 0.0384 1.15 down 3 months

1417919 protein phosphatase 1, regulatory subunit 7 Ppp1r7 0.0256 1.30 down 5 months

1433691 protein phosphatase 1, regulatory subunit 3C Ppp1r3c 0.0218 1.49 down 5 months

1440285 protein phosphatase 1, regulatory subunit 9A Ppp1r9a 0.0063 1.24 down 5 months

1452046 protein phosphatase 1, catalytic subunit, 
gamma

Ppp1cc 0.0276 1.38 down 5 months

1434895 protein phosphatase 1, regulatory subunit 
13B

Ppp1r13b 0.0280 1.32 down 14 
months

1456072 protein phosphatase 1, regulatory subunit 9A Ppp1r9a 0.0217 1.32 down 14 
months

1440285 protein phosphatase 1, regulatory subunit 9A Ppp1r9a 0.0304 1.22 down 14 
months

1420734 protein phosphatase 1, regulatory subunit 3F Ppp1r3f 0.0102 1.17 down 14 
months

1456606 phosphatase and actin regulator 1 Phactr1 0.0196 1.35 down 5 months

1455101 phosphatase and actin regulator 2 Phactr2 0.0489 1.66 down 5 months

1455101 phosphatase and actin regulator 2 Phactr2 0.0463 1.41 down 14 
months
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Table 10: Differentially expressed genes in the category 'Gene expression'

Probe ID Gene Title Symbol p value FC Regn

1437984 HLA-B-associated transcript 1A Bat1a 0.0101 1.18 down

1436549 heterogeneous nuclear ribonucleoprotein A1 Hnrpa1 0.0354 1.30 down

1452712 heterogeneous nuclear ribonucleoprotein A3 Hnrpa3 0.0176 1.47 down

1423873 LSM1 homolog, U6 small nuclear RNA associated Lsm1 0.0450 1.19 down

1434704 myeloid/lymphoid or mixed-lineage leukaemia 5 Mll5 0.0024 1.66 down

1424136 peptidyl prolyl isomerase H Ppih 0.0123 1.40 down

1451909 PRP4 pre-mRNA processing factor 4 homolog B Prpf4b 0.0366 1.38 down

1438420 RNA-binding region (RNP1, RRM) containing 2 Rnpc2 0.0004 1.76 down

1459765 splicing factor 1 Sf1 0.0405 1.34 down

1436898 splicing factor proline/glutamine rich Sfpq 0.0101 1.88 down

1416151 splicing factor, arginine/serine-rich 3 Sfrs3 0.0305 1.24 down

1423130 splicing factor, arginine/serine-rich 5 Sfrs5 0.0494 1.59 down

1416721 splicing factor, arginine/serine-rich 6 Sfrs6 0.0232 1.26 down

1424033 splicing factor, arginine/serine-rich 7 Sfrs7 0.0264 1.30 down

1437180 small nuclear ribonucleoprotein 48 Snrnp48 0.0285 1.68 down

1437007 ubiquitin specific peptidase 39 Usp39 0.0047 1.33 down

1450845 basic leucine zipper and W2 domains 1 Bzw1 0.0269 1.27 up

1437841 cold shock domain containing C2, RNA binding Csdc2 0.0130 1.43 up

1415920 cleavage stimulation factor, 3' pre-RNA subunit 2, tau Cstf2t 0.0092 1.27 down

1437071 eukaryotic translation initiation factor 1A, Y-linked Eif1ay 0.0281 1.21 down

1434538 eukaryotic translation initiation factor 2B, subunit 2 beta Eif2b2 0.0149 1.23 down

1454664 eukaryotic translation initiation factor 5 Eif5 0.0439 1.12 down

1424252 heterogeneous nuclear ribonucleoprotein D-like Hnrpdl 0.0046 2.20 down

1415911 imprinted and ancient Impact 0.0009 1.47 down

1451125 poly(A) binding protein interacting protein 2B Paip2b 0.0327 1.14 down

1424216 poly (A) polymerase alpha Papola 0.0286 1.55 down

1427544 poly (A) polymerase alpha Papola 0.0305 1.22 down

1436586 ribosomal protein S14 Rps14 0.0321 1.25 down

1416065 ankyrin repeat domain 10 Ankrd10 0.0494 1.27 down

1435307 ankyrin repeat domain 34B Ankrd34B 0.0154 5.84 down

1452342 amyloid beta (A4) precursor protein-binding, family B, 
member 2

Apbb2 0.0415 1.21 down

1455647 androgen receptor Ar 0.0248 1.30 down

1420985 ash1 (absent, small, or homeotic)-like Ash1l 0.0413 1.23 down

1450072 ash1 (absent, small, or homeotic)-like Ash1l 0.0416 1.22 down

1449947 AT motif binding factor 1 Atbf1 0.0213 1.49 down

1438992 activating transcription factor 4 Atf4 0.0069 1.35 down

1418271 basic helix-loop-helix domain containing, class B5 Bhlhb5 0.0456 1.69 down

1452850 breast cancer metastasis-suppressor 1-like Brms1l 0.0371 1.28 down

1435445 cyclin T2 Ccnt2 0.0159 1.52 down

1420497 CCAAT/enhancer binding protein zeta Cebpz 0.0435 1.28 down

1454641 CGG triplet repeat binding protein 1 Cggbp1 0.0063 1.42 down

1434002 checkpoint supressor 1 Ches1 0.0452 1.37 down
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1438255 checkpoint supressor 1 Ches1 0.0459 1.41 down

1436980 CCR4-NOT transcription complex, subunit 2 Cnot2 0.0089 1.36 down

1456576 CCR4-NOT transcription complex, subunit 2 Cnot2 0.0046 1.31 down

1437982 COX15 homolog, cytochrome c oxidase assembly protein Cox15 0.0406 1.14 up

1452901 cAMP responsive element binding protein 1 Creb1 0.0148 1.44 down

1436983 CREB binding protein Crebbp 0.0428 1.23 down

1452857 CREB/ATF bZIP transcription factor Crebzf 0.0245 1.45 down

1454931 CREBBP/EP300 inhibitory protein 2 Cri2 0.0384 1.24 down

1429618 cylindromatosis (turban tumor syndrome) Cyld 0.0025 1.55 down

1448234 DnaJ (Hsp40) homolog, subfamily B, member 6 Dnajb6 0.0214 1.23 down

1459805 dihydrouridine synthase 3-like Dus3l 0.0103 1.39 down

1418850 enhancer of polycomb homolog 1 Epc1 0.0133 1.23 down

1455267 estrogen-related receptor gamma Esrrg 0.0026 1.50 down

1456615 fetal Alzheimer antigen Falz 0.0130 1.33 down

1423709 phenylalanine-tRNA synthetase-like, beta subunit Farslb 0.0270 1.34 down

1459861 F-box and leucine-rich repeat protein 10 Fbxl10 0.0052 1.32 down

1428890 fem-1 homolog c Fem1c 0.0498 1.22 down

1417113 germ cell-less homolog Gcl 0.0341 1.31 down

1424296 glutamate-cysteine ligase, catalytic subunit Gclc 0.0143 1.38 down

1448381 G elongation factor 1 Gfm1 0.0045 1.35 down

1437163 general transcription factor II H, polypeptide 4 Gtf2h4 0.0446 1.17 up

1425628 transcription factor TFII-I-alpha Gtf2i 0.0296 1.32 down

1416176 high mobility group box 1 Hmgb1 0.0077 1.29 down

1455626 homeo box A9 Hoxa9 0.0190 1.61 down

1454760 HIV TAT specific factor 1 Htatsf1 0.0337 1.28 down

1460669 interleukin enhancer binding factor 3 Ilf3 0.0213 1.27 down

1455762 kinase D-interacting substrate 220 Kidins220 0.0152 1.26 down

1456341 Kruppel-like factor 9 Klf9 0.0080 1.38 down

1455214 microphthalmia-associated transcription factor Mitf 0.0081 1.30 down

1435547 MKL/myocardin-like 2 Mkl2 0.0335 1.35 down

1443500 myeloid/lymphoid or mixed lineage-leukemia translocation 
to 10

Mllt10 0.0080 1.16 up

1457632 myeloid ecotropic viral integration site-related gene 1 Mrg1 0.0333 2.40 down

1424204 mitochondrial ribosomal protein L13 Mrpl13 0.0101 1.24 down

1434971 mitochondrial ribosomal protein L15 Mrpl15 0.0463 1.13 down

1440989 mitochondrial ribosomal protein L35 Mrpl15 0.0041 1.35 down

1456109 mitochondrial ribosomal protein S15 Mrps15 0.0311 1.30 down

1452608 c-myc binding protein Mycbp 0.0004 1.47 down

1423201 nuclear receptor co-repressor 1 Ncor1 0.0107 1.26 down

1447693 Neogenin Neo1 0.0410 1.18 down

1448963 nuclear transcription factor-Y gamma Nfyc 0.0215 1.19 down

1434398 NF-kappaB repressing factor Nkrf 0.0074 1.71 down

1419112 nemo like kinase Nlk 0.0478 1.27 down

1416958 nuclear receptor subfamily 1, group D, member 2 Nr1d2 0.0079 1.57 down

1454851 nuclear receptor subfamily 2, group C, member 2 Nr2c2 0.0491 1.15 down

Table 10: Differentially expressed genes in the category 'Gene expression' (Continued)
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1448493 polyadenylate-binding protein-interacting protein 2 Paip2 0.0261 1.42 down

1426878 polybromo1 Pbrm1 0.0033 1.22 down

1427266 polybromo1 Pbrm1 0.0046 1.31 down

1417493 polycomb group ring finger 4 Pcgf4 0.0091 1.24 down

1453271 PHD finger protein 14 Phf14 0.0151 1.52 down

1456395 peroxisome proliferative activated receptor, γ, coactivator 1a Ppargc1a 0.0001 1.66 down

1456037 prolactin regulatory element binding Preb 0.0147 1.41 down

1428254 purine rich element binding protein B Purb 0.0102 1.29 down

1436979 RNA binding motif protein 14 Rbm14 0.0106 1.19 down

1422660 RNA binding motif protein 3 Rbm3 0.0398 1.54 up

1443922 REST corepressor 3 (Rcor3), mRNA Rcor3 0.0495 1.32 up

1434521 regulatory factor X domain containing 2 homolog Rfxdc2 0.0103 1.39 down

1438505 ribonuclease III, nuclear Rnasen 0.0341 1.14 down

1426660 ribosomal protein L23a Rpl23a 0.0332 1.26 down

1437975 ribosomal protein L23a Rpl23a 0.0488 1.18 down

1436046 ribosomal protein L29 Rpl29 0.0144 1.15 down

1448846 ribosomal protein L29 Rpl29 0.0314 1.20 down

1454627 ribosomal protein L29 Rpl29 0.0113 1.38 down

1455348 ribosomal protein L29 Rpl29 0.0203 1.21 down

1420381 ribosomal protein L31 Rpl31 0.0134 1.40 down

1438986 ribosomal protein S17 Rps17 0.0496 1.24 down

1430288 ribosomal protein S21 Rps21 0.0471 1.19 down

1415876 ribosomal protein S26 Rps26 0.0311 1.33 down

1423763 ribosomal protein S28 Rps28 0.0406 1.15 down

1435816 ribosomal protein S6 Rps6 0.0011 1.15 up

1448584 arginine/serine-rich coiled-coil 1 Rsrc1 0.0148 1.25 down

1428219 RING1 and YY1 binding protein Rybp 0.0223 1.46 down

1416008 special AT-rich sequence binding protein 1 Satb1 0.0242 1.28 down

1417892 sirtuin 3 (silent mating type information regulation 2, 
homolog) 3

Sirt3 0.0200 1.27 down

1426668 solute carrier family 30 (zinc transporter), member 9 Slc30a9 0.0325 1.34 down

1429624 SAFB-like transcription modulator Sltm 0.0193 1.21 down

1436703 small nuclear RNA activating complex, polypeptide 2 Snapc2 0.0432 1.14 up

1444531 Superoxide dismutase 2, mitochondrial Sod2 0.0254 1.21 up

1451542 single-stranded DNA binding protein 2 Ssbp2 0.0262 1.40 down

1434238 RNA polymerase II, TATA box binding protein-associated 
factor

Taf2 0.0063 1.54 down

1436318 TAR DNA binding protein Tardbp 0.0104 1.60 down

1452593 transcription elongation factor B (SIII), polypeptide 1 Tceb1 0.0360 1.15 up

1421147 telomeric repeat binding factor 2 Terf2 0.0355 1.24 down

1460545 thyroid hormone receptor associated protein 3 Thrap3 0.0201 1.11 down

1416812 cytotoxic granule-associated RNA binding protein 1 Tia1 0.0287 1.47 down

1416814 cytotoxic granule-associated RNA binding protein 1 Tia1 0.0115 1.50 down

1434898 trinucleotide repeat containing 6a Tnrc6a 0.0004 1.57 down

1434899 trinucleotide repeat containing 6a Tnrc6a 0.0039 1.43 down

1438376 tripartite motif protein 27 Trim27 0.0415 1.15 down

Table 10: Differentially expressed genes in the category 'Gene expression' (Continued)
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1426954 tripartite motif protein 33 Trim33 0.0320 1.27 down

1447780 Tu translation elongation factor, mitochondrial Tufm 0.0433 1.16 down

1435389 ubiquitin A-52 residue ribosomal protein fusion product 1 Uba52 0.0105 1.35 down

1455222 upstream binding protein 1 Ubp1 0.0403 1.35 down

1427097 WW domain containing E3 ubiquitin protein ligase 1 Wwp1 0.0464 1.25 down

1420011 X-box binding protein 1 Xbp1 0.0167 1.24 down

1437223 X-box binding protein 1 Xbp1 0.0496 1.33 down

1422569 YY1 transcription factor Yy1 0.0313 1.35 down

1457285 zinc finger protein 187 Zfp187 0.0332 1.20 down

1426895 zinc finger protein 191 Zfp191 0.0081 1.18 down

1456824 zinc finger protein 612 Zfp612 0.0388 1.16 down

1437873 zinc finger protein 799 Zfp799 0.0078 1.48 down

1448875 zinc fingers and homeoboxes protein 1 Zhx1 0.0471 1.18 down

1426531 zinc finger, MYND domain containing 11 Zmynd11 0.0005 1.32 down

Table 10: Differentially expressed genes in the category 'Gene expression' (Continued)
Table 11: Comparison of QPCR and microarray data of the 15 genes selected for verification

Microarray result QPCR result

Time point Gene Symbol FC P value n FC P value

3 months Zfp101 +4.35 0.01 6 No change

Fos -2.32 0.03 6 -2.59 0.0003

Reelin -1.88 0.004 6 -1.68 0.03

HspA5 -1.44 to -1.46 0.02 to 0.01 6 -1.34 0.06

5 months Fos -2.17 0.01 6 -2.13 0.0007

Ldlr -2.14 0.02 6 -1.42 0.006

Scd1 -2.07 0.02 6 -1.19 0.01

Nrp1 -1.58 to -2.02 0.02 to 0.009 6 No change

Mtap1B -2.10 0.01 6 No change

Alcam -1.60 to -1.94 0.03 to 0.02 6 -1.43 0.01

14 months Reelin -2.41 0.007 3 -2.1 0.008

HSPA5 -1.48 0.004 3 -1.27 0.2

Hnrpdl -2.20 0.005 3 -1.21 0.2

Tnrc6a -1.43 to -1.57 0.004 to 0.0004 3 No change

Alcam -1.50 to -1.65 0.04 to 0.004 3 -1.59 0.003

Significant results are highlighted in bold; n = no. of transgenic mice used for QPCR verification, with an equal number of gender matched 
littermate controls.
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Conclusions
Reduction in expression of VEGF, through deletion of a
regulatory promoter region of the gene, results in adult-
onset motor neurone degeneration that resembles human
ALS. We have presented evidence here that this phenotype
is accompanied by reduction in expression, from symptom
onset, of the cholesterol synthesis pathway, and genes
involved in nervous system development, including axono-
genesis, synapse formation, growth factor signalling path-
ways, cell adhesion and microtubule-based processes.
These findings raise the possibility that VEGF is required
for the maintenance of distal neuronal processes in the adult
animal, perhaps through promotion of remodelling of distal
processes and synapses in the face of the demands of neu-
ronal plasticity. A reduction in VEGF expression in VEGFδ/

δ mice may lead to failure of the maintenance of neuronal
circuitry, causing axonal retraction and cell death.
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