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Abstract

Background: Type 2 diabetes mellitus (T2DM) is a complex multifactorial disease with a high prevalence
worldwide. Insulin resistance and impaired insulin secretion are the two major abnormalities in the pathogenesis of
T2DM. Skeletal muscle is responsible for over 75% of the glucose uptake and plays a critical role in T2DM. Here, we
sought to provide a better understanding of the abnormalities in this tissue.

Methods: The muscle gene expression patterns were explored in healthy and newly diagnosed T2DM individuals
using supervised and unsupervised classification approaches. Moreover, the potential of subtyping T2DM patients
was evaluated based on the gene expression patterns.

Results: A machine-learning technique was applied to identify a set of genes whose expression patterns could
discriminate diabetic subjects from healthy ones. A gene set comprising of 26 genes was found that was able to
distinguish healthy from diabetic individuals with 94% accuracy. In addition, three distinct clusters of diabetic
patients with different dysregulated genes and metabolic pathways were identified.

Conclusions: This study indicates that T2DM is triggered by different cellular/molecular mechanisms, and it can be
categorized into different subtypes. Subtyping of T2DM patients in combination with their real clinical profiles will
provide a better understanding of the abnormalities in each group and more effective therapeutic approaches in
the future.

Keywords: Type 2 diabetes, Subtype, Classification, Clustering, Flux variability analysis, Muscle, Insulin resistance,
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Background
T2DM is a complex multifactorial disorder. Impaired in-
sulin secretion by pancreatic β-cells is the main cause of
T2DM. This usually happens due to having a back-
ground of reduced sensitivity to insulin in target tissues

[1]. Skeletal muscle, liver, and adipose tissues are the key
insulin-sensitive tissues. Skeletal muscle takes a major
role in lowering the blood glucose level and is respon-
sible for over 75% of the glucose uptake [2, 3]. Better
prognostic signatures and therapeutic targets necessitate
a better understanding of the molecular mechanisms
underlying insulin resistance in skeletal muscle. Whereas
considerable experimental and computational attempts
have been made to determine the molecular mechanisms
involved in insulin resistance [4–8], the exact underlying
cause of this phenomenon is still unclear [4], and in
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some cases, failure of the current therapies has been re-
ported. One possible reason for this failure may be the
multifactorial nature of T2DM, which results in different
groups of molecular mechanisms, all leading to insulin
resistance. Precision medicine for each group may,
therefore, help develop more effective treatments for
T2DM.
In the present work, we attempted to better under-

stand T2DM. We studied gene expression profiles of
human skeletal muscle from healthy and newly diag-
nosed diabetic patients with two goals: 1) To identify a
set of genes whose expression patterns can discriminate
T2DM individuals from healthy ones using a machine-
learning approach; and 2) To examine the potential
existence of molecular subtypes based on the gene
expression profile of diabetic individuals. For this
purpose, unsupervised classification was used to find
different possible subgroups of T2DM. We applied
differential gene expression analysis and metabolic mod-
eling to gain an in-depth insight into the molecular
mechanisms leading to insulin resistance in each sub-
group. This finding can be helpful in developing effective
treatments for this disease in the future. The overall
study design is shown in Fig. 1.

Methods
Data
Gene expression data were obtained from a sub-study of
the Finland-United States Investigation of NIDDM Gen-
etics project [9]. This is the largest dataset of human
skeletal muscle transcriptome. The dataset contains gene
expression data from participants with glucose tolerance
ranging from normal to newly diagnosed T2DM, in
which 91 and 63 individuals were healthy and diabetic,
respectively. Data are available through the repository’s
data access request procedure in the database of
Genotypes and Phenotypes (dbGaP) with the accession
code phs001068.v1.p1. Data from healthy and diabetic
individuals were downloaded and were used for subse-
quent analyses.

Differential gene expression
Detection of differentially expressed genes (DEGs) was
done by employing the DESeq2, which is a standard,
well-known, and powerful method for RNA-Seq differ-
ential gene expression analysis, and gives the highest
power estimations even with a small sample size [10,
11]. The analysis was conducted using the Bioconductor
R package DESeq2 [12]. A pre-filtering stage was per-
formed that removed genes whose expression levels were
below a minimum cutoff level (< 5 read counts in less
than 25% of samples). According to the DESeq2 manual,
between samples normalization was applied to account
for differences in sequencing depth. DESeq2 employs

one of the best between-sample normalization methods
to detect differentially expressed genes [13]. Since with-
out between sample normalization in RNA-Seq data,
cross-sample analysis is not reliable, we did not use
FPKM/RPKM in this analysis. These are only suitable
for the comparison of genes in one sample. In the con-
text of differential analysis, RPKM [FPKM] is inefficient
and should be abandoned [13].
DEGs between two states (e.g., healthy vs. diabetic)

were assessed based on a negative binomial distribu-
tion. Multiple testing correction was applied by
adjusting the P values using the Benjamini–Hochberg
procedure and false discovery rate of 0.1 was consid-
ered significant. Moreover, the KEGG pathway enrich-
ment analysis of significant DEGs was performed
using Enrichr [14]. For this enrichment analysis, we
used the genes with the absolute value of log2 fold
change more than 0.9.

Feature selection method: GA–SVM
To select a near-optimal feature subset, a wrapper
feature selection algorithm that is a hybrid of genetic
algorithm (GA) and support vector machine (SVM), was
used. GA is a global optimal search algorithm inspired
by Darwin’s theory of evolution. In the algorithm, the
candidate solution (feature subset) is encoded on a
chromosome-like structure. A set of chromosomes
constitutes a population in which crossover and muta-
tion can occur to generate new feature subsets. For each
chromosome, a fitness value is calculated representing
how well a feature subset is adapted to the environment.
The algorithm employs a competing solution in which
better feature subsets have more chance to be selected
for reproduction and creating the next generation. This
search process will be repeated until a stopping criterion
is satisfied.
In this analysis, a binary genetic algorithm was imple-

mented. Each gene in this algorithm has one of the
binary values, 1 or 0, as either the presence or absence
of a particular feature at the relevant chromosome. The
chromosome length and the population size were set to
the number of features and 500 chromosomes, respect-
ively. The maximal number of generations was set to be
100. SVM classification accuracy was used as the fitness
score. The genetic algorithm was terminated when the
fitness score was at least 95% or the maximum number
of generations was reached.

Supervised classification
Supervised machine learning methods, including SVM,
k-nearest neighbor (KNN), neural network (NN), naïve
Bayes (NB), and random forest (RF) were employed for
the classification of T2DM individuals from controls.
We used the Orange data mining toolbox for this
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analysis [15]. The classifiers were validated by 10-fold
stratified cross-validation and analysis of the area under
the ROC curve (AUC), accuracy (ACC), F1 score, preci-
sion, and recall were reported.

Unsupervised classification
Potential subtyping of diabetic patients was performed.
The gene expression values were considered as the fea-
tures for unsupervised classification. The low expressed
genes were filtered and the remaining genes were nor-
malized using the DESeq2 normalization method. This
resulted in 21,826 genes as the features. Samples were
categorized into potential subtypes based on the similar-
ity in their gene expression patterns. Here, we used

complete linkage hierarchical clustering with the Euclid-
ean distance metric.

Cluster-based genome-scale metabolic modeling
To reconstruct the personalized metabolic model, we
need a generic genome-scale metabolic model (GEM)
and gene expression data. A generic human GEM is
reconstructed from all possible reactions, in which
relevant enzymes are encoded in the genome, and can
occur in different human cell types. By having gene-
protein-reaction associations and mapping gene
expression data to the generic metabolic model, active
enzymes and subsequently active reactions are identi-
fied, and a context-specific metabolic model will be
reconstructed. These context-specific metabolic

Fig. 1 Graphical overview of the study design. This study included two supervised and unsupervised classification sections. At the supervised
classification part, we used a machine learning approach to identify a set of genes whose expression patterns could discriminate T2DM
individuals from healthy ones. At the unsupervised section, the clustering of T2DM patients was employed for potential subtyping of the disease
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models can be employed for subsequent simulations
to study metabolic reprogramming under specific
conditions. Possible minimum and maximum flux
through a specific reaction can be simulated using
flux variability analysis (FVA). The readers are re-
ferred to [16] for a full description of the principle
concept of this simulation.
Here, personalized metabolic models were recon-

structed based on the Human Metabolic Reaction 2
(HMR 2) as the generic model [17, 18]. E-Flux method
was applied to reconstruct the context-specific metabolic
models, using gene expression data [19]. Pre-processing of
gene expression data, including pre-filtering of low
expressed genes, between-sample normalization (DESeq2
normalization method with gene length adjustment), and
log2 transformation was applied. The myocyte biomass re-
action was added to the model from the Bordbar model
[6]. Body fluid metabolites were used as media conditions
[20]. The objective function was set to maximize flux
through the production of mitochondrial ATP. Besides, to
ensure the viability of the cell, the lower bound of biomass
reaction was set to 0.8 of the maximum amount of
biomass production in the healthy model [21]. FVA for
each model was applied to obtain the minimum and
maximum possible fluxes of each reaction using the
COBRA Toolbox version 3.0 [22]. Personalized metabolic
models (154 models) were categorized into the three
groups based on the clusters obtained from the previous
section. Subsequently, to find perturbed reactions between
each cluster and controls, a two-sample t-test was
performed on the minimum and maximum fluxes ob-
tained from FVA. Multiple testing correction was applied
using the Benjamini–Hochberg procedure, and reactions
with false discovery rate less than 0.1 were considered as
significant perturbed reactions. Figure 2 shows the work-
flow for this section.

Results
Supervised classification
There were 57,820 gene expression values for each
individual that can be regarded as features in the
classification. Using all of these genes as features were
not applicable, leading to the high dimensional data
and reduced performance of the conventional
machine learning approaches. To overcome this prob-
lem, we used differential gene expression analysis. We
removed those genes without any significant quantita-
tive changes in T2DM versus healthy group from the
feature list. Regarding the remaining genes as
features, we applied a feature selection method to
find near-optimal genes subset whose expression
patterns can discriminate T2DM individuals from
healthy ones. Thus, DEGs between healthy and
T2DM were explored, which resulted in 247

differentially expressed genes. These 247 genes were
used as the features of classification, and classifiers’
accuracy was investigated. SVM, KNN, NN, NB, and
RF classifiers were evaluated and SVM showed the
best performance in our analysis, as are shown in
Table 1.
To achieve a near-optimal feature subset and to im-

prove the classification accuracy, feature selection was
applied based on a combination of GA and SVM. Differ-
ent subsets of features were found that could distinguish
T2DM from normoglycemic subjects with high accuracy.
The GA-SVM procedure was repeated 100 times and
100 feature subsets with the prediction accuracy around
95 percentages were obtained. Features were ranked
according to the frequency of their presence in these
100 subsets. Our analysis revealed that using 26 top-
ranked genes as the features could improve classification
accuracy to 94%. This subset consists of important genes
including, CERK, FGFBP3, ETV5, E2F8, MAFB, and ten
non-coding genes. The complete list of genes with
Ensemble ID can be found in Additional file 2. These
top-ranked genes were selected as the final features. The
performance of different classifiers with these features
was assessed (Table 2).
To evaluate the SVM classifier using final features,

classification was repeated 100 times with 10-fold cross-
validation, and accuracy, sensitivity, and specificity were
calculated. Figure S1 in Additional file 1 shows the box
plot of this evaluation.

Unsupervised classification
In this section, the objective was to assess the possibility
of the existence of different subtypes in the disease. We
tried to answer the following questions: 1) Do the
diabetic participants show different patterns of gene
expression or not; and 2) Is it possible to categorize
T2DM samples into distinct sub-groups with specific
abnormalities in gene expression pattern? To answer the
questions mentioned above, the unsupervised hierarch-
ical clustering algorithm was exploited on diabetic sam-
ples using the measure of Euclidean distance and
complete linkage method. The top three clusters were
selected and studied (Fig. 3). Clusters 1 to 3 consist of
18, 18, and 27 individuals, respectively.
To study biological differences between clusters, meta-

bolic modeling of each cluster, and differential gene
expression analysis were applied. It was found that
differences in gene expression patterns and pathways
between healthy and all newly diagnosed diabetic
patients are low. Clustering of patients and analysis be-
tween each cluster and healthy individuals helped to find
more DEGs and more perturbed pathways. Results
showed that each cluster has specific dysregulated genes
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and pathways, which do not exist in the other two clus-
ters. A heatmap representation of the gene expression in
three clusters is shown in Fig. 4. In addition, pathway
enrichment analysis of DEGs in each cluster was
performed. The results can be found in Table S1–3 of
Additional file 1.
The analysis demonstrated that among these three

clusters, the first cluster has the most number of per-
turbed pathways and dysregulated genes. Dysregulation
of several genes in cluster 1, including down-regulation
of DDIT4L, subunits of cytochrome c oxidase, several

mitochondrial genes, ADIPOQ, and up-regulation of sev-
eral inflammatory genes such as GADD45G, TGFB1,
CARD9, IGHA2, IGHG2, IGHA1, IGHD, and MIF genes
were found. Down-regulation of several genes encoding
mitochondrial genes and subunits of cytochrome c oxi-
dase (COX) can reflect mitochondrial dysfunction and
oxidative stress. Down-regulation of the adiponectin
gene also was found in cluster 1. At the metabolic mod-
eling level, perturbations in pathways related to inositol
phosphate metabolism, pentose phosphate pathway,
tyrosine metabolism, folate metabolism, acylglycerides

Fig. 2 Workflow for cluster-based metabolic modeling. HMR2 model was used as the generic model. The personalized metabolic models were
reconstructed by integrating gene expression data into the HMR2 using the E-Flux algorithm. Diabetic models were categorized into three
groups based on the clusters obtained from the hierarchical clustering of T2DM patients. FVA was employed to obtain maximum and minimum
possible fluxes in each reaction. Perturbed reactions in each cluster in comparison to the healthy group were identified by applying t-test on
obtained fluxes
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metabolism, glutathione metabolism, ROS detoxification,
glycerolipid metabolism, acyl-CoA hydrolysis, fatty acid
activation, beta-oxidation of fatty acids, sphingolipid me-
tabolism, glycerophospholipid metabolism, chondroitin/
heparan sulfate metabolism, purine and pyrimidine me-
tabolism, carnitine shuttle, TCA, oxidative phosphoryl-
ation, omega-3 and omega-6 fatty acid metabolism, and
glycosphingolipid metabolism were observed.
Cluster 2 displayed no significant perturbed pathway,

although, changes in the expression of various genes
were observed. Overexpression of SPP1, TNFRSF11B,
FRK, and down-regulation of PRKAG3 and ATP2A1 are
some examples. We speculated that people in this group
may be closer to the control group in respect of blood
sugar levels. Thus, we compared the phenotypic features
of people in each cluster with controls. Table 3 shows
the average value of each feature in different clusters. In
addition, the box plots of fasting glucose and fasting in-
sulin values in each diabetic cluster and normoglycemic
group are shown in Figures. S2 and S3 of Additional file
1. We also provided more information about differences
of clinical features between each pair of clusters in Add-
itional file 1 Table S4 and S5. This analysis revealed that
this cluster is very close to the healthy state in terms of
blood glucose and insulin levels.
From these three clusters, cluster 3 has the least number

of DEGs, although perturbations in the expression of vari-
ous important genes like MSTN, ERBB3, EGR1, CIDEC,
and HK2 were found in this cluster. At the metabolic level,
the perturbation in glucose metabolism was observed.
Dysregulation of branched-chain amino acids (BCAAs)
metabolism, glycolysis, pyruvate metabolism, tricarboxylic
acid cycle, and glyoxylate/dicarboxylate metabolism and
several exchange and transport reactions were found. The
complete list of DEGs and perturbed reactions in each
cluster can be found in Additional file 2.

Discussion
Supervised classification discriminates diabetic patients
from healthy ones
In this study, gene expression data from newly diagnosed
type 2 diabetic patients were analyzed using supervised

and unsupervised machine learning approaches. At the
supervised level, we aimed to identify a set of genes
whose expressions were dysregulated in most patients
and could potentially discriminate normoglycemic from
T2DM individuals.
The gene set comprised of genes such as FGFBP3,

CERK, ETV5, E2F8, MAFB, and non-coding RNAs,
which may be used to study and develop novel T2DM
treatments in the future. Noticeably, the injection of
FGFBP3 has been patented as a treatment for diabetes,
obesity, and nonalcoholic fatty liver disease [23, 24]. It
has been demonstrated that the single injection of
FGFBP3 regulates blood glucose level and keeps it at the
normal range for more than 24 h. CERK plays an im-
portant role in inflammation-associated diseases [25]. It
has been observed that CERK deficiency in CERK-null
mice suppresses the elevation of obesity-mediated in-
flammatory cytokines and improves glucose intolerance
[26]. Studies also have indicated the relationship be-
tween diet and obesity and ETV5 gene expression, which
participates in food intake control mechanisms [27].
Moreover, it has been found that impaired glucose

tolerance in obese individuals is associated with the up-
regulation of E2F8, which possibly is implicated in the
progression of obesity, glucose intolerance, and its
complications [28]. MAFB also has been linked to the
metabolism and development of obesity and diabetes.
The MAFB-deficient mice have exhibited higher body
weights and a faster rate of increase in body weight than
control mice [29]. Up-regulation of MAFB expression in
human adipocytes has been correlated with adverse
metabolic features and inflammation, which may lead to
the development of insulin resistance [30]. In addition to
the protein-encoding genes, we found that about 40% of
top-ranked genes comprise non-coding RNAs, including
pseudogenes and long non-coding RNAs. Recent studies
have revealed that the deregulation of pseudogenes and
lncRNAs can relate to diabetes [31, 32]. In the present
analysis, more non-coding candidates were found that
support the role of lncRNAs in complex diseases like
diabetes. These non-coding RNAs can be functionally
analyzed to understand their biological roles in the
pathology of T2DM.

Table 1 Evaluation of the different classifiers for discrimination
of T2DM individuals from healthy ones. Here, 247 differentially
expressed genes were used as the classification features

Method AUC ACC F1 Precision Recall

SVM 0.889 0.838 0.806 0.788 0.825

NN 0.877 0.812 0.772 0.766 0.778

RF 0.837 0.766 0.71 0.721 0.698

NB 0.801 0.734 0.717 0.634 0.825

KNN 0.758 0.727 0.58 0.784 0.46

AUC, ACC, F1 score, precision, and Recall are reported

Table 2 Performance of different classifiers when the 26 top-
ranked genes were used as the features

Method AUC ACC F1 Precision Recall

SVM 0.958 0.942 0.927 0.950 0.905

NN 0.966 0.903 0.878 0.900 0.857

NB 0.896 0.818 0.791 0.746 0.841

RF 0.836 0.799 0.735 0.796 0.683

KNN 0.829 0.721 0.538 0.833 0.397
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Unsupervised classification of diabetic patients reveals
the potential existence of molecular subtypes
The objective of analysis at the unsupervised level was to
identify different gene expression patterns among T2DM
patients, potentially leading to insulin resistance through
different mechanisms. In this part, the diabetic samples
were categorized into three clusters, and specific dysreg-
ulated genes and pathways in each cluster were found.
This analysis shows that because of the heterogeneous
and multifactorial nature of this disease, the gene
expression dysregulations of all diabetic people are not
necessarily the same. Thus, people can be clustered into

different subgroups with different dysregulations in gene
expression patterns. We attempted to model the subse-
quent effects of these gene expression dysregulations on
their metabolisms. Although, we did not claim these
transcriptional differences lead to the manifestation of
different clinical features such as fasting glucose and in-
sulin levels in these clusters. Moreover, we only investi-
gated the potential existence of molecular subtypes in
T2DM, and we did not introduce specific subtypes.
Accurate subtyping requires more data from additional
individuals and validation with an independent data set
and experimental verification.

Fig. 3 Hierarchical clustering of diabetic samples. The top three clusters were selected, and DEGs and perturbed pathways in each cluster compared
to normal samples were found. Some of the specific dysregulated genes and pathways in each cluster are shown in the boxes. Green boxes show
down-regulated genes, and peach boxes show up-regulated genes. The blue boxes show perturbed pathways and abnormalities in each cluster
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Cluster 1: mitochondrial dysfunction, oxidative stress, and
inflammation
In cluster 1, perturbed pathways and dysregulated genes
possibly represent perturbation of lipid and free fatty
acids (FFAs) metabolism, inflammation, oxidative stress,
and mitochondrial dysfunction. Perturbed pentose phos-
phate, folate metabolism, and glutathione metabolism as
well as dysregulated genes such as IGHA1 and IGHA2,
GADD45G, and DDIT4 exhibit inflammation and oxida-
tive stress. The up-regulation of IGHA1 and IGHA2 may
trigger an inflammatory cascade involving a neutrophilic
response, phagocytosis, the oxidative burst, and subse-
quent tissue damage. Also, GADD45G plays the role of a
stress sensor [33] which is overexpressed in this group.
DNA damage and energy stress can also activate DDIT4
expression; thus, this gene contributes to regulating re-
active oxygen species [34]. Oxidative stress may impair
mitochondrial function, which possibly leads to impair-
ment of insulin sensitivity. Some evidence has supported

the role of oxidative stress and mitochondrial dysfunc-
tion in the pathogenesis of insulin resistance and type 2
diabetes [35]. In diabetes mellitus, mitochondria are the
major source of oxidative stress [35]. Free radicals can
damage lipids, proteins, and DNA and play a role in dia-
betes complications. Down-regulated mitochondrial
genes and perturbation in oxidative phosphorylation
may demonstrate mitochondrial dysfunction in this
cluster. Furthermore, MIF, which is a proinflammatory
cytokine, is up-regulated in this cluster. A positive asso-
ciation has been reported between MIF plasma levels,
FFAs concentration, and insulin resistance [36]. The per-
turbation of FFAs metabolism that possibly leads to an
increase in FFAs was observed in this cluster. Evidence
has demonstrated that FFAs can induce insulin resist-
ance in skeletal muscle. FFAs may induce insulin resist-
ance via mitochondrial dysfunction, increased ROS
production and oxidative stress, and activation of inflam-
matory signals, which was observed in this cluster [37].

Fig. 4 Heatmap representation of the gene expression pattern in three diabetic clusters. The columns of the heatmap represent diabetic
individuals and the rows show standardized gene expression (Z scores). Higher expressions are shown in lighter red and lower expressions are
shown in lighter green. Clusters with relevant dendrogram obtained from hierarchical clustering with Euclidean distance are shown at the top of
columns in which blue, green, and red lines demonstrate clusters 1 to 3, respectively. Row dendrogram indicates the clustering of genes using
complete linkage hierarchical clustering with Euclidean distance

Table 3 Subject characteristics for data. Fasting plasma glucose, fasting serum insulin, BMI, and waist/hip ratio (WHR) in each
diabetic cluster and healthy group

Healthy Cluster 1 Cluster 2 Cluster 3 P value

Glucose (mmol/L) 5.62 ± 0.3 7.17 ± 0.5 6.86 ± 0.5 7.39 ± 0.75 6.14e-43

Insulin (mu/l) 6.87 ± 3.3 10.19 ± 5.3 7.79 ± 3.9 12.93 ± 8.7 1.08e-06

BMI 26.35 ± 3.5 29.03 ± 5.0 28.58 ± 4.5 30.13 ± 5.5 1.96e-04

WHR 0.92 ± 0.08 0.99 ± 0.07 0.95 ± 0.06 1.02 ± 0.06 3.64e-08

All values are shown as means ± standard deviation
P values were calculated using ANOVA F-test
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An increase in FFAs is associated with a decrease in adi-
ponectin. ADIPOQ is mainly known as the adipokine,
but the importance of adiponectin production in muscle
cells has also been demonstrated [38]. This study also
has reported an increased expression of adiponectin in
response to rosiglitazone treatment in muscle cells and
has confirmed the functional role of muscle adiponectin
in insulin sensitivity. Adiponectin contributes to the
glucose metabolism of muscle cells via increased
insulin-induced serine phosphorylation of protein
kinase B and inhibition of the inflammatory response
[39]. Moreover, in this cluster, abnormalities in inositol
phosphate metabolism with Myo-inositol deficiency
was observed. Myo-inositol, one of the inositol isomers,
participates in signal transduction and vesicle traffick-
ing and associates with glucose utilization. Clinical re-
ports have suggested that the administration of inositol
supplements is a therapeutic approach in insulin resist-
ance and improves glucose metabolism [40]. Figure S4
in Additional file 1 shows the overview of abnormalities
in this cluster.

Cluster 2: ER-stress and inflammation
Surprisingly, no significant dysregulated pathway found
in the second cluster. Therefore, we compared the
phenotypic features of people in each cluster with
healthy individuals. It was interesting that this cluster is
very similar to the healthy state in respect of blood
glucose and insulin levels. Therefore, people at this
group may be at the early stage of diabetes onset, and
there is still no apparent change in their metabolism.
However, using differential gene expression analysis, the
changes in the expression of non-metabolic genes (e.g.
overexpression of OPN, OPG, CHAC1, ERN1, and
down-regulation of SERCA1) were observed in this
cluster. These genes are related to diabetes by promoting
ER-stress and inflammation. OPN and OPG play roles in
inflammation, insulin resistance, prediabetes, and dia-
betes. A recent study has demonstrated that OPN and
OPG levels in pre-diabetic subjects are increased, and
alterations in OPN and OPG might be involved in the
pathogenesis of prediabetes and T2DM [41, 42]. Obese
mice lacking osteopontin have shown improved whole-
body glucose tolerance and insulin resistance, also with
decreased markers of inflammation [43]. In addition,
ER-stress can induce the expression of OPN and OPG.
Recent pieces of evidence have supported the presence
and role of ER stress in muscle [44–46]. In this cluster,
SERCA1, which is an intracellular membrane-bound
Ca2+-transport ATPase enzyme encoded by the ATP2A1
gene was down-regulated. The dysregulation of SERCA
promotes ER Stress [41]. SERCA1 resides in the
sarcoplasmic or endoplasmic reticula of muscle cells and
contributes to the modulation of cellular Ca2+

homeostasis within the physiological range. Lower
SERCA expression may lead to reduced Ca2+ accumu-
lation in the ER lumen and ER dysfunction. High
luminal calcium concentration is essential for proper
protein folding and processing. Ca2+ depletion can
result in the accumulation of unfolded proteins and
can trigger the unfolded protein response (UPR) and
cell death [47]. High-fat diet and obesity induce ER
stress in muscles and subsequently suppress insulin
signaling [48]. Antidiabetic compounds such as azora-
mide and rosiglitazone, have been demonstrated to
induce SERCA expression and increased accumulation
of Ca2+ in ER [49, 50]. Schematic representation of
abnormalities in cluster 2 is shown in Figure S5 of
Additional file 1.

Cluster 3: perturbation in IRS-mediated insulin signaling
In cluster 3, the differential gene expression analysis
revealed the perturbation in insulin signaling and inflam-
mation. Results showed down-regulation of insulin-
responsive genes, HK2, EGR1, and CIDEC, which verify
insulin resistance through deficiency of insulin signaling.
Furthermore, overexpression of MSTN and ERBB3 was
found. Myostatin has been shown to induce insulin re-
sistance by degrading IRS1 proteins [51] and diminishing
insulin-induced IRS1 tyrosine phosphorylation, thus
interrupting insulin signaling cascade [52]. In addition,
treating HeLa cells with myostatin has suppressed HK2
expression [53]. Evidence has revealed that stress-
induced transactivation of ERBB2/ERBB3 receptors trig-
gers a PI3K cascade leading to the serine phosphoryl-
ation of IRS proteins [54, 55]. Overexpression of ERBB3
may enhance PI3K activity and implicating ERBB
proteins in stress-induced insulin resistance. Taken to-
gether, MSTN and ERBB3 can lead to serine phosphoryl-
ation of IRS, reducing tyrosine phosphorylation of IRS
and degradation of them. Since expressions of insulin-
regulated genes are positively correlated with insulin
sensitivity, down-regulation of HK2, EGR1, and CIDEC
genes in this group possibly verify insulin resistance
through deficiency of insulin signaling. In addition, at
the metabolic analysis, lower phosphorylation of glucose
with the subsequent perturbation in glycolysis and TCA
pathways was observed. Moreover, dysmetabolism of
branched-chain amino acids was observed at metabolic
analysis. A mechanism involved leucine-mediated activa-
tion of the mammalian target of rapamycin complex 1
(mTORC1) has been proposed to link higher levels of
BCAAs and T2DM [56]. This activation results in the
serine phosphorylation of IRS1 and IRS2 and subsequent
uncoupling of insulin signaling at an early stage. A brief
representation of abnormalities in this cluster is shown
in Figure S6 of Additional file 1.
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The cluster-based study can improve understanding of
T2DM
Our analysis showed that at the early stage of diabetes,
associated changes at the gene expression level in skel-
etal muscle are low, compared to healthy subjects.
Moreover, the clustering of patients leads to the identifi-
cation of the abnormalities that are usually hidden in co-
hort studies. For example, dysregulation of genes such as
MIF, ATP2A1, GADD45G, EEF2, EGR1, CIDEC, and
MSTN, and perturbations in several reactions implicated
in BCAAs metabolism, folate metabolism, and pentose
phosphate were only observed in our cluster-based
analysis. In a cohort study, a sample consists of several
subjects is gathered and is examined (Figure S7 of
Additional file 1). This makes it possible to see only an
approximate average of the features in the samples and
as a result, some of the abnormalities are covered in this
way. In a cluster-based study, a collected sample in a co-
hort study is broken down into the sub-groups so that
the members within each subgroup have the most simi-
larity and differ from the members of the outer sub-
groups. Each sub-group will be analyzed individually
(e.g., here we divided the diabetic group into three sub-
groups). The cluster-based analysis in this study led to
find more dysregulated genes and pathways that are spe-
cific in each cluster. Therefore, for a progressive and
heterogenic disease like T2DM, applying a cluster-based
study will enhance our understanding of the factors in-
volved in the disease pathogenesis. Focusing on homoge-
neous sub-groups in a heterogenic disease such as
T2DM may improve the success of therapeutic
strategies.

Conclusion
In this study, the changes in gene expression patterns of
newly diagnosed diabetic patients were analyzed using
supervised and unsupervised classification methods.
Using only gene expression data, it is possible to dis-
criminate T2DM individuals from healthy controls with
approximately 90% accuracy. Clustering of diabetic pa-
tients according to their gene expression patterns and
subsequent more in-depth analysis of each cluster un-
raveled specific abnormalities leading to insulin resist-
ance in each cluster. Based on the observed results in
this work, it seems that the disease has the potential to
be subtyped based on the gene expression patterns. This
is a pilot study, and further empirical analysis is still
needed to confirm our findings. We propose that using
the unsupervised clustering of diabetic patients in com-
bination with their real clinical profiles helps to find sig-
nificant molecular subtypes of T2DM with specific
abnormalities. This approach potentially will lead to bet-
ter therapeutic measures in each subtype in the future.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12920-020-00767-0.

Additional file 1: Figures. S1–7. show bar plot of SVM classification
evaluation, boxplots related to individuals characteristics in each cluster
and schematic representation of abnormalities in each cluster. Tables
S1–3. related to KEGG pathway enrichment analysis of each cluster.

Additional file 2. The complete list of differentially expressed genes in
each cluster, top-ranked genes with Ensemble ID, perturbed reactions ob-
tained from metabolic modeling in each cluster.
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