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We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia–
ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical,
through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the
hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data de-
monstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hip-
pocampal slice cultures exposed to oxygen–glucose deprivation (OGD), and the neonatal rat exposed to
HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated
that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor
expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase ac-
tivity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl
radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation
leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hy-
droxyl radical generation.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Neonatal hypoxia–ischemia (HI) remains an important cause of
acute mortality and chronic morbidity in infants and children. The
neurologic consequences of injury include mental retardation,
epilepsy, cerebral palsy, and blindness [1]. Despite progress in
obstetric and neonatal care, the current clinical treatments for
neonatal HI brain injury are mainly supportive. The mechanisms
underlying the brain injury associated with HI is only partly un-
derstood. Although increasing evidence indicates that free radicals
and reactive oxygen species are important mediators of ischemic
neuronal death [2–4], little is known regarding their specific cel-
lular sources and how they are regulated. Our previous studies
have shown that there is increased superoxide and hydrogen
peroxide (H2O2) production in the HI-exposed neonatal brain [5,6]
and this is mediated at least in part via NADPH oxidase brain [5].
The neonatal brain also has a low with antioxidant capacity, in-
cluding limited GPx activity [7,8] and increasing GPx activity is
neuroprotective [5]. The iron-catalyzed formation of hydroxyl
B.V. This is an open access article u
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radical from H2O2 is also recognized as a potent oxidant that can
cause cell damage. However, its role in neonatal HI brain injury is
unresolved. The neonatal brain accumulates more ferrous and
ferric iron than older animals [9–11]. Iron uptake in the neonatal
rat brain is also high, reaching a peak during the first 2 weeks [12]
and provides a reservoir for brain cellular development. Thus, it
also makes the neonatal brain more vulnerable to oxidative stress,
as iron can catalyze the Fenton reaction in which H2O2 is con-
verted into highly reactive and toxic hydroxyl radicals causing cell
death [13].

The free radical, nitric oxide (NO) is well recognized as a phy-
siological mediator in the brain and plays important roles in long-
term potentiation (LTP), synaptic plasticity and activity-dependent
modification of neural networks [14–16]. NO is enzymatically
generated from the conversion of L-arginine and oxygen by various
forms of NOS, all three NOS isoforms (eNOS, nNOS and iNOS) are
potential sources of NO in the brain. However, the mechanisms by
which elevated levels of NO leads to neuronal cell death in the HI
brain are still unclear. Interestingly, there are data suggesting that
NO can modulate cellular iron metabolism through its ability to
inactivate cellular aconitase [17,18] and activate the iron reg-
ulatory protein-1 [19] altering the homeostasis that exists between
iron uptake and cellular storage to favor uptake.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The aim of the present study was to investigate the potential
role of increased hydroxyl radical generation in HI-mediated
neonatal brain injury and to elucidate the involvement of NO.
Using both an in vitro hippocampal slice culture model and an
in vivo model of neonatal HI we demonstrated that an NO-de-
pendent increase in hydroxyl radical generation plays an im-
portant role in the neuronal cell death associated with neonatal HI
and this is mediated via a disruption in iron homeostasis.
Materials and methods

Hippocampal slice culture and OGD exposure

Neonatal rats (Sprague–Dawley, Charles River, Wilmington,
MA, USA) at postnatal day 7 (P7) were decapitated and the hip-
pocampi dissected under sterile conditions. Each hippocampus
was sliced into 400 mm slices using a Mcilwain tissue chopper
(Science Products GmbH, Switzerland). Slices were then cultured
on permeable membrane Millicell inserts (Millipore, Billerica, MA,
USA) (0.4 mm pore size) in six well plates for 6 days at 37 °C in 5%
CO2 as previously described [5,6]. Twenty-four hours before ex-
posure to OGD the culture medium was changed to neurobasal-A
and B27 supplement without antioxidants. Just prior to OGD, a
sucrose balanced salt solution (SBSS) (120 mM NaCl, 5 mM KCl,
1.25 mM NaH2PO4, 2 mM MgSO4, 2 mM CaCl2, 25 mM NaHCO3,
20 mM HEPES, 25 mM sucrose, pH of 7.3) was infused for 1 h with
5% CO2 and 10 l/h nitrogen gas. The inserts were then transferred
into deoxygenated SBSS and placed in a ProOxC system chamber
with oxygen controller (BioSpherix, NY, USA) and exposed to 0.1%
O2, 5% CO2, 94.4% nitrogen for 90 min at 37 °C. The slices were then
returned to oxygenated serum-free neurobasal medium with B27
supplement. The NOS inhibitor, L-NAME [Nω-Nitro-L-arginine
methyl ester hydrochloride] (100 mM, Sigma-Aldrich, St. Louis,
USA) were dissolved in DMSO and added to the medium 2 h before
OGD. Control experiments contained the equivalent amount of
DMSO that did not exceed 0.2% (v/v). The iron chelator, Deferox-
amine (100 mM, Sigma-Aldrich, St. Louis, USA) were dissolved in
autoclaved distilled water and added to the medium 2 h before
OGD. The hippocampal slice cultures were harvested at 4 h after
OGD for further investigation. All protocols were approved by the
Institutional Animal Care Committee at Georgia Regents
University.

Quantification of slice culture cell death

This was carried out using propidium iodide staining, the live
slice culture fluorescence images were recorded at on OGD, and
4 h after OGD groups. The evaluation of cell death was performed
using a modification of the method of Cronberg et al. [20], as
previously described [5,6].

Aconitase activity

Aconitase activity was measured using the Aconitase Assay Kit
(Cayman Chemical, Ann Arbor, MI) [21]. Briefly, hippocampal slice
cultures, or isolated rat brain tissue, were washed with ice-cold
PBS and lysed in lysis buffer containing 1% Triton X-100, 20 mM
Tris, pH 7.4, 100 mM NaCl, with 1� protease inhibitor cocktail,
and 1� phosphatase inhibitor cocktail (Sigma, St. Louis, MO, USA).
Samples were sonicated on crushed ice with two 10 s bursts and
centrifuged at 13,000g for 5 min at 4 °C. Supernatants were treated
according to the manufacturer's instructions and the protein
content was measured. Samples were diluted 1:10 in the kinase
buffer provided with the kit, and the absorbance read at 450 nm,
using a microplate reader (Synergy HT, Biotek Instruments, VT,
USA). Data are present as percentage to the control.

LDH cytotoxicity assay

Cytotoxicity was evaluated by quantification of lactate dehy-
drogenase (LDH) using a Cytotoxicity Detection Kit (Roche Applied
Science, Mannheim, Germany) in the slice culture medium as
described [5,6]. All LDH measurements were divided by the pro-
tein levels of the samples (Bradford protein assay, Bio-Rad La-
boratories, CA, USA).

Histologic evaluations

Brain tissues were washed in PBS, fixed in 4% paraformalde-
hyde (RT, 1 h), then in 30% sucrose (RT, 1 h), embedded in O.C.T
embedding medium (Tissue-Tek, Sakura Finetechnical, Tokyo, Ja-
pan) and stored at �80 °C overnight. Embedded tissues were
frozen sectioned (15 mm), mounted on glass slides. Sections were
analyzed for the presence of apoptotic nuclei using the DeadEnd
Fluorometric TUNEL System (Promega, Madison, WI, USA) as de-
scribed [5,6]. Quantification of the TUNEL stained nuclei and total
nuclei was processed by Image-Pro software and presented as a
percentage of total nuclei in the field as described [5,6]. Tissue iron
deposition was detected in cryostat sections using the Prussian
Blue Iron Stain Kit (Sigma-Aldrich, St. Louis, USA) as previously
described [22,23]. Briefly, sections were incubated in distilled
water with 1% potassium ferrocyanide and 1% hydrochloric acid
(HCl) for 15 min. After rinsing with distilled water, sections were
counterstained with neutral red. Images were then captured using
an Olympus IX70 microscope (Olympus, Japan). The iron intensity
(blue) was then quantified using ImageJ (NIH).

Immunoblot analyses

Tissue was homogenized in lysis buffer containing 1% Triton
X-100, 20 mM Tris, pH 7.4, 100 mM NaCl, with 1� protease in-
hibitor cocktail, and 1� phosphatase inhibitor cocktail (Sigma, St.
Louis, MO, USA). Lysates were centrifuged at 13,000g for 10 min at
4 °C to precipitate the debris, and the protein content in the su-
pernatant determined using the Bio-Rad protein assay (Bio-Rad
Laboratories, CA, USA). Lysate protein (20 mg/lane) was separated
using 4–20% gradient gels (Bio-Red, Hercules, CA, USA) and
transferred to PVDF membranes with the Trans-Blots Turbo™
Transfer System(Bio-Red, Hercules, CA, USA). The blots were then
probed with the appropriate antibody overnight at 4 °C. Primary
antibodies used were anti-IRP-1 (Abcam Inc., Cambridge, MA,
USA); anti-Ferritin (Abcam Inc., Cambridge, MA, USA); anti-TfR
(Abcam Inc., Cambridge, MA, USA). Blots were washed in 1� TBST
(3�15 min) and the appropriate secondary antibodies conjugated
to HRP (Sigma, St. Louis, MO, USA) were then added for 1 h at RT
(Thermo Scientific, Rockford, IL, USA). After further washing in
TBST (3�15 min) bands were visualized by chemiluminescence
(West-Femto, Pierce, Rockford, IL, USA) and quantified using a
Kodak Molecular Imaging System (Kodak, Rochester, NY, USA).

Measurement of hydroxyl radical levels

Hydroxyl radical production was measured using electron
paramagnetic resonance (EPR) spectroscopy [24] (Miniscope MS
200, Megnet tech, Berlin, Germany). Fresh tissue homogenates
protein levels were measured. Sample solutions for analysis con-
tained 35 ml homogenate and 5 ml of spin trap, 5,5-dimethey-1-
pyrroline-N-oxide (DMPO, Cayman Chemical Company, Ann Arbor,
MI). Under room temperature, the spectra were obtained using,
2 mW of microwave power, 100 kHz of modulation frequence,
2.0 G of modulation amplitude a 3 min scan time. To quantify the
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amount of the waveform amplitudes generated in slice cultures of
brain hippocampi were converted into nanomoles of hydroxyl
radical per milligram/minute of protein utilizing this value.

Rat model of neonatal hypoxia–ischemia

Postnatal day 7 rat pups were anesthetized with isoflurane (4%
for induction; 3% for maintenance), and 20% oxygen at 1 l/min
flow rate. For the duration of induction and surgery, a heated in-
duction chamber and surgical bed, (Microflex EZ Anesthesia Sys-
tem, Euthanex, Palmer, PA, USA), maintained core body tempera-
ture between 35–36 °C. Rectal temperature was monitored con-
tinuously using a sensitive microprobe thermometer (Physitemp
Instruments, Clifton, NJ, USA). The right common carotid artery
was exposed, permanently occluded by electrical coagulation and
incision sutured as described [5,6]. Sham operated pups received
vessel manipulation without occlusion. Immediately after surgery,
pups were placed in a temperature controlled recovery chamber to
Fig. 1. Oxygen glucose deprivation increases NOx levels and NO inhibition reduces cell d
to OGD in the presence of the NOS inhibitor, L-NAME (100 mM, 2 h prior to OGD). NOx lev
cell injury was also quantified by measuring changes in PI uptake fluorescence in the C
changes in LDH release (D). Both PI uptake and LDH release are increased by OGD and
Representative images are shown demonstrating the TUNEL staining of apoptotic cells
(merged) nuclei than in L-NAME pretreated slices (E). The magnification used was10� .
out indicating that L-NAME decreased the level of apoptotic nuclei in response to OGD
pooled slices per experiment. *Po0.05 vs. control, †Po0.05 vs. previous group, ‡Po0.0
recover for 15 min before returning to the dam for 1–2 h. For in-
duction of HI, pups were placed in a custom made, Plexiglas,
multi-chambered hypoxia device (Jarrold Manufacturing, St. Louis,
MO, USA). Chamber water bath temperature was maintained at
37 °C and each chamber infused with a calibrated mixture of
warm, humidified 8% oxygen/balance nitrogen for 2.5 h at a flow
rate of 100 ml/min. Oxygen concentration was monitored (Mini-
Ox3000 oxygen analyzer, MSA Medical Products, Pittsburgh, PA,
USA) and core body temperature of pups maintained between 35
and 36 °C throughout duration of hypoxia. Sham pups were also
placed in chamber with exposure to room air only. Immediately
after hypoxia, pups were placed in a temperature regulated re-
covery chamber (36 °C), and allowed 1–2 h of recovery before
returning to dam. The NOS Inhibitor, L-NAME (30 mg/kg, Sigma-
Aldrich, St. Louis, USA) was injected i.p. 30 min prior to exposure
to hypoxia. The iron iron chelator, Deferoxamine (200 mg/kg,
Sigma-Aldrich, St. Louis, USA) was injected i.p. immediately after
exposure to hypoxia. Vehicle groups received an equivalent
eath in rat hippocampal slice cultures. Rat hippocampal slice cultures were exposed
els were determined in the culture medium 2- and 4-h after OGD (A). The effect on
A1, CA3, DG regions and the whole slice 4 h after OGD (B and C) and by measuring
this is prevented by L-NAME (B–D). Slices were also subjected to TUNEL analysis.

(green) co-localized with PI staining of all the nuclei (red) resulted in more yellow
Quantification of the percentage of apoptotic nuclei to total nuclei was also carried
(F). Data are presented as mean7S.E from 4 independent experiments using 24
5 vs. same time point without L-NAME.
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injection volume of saline. After 8 h recovery from HI, the rats
were terminated and their brain was removed, tissue homogenate
was prepared for western blot and aconitase activity analysis.
Fresh tissue homogenates also went through electron spin re-
sonance spectroscopy to measure the hydroxyl radical levels.
Using a rodent neonatal matrix (Zivic Instruments, Pittsburgh, PA,
USA), the 2 mm thick coronal sections of the brain were processed
with TTC staining and infract volume quantification carried out as
previously described [5,6].

Statistical analysis

Statistical calculations were performed using the GraphPad
Prism V. 4.01 software. The mean7SD or SE were calculated for all
samples, and significance was determined by either the Student's
t-test or ANOVA with the Newman–Keuls or Bonferroni post hoc
test. A value of Po0.05 was considered significant.
Results

OGD-mediated increases in nitric oxide is associated with neuronal
cell death in rat hippocampal slice cultures

Hippocampal slices from P7 rats were pretreated with the NOS
inhibitor, L-NAME (100 mM, 2 h), then exposed to OGD. Our data
indicate that NOx levels are increased after OGD and that the NOS-
inhibitor, L-NAME significantly inhibit this increase (Fig. 1A). To
examine the effect of NOS inhibition on OGD associated cell death,
we quantified PI uptake in whole hippocampal slice. Our data
demonstrate that OGD increases PI uptake (Fig. 1B) and this was
significantly attenuated by NOS inhibition (Fig. 1B). Similarly, NOS
Fig. 2. NO inhibition attenuates hydroxyl radical generation and reduces iron deposition
after OGD, hydroxyl radical levels were determined using electron paramagnetic resonan
There is a significant increase in hydroxyl radical generation that is attenuated by L-NAM
color). Representative images are shown (B). The intensity of blue color was increased b
and C). Values are presented as mean7S.E from 4 independent experiments using 24 p
inhibition significantly decreased lactate dehydrogenase (LDH)
release (a measure of necrotic cell death) into the culture medium
(Fig. 1C). TUNEL staining also showed that inhibiting NOS, sig-
nificantly reduced OGD induced neuronal cell apoptosis (Fig. 1E
and F).

OGD induced hydroxyl radical generation and iron deposition are
attenuated by NOS inhibition in rat hippocampal slice cultures

To determine if OGD increases hydroxyl radical generation in
the hippocampal slice cultures, we utilized EPR spectroscopy and
spin trapping. OGD induces a significant increase in hydroxyl ra-
dical generation (Fig. 2A). The increased generation of the hydro-
xyl radical correlated an increase in iron deposition (Fig. 2B and C).
The increases in both hydroxyl radical generation (Fig. 2A) and
iron deposition (Fig. 2B and C) were significantly attenuated when
the slices were pretreated with the NOS inhibitor, L-NAME.

OGD alters the expression of proteins involved in cellular iron
homeostasis in rat hippocampal slice cultures

When the iron–sulfur cluster of mitochondrial aconitase is
disrupted, the unfolded protein becomes, IRP1, a major cellular
iron-responsive element (IRE)-binding protein [25–29]. Binding to
the IRE present in the transferrin receptor (TfR) mRNA attenuates
its degradation, while binding to the ferritin mRNA IRE enhances
its translation [25–29]. Our data indicate that OGD inhibits aco-
nitase activity in hippocampal slice cultures (Fig. 3A) without al-
tering aconitase/IRP-1 protein levels (Fig. 3B). The decrease in
aconitase activity corresponded with increased protein levels of
TfR (Fig. 3C) and decreased ferritin protein levels (Fig. 3D). NOS
inhibition prevented the decrease in aconitase activity (Fig. 3A)
in rat hippocampal slice cultures exposed to oxygen glucose deprivation. Four hours
ce (EPR) and the spin-trap compound, 5,5-dimethey-1-pyrroline-N-oxide (DMPO).
E (A). Slices were harvested and the amount of iron deposition determined (blue

y OGD, indicating increased iron deposition and this was attenuated by L-NAME (B
ooled slices per experiment. *Po0.05 vs. No OGD, †Po0.05 vs. OGD no treatment.



Fig. 3. NOS inhibition preserves iron homeostasis in rat hippocampal slice cultures exposed to oxygen glucose deprivation. Rat hippocampal slice cultures were exposed to
OGD in the presence of the NOS inhibitor, L-NAME (100 mM, 2 h prior to OGD), then harvested at 4 h after OGD. The effect of the OGD on aconitase activity was determined
(A). The OGD-mediated decreases in aconitase activity is attenuated by L-NAME (A). Cell extracts were also subjected to Western blot analysis to determine the effect on iron
regulatory protein-1 (IRP-1, B), ferritin (C) and transferrin receptor (TfR, D) levels. IRP-1 protein levelsa re unchanged (B). However, OGD decreases ferritin protein levels
(C) and increases TfR levels (D). These changes are attenuated by L-NAME (C and D). Values are presented as mean7S.E from 4 independent experiments using 24 pooled
slices per experiment. *Po0.05 vs. no OGD, †Po0.05 vs. OGD no treatment.
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and the changes in TfR (Fig. 3C) and ferritin (Fig. 3D) protein.

Iron regulation is disrupted in the neonatal rat brain exposed to HI

Aconitase activity is decreased in the HI brain ad this is pre-
vented when NOS is inhibited with L-NAME (Fig. 4). Again, IRP-1
protein levels did not change significantly with HI (Fig. 5A).
However, Ferritin levels were decreased (Fig. 5B) and TfR levels
were increased (Fig. 5C) in a NOS dependent manner (Fig. 5B). The
HI brain also exhibited an NOs-dependent increase in iron de-
position (Fig. 5D).

The ferric iron chelator, deferoxamine reduces iron deposition and
hydroxyl radical generation in rat hippocampal slice cultures

We next used a ferric iron chelator, deferoxamine to reduce
cellular iron toxicity. Deferoxamine reduced both the iron staining
(Fig. 6A) and elevated hydroxyl radical generation (Fig. 6B) after
OGD. This sequestration of iron correlated with a reduction in PI
uptake (Fig. 7A) and LDH release (Fig. 7B).

Deferoxamine reduces hydroxyl radical generation and infract volume
in the neonatal brain exposed to HI

Deferoxamine (200 mg/kg, I.P.) administrated immediately
after HI significantly reduced iron deposition (Fig. 8A) and hy-
droxyl radical generation (Fig. 8B). This correlated with a reduction
in the infract volume of the right hemisphere of the neonatal rat
brain exposed to (Fig. 8C).
Fig. 4. L-NAME preserves aconitase activity in the neonatal rat brain exposed to
hypoxia–ischemia. P7 neonatal rats were pre-treated with L-NAME (30 mg/kg,
30 min) then exposed to HI. Eight hours post-HI the brains were removed and the
aconitase activity in the right hemisphere determined. HI decreases aconitase ac-
tivity and this is attenuated by L-NAME. Values are presented as mean7S.D. from
5–6 animals per group. *Po0.05 vs. sham, †Po0.05 vs. HIþvehicle.
Discussion

Perinatal HI represents a long-standing, refractory public
health problem [30–33]. Initially, HI results in a rapid early phase
of cellular energy failure then a secondary phase of injury that
evolves over hours to days and is accompanied by a clinical syn-
drome manifest as encephalopathy, seizures and an abnormal EEG.
The initial phase of HI is characterized by excitotoxic cell injury. In
this study we have identified a new mechanism that is involved in
the neuronal cell death associated with neonatal HI. Our data from
OGD slice cultures, and the neonatal rat brain exposed to HI, show
that NOx levels are elevated and that NOS inhibition prevents the
loss of aconitase activity, which results in the reduction of iron
deposition and hydroxyl radical generation. The neuronal cell
death in the HI brain was also dramatically decreased; suggesting



Fig. 5. L-NAME preserves iron homeostasis in the neonatal rat brain exposed to hypoxia–ischemia. P7 neonatal rats were pre-treated with L-NAME (30 mg/kg, 30 min) then
exposed to HI. Eight hours post-HI the brains were removed and the right hemisphere was subjected to Western blot analysis to evaluate changes in IRP-1 (A), ferritin (B),
and TfR (C) levels. IRP-1 protein levels are unaffected by HI (A). However, HI decreases ferritin protein levels (B) and increases TfR levels (C). These changes are attenuated by
L-NAME (B and C). In addition the iron deposition was determined. Representative images are shown (D). The intensity of blue color was increased by HI, indicating increased
iron deposition and this was attenuated by L-NAME (D). Values are presented as mean7S.D. from 5–6 animals per group. *Po0.05 vs. sham, †Po0.05 vs. HIþvehicle.
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this iron mediated hydroxyl radical neuronal cell injury is NO
dependent. Many studies show that NO is a mediator of neuronal
injury after HI [34–37] and NOS inhibition reduces infarct volume
after HI injury in the rat [38,39]. However, the source of the NO
also appears to determine if NO acts in a protective or deleterious
manner. Thus, the increase in eNOS activity that occurs im-
mediately after ischemic cerebral damage [40], is a protective as it
can improve blood supply [41,42]. Conversely, the activation of the
nNOS isoform when glutamate binds to the NMDA receptor is
thought to be deleterious [43,44]. Thus, HI injury is reduced in
Fig. 6. Deferoxamine reduces cell death in hippocampal slice culture exposed to oxyge
presence of the iron chelator, deferoxamine (100 mM, 2 h prior to OGD). The effect on ce
whole slice 4 h after OGD (A) and by measuring changes in LDH release (B). Both PI upta
and B). Data are presented as mean7S.E from 4 independent experiments using 24 po
adult [45,46] and neonatal mice [36] deficient in nNOS but in-
creased in eNOS deficient mice [47]. Further, nNOS expression in
the developing brain correlates with regions of selective vulner-
ability to HI injury [48], again supporting a role for nNOS derived
NO in HI injury in the developing brain.

Despite many years of continued investigation it is still not
clear the mechanisms by which NO is involved in the brain injury
associated with HI. Some data have suggested that nNOS-derived
NO activates the p38MAPK pathway which leads to neuronal
death [49]. This is supported by our previous studies that implicate
n glucose deprivation. Rat hippocampal slice cultures were exposed to OGD in the
ll injury was also quantified by measuring changes in PI uptake fluorescence in the
ke and LDH release are increased by OGD and this is prevented by deferoxamine (A
oled slices per experiment. *Po0.05 vs. no OGD, †Po0.05 vs. OGD no treatment.



Fig. 7. Deferoxamine reduces iron deposition and hydroxyl radical generation in hippocampal slice culture exposed to oxygen glucose deprivation. Rat hippocampal slice
cultures were exposed to OGD in the presence of the iron chelator, deferoxamine (100 mM, 2 h prior to OGD). Deferoxamine pretreatment reduces the OGD-mediated
increase in iron deposition 4 h after OGD (A). The generation of hydroxyl radical was also measured 4 h after OGD. The OGD-mediated increase in hydroxyl radical generation
is attenuated by deferoxamine (B). Values are presented as mean7S.E from 4 independent experiments using 24 pooled slices per experiment. *Po0.05 vs. No OGD
†Po0.05 vs. OGD no treatment.
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the activation of p38MAPK in HI brain injury [5,6]. The activation
of p38MAPK appears to be an initiator event that in turn results in
an increase in oxidative stress through its ability to phosphorylate
and activate the p47phox subunit of NADPH oxidase resulting in
increased superoxide generation [5,6]. This suggests that there
may be links between NO and reactive oxygen species generation.
ROS are continuously produced in mammalian cells during normal
aerobic metabolism, and an overabundance can threaten neuronal
survival through their ability to induce lipid peroxidation, protein
oxidation, and DNA damage [50–54]. ROS are processed by a
highly complex and integrated antioxidant defense system com-
posed of the enzymes CuZnSOD, MnSOD, catalase, GPx, and
Fig. 8. Deferoxamine reduces iron deposition, hydroxyl radical generation and infarct vo
given deferoxamine (200 mg/kg I.P.) immediately after HI. After HI 8 h the rat brains we
(C) were all determined in the right hemisphere. The HI mediated increase in iron depo
correlates with a reduction in infarct volume (C). *Po0.05 vs. sham, †Po0.05 vs. HIþv
glutathione reductase, as well as nonenzymatic substances such as
vitamins A, C, and E and low molecular weight molecules in-
cluding reduced GSH [55]. The detoxification of ROS is especially
important for the brain because neurons have been shown to be
particularly vulnerable to oxidative stress as a result of their lim-
ited ROS scavenging ability [55]. Indeed our prior studies have
shown that peak antioxidant defense protein levels, especially
GPx, do not occur until later developmental ages [56]. However,
the potential for antioxidant enzymes to exert neuroprotection is
complex and far from resolved. For example, adult copper zinc
superoxide dismutase (SOD1) over-expressing mice or rats have
reduced injury in a model of focal cerebral ischemic injury
lume in the neonatal rat brain exposed to hypoxia-ischemia. P7 neonatal rats were
re removed, iron deposition (A), hydroxyl radical generation (B), and infarct volume
sition (A) and hydroxyl radical generation (B) are prevented by deferoxamine. This
ehicle.
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compared with wild-type mice [57–59]. However, neonatal SOD1
over-expressing mice have increased brain injury [60]. This ap-
pears to be due to that neonatal SOD1 transgenic mice accumu-
lating excessive levels of H2O2 after HI [60]. As this was correlated
with a decreases in the activity of GPx after the injury it has been
suggested that GPx may be the important anti-oxidant enzyme in
protection against the brain injury associated with neonatal HI
[60]. We have also shown that H2O2 levels are significantly in-
creased by OGD in hippocampal slice cultures and by HI in the
neonatal rat brain [5]. Further, scavenging H2O2 using the ade-
noassociated viral (AAV) gene delivery of GPx1 significantly at-
tenuates the neuronal injury associated with HI [5]. This is im-
portant as the generation of the hydroxyl radical is dependent on
the reaction of free iron with H2O2 via Fenton type chemistry. It
also suggests that NO may act at different levels in the pathway:
activating p38MAPK to stimulate NADPH oxidase activity and su-
peroxide generation and by stimulating free iron levels to increase
hydroxyl radical levels.

Iron is required for optimal neuronal growth and function
during development. Iron forms an important component of en-
zymes and proteins involved in neurotransmitter synthesis, neu-
ronal oxidative metabolism, myelin formation, and DNA synthesis
[61–63]. The ability of the element to exist in either of two stable
oxidation states (ferric, Fe3þ; ferrous, Fe2þ) is the key to its en-
zymatic activity. Unrestrained, however, iron can have adverse
consequences on cellular survival through the production of the
hydroxyl radical generated by its interaction with H2O2 [55,64–
66]. The first 16 postnatal days in the rat are characterized by a
high rate of cell proliferation and iron requirements parallel this
rapid rate of development [67,68]. Prior work has also shown that,
in the neonatal HI rat brain, iron staining increases rapidly in re-
gions of ischemic injury, suggesting that HI induces a rapid accu-
mulation of iron in the brain [69]. Magnetic resonance imaging of
children with severe ischemic anoxic brain injury has identified
extensive areas of iron deposition in the basal ganglia and peri-
ventricular white matter [70]. Our data show that sequestering
cellular iron using deferoxamine attenuates hydroxyl radical gen-
eration and attenuates neuronal cell death suggesting that the
hydroxyl radical is a major player in HI brain injury. Deferoxamine
not only sequesters “free iron” to form an extremely stable com-
plex, it also has the ability to remove iron from ferritin and to
complex non-transferrin bound iron [71]. Thus, it mimics the ef-
fect of altering the iron regulatory and trafficking proteins and is a
direct way to reduce the iron pool inside the cell. That deferox-
amine can reduce neonatal HI brain injury has been previously
reported [72,73]. Thus, our data are in agreement with these
previous studies, but go further by implicating iron mediated hy-
droxyl radical generation as being a key downstream mediator of
the neuronal cell death.

Generally, iron is loaded by transferrin which binds to TfR on
the cell membrane, after which it is passed across the membrane
by endocytosis [74]. The ferric iron (Fe3þ) is then released from
transferrin and reduced to ferrous iron (Fe2þ) for further use or/
and storage in ferritin. A major mechanism for the regulation of
iron homeostasis relies on divergent but coordinated control of
TfR-mediated iron uptake and ferritin-mediated iron sequestra-
tion. The expression of TfR and ferritin is controlled by a process
involving mRNA–protein interactions. Both TfR and ferritin
mRNA’s contain structural motifs known as “iron response ele-
ments” (IREs), which can be bound by iron regulatory protein 1
(IRP1) [25–29]. When iron levels are low, the IRP1 binds to IREs in
untranslated regions of mRNAs for TfR and ferritin, blocking de-
gradation of the former while decreasing translation of the latter
[25–29]. These processes result in a simultaneous increase in iron
uptake and a decrease in iron sequestration, forming a pool of iron
that is available for metabolic utilization. When iron levels are
high, IRP-1 assembles a [4Fe–4S] cluster and acquires aconitase
activity, while also losing its function as a post-transcriptional
regulator [75,76]. However, IRP-1 can also be regulated by factors
other than iron levels in the cells. For example, studies have shown
that IRP-1 is highly sensitive to NO generated by NOS or by exo-
genous NO donors [77–81]. The prevailing paradigm is that NO
directly attacks the Fe–S cluster of aconitase, inducing its dis-
assembly and switching the enzyme to IRP-1 [77,78,80]. Our data
support this possibility as we find that after HI, there is a decrease
in aconitase activity and a corresponding increase in cellular iron
uptake, mediated via increased levels of TfR protein and reduced
sequestration via a reduction in ferritin protein. In addition, our
work is in agreement with recent studies in which aerobic exercise
was found to elevate free iron levels in the hippocampus [82]
while 2,3,7,8-dibenzo-p-dioxin (TCDD) alters iron homeostasis in
urinary bladder epithelial RT4 cells [83]. In both cases the me-
chanism was found to involve NO and IRPs. It should be noted that
another IRP exists, IRP-2. IRP-2 does not assemble an Fe–S cluster
but responds to iron repletion by undergoing degradation through
the ubiquitin-proteasome pathway [26–29]. We did not evaluate
the potential role of IRP-2 in HI brain injury and it is unclear to
what extent it is involved.

In summary, elevated NO generation in the HI brain, inhibits
aconitase activity and leads to cellular iron accumulation, in-
creases in hydroxyl radical generation and neuronal cell death.
Thus, our findings have clarified the mechanism by which NO
exerts its cytotoxic effect in the neonatal brain exposed to HI, and
suggests that regulating iron homeostasis is a potential clinical
strategy for protecting the neonatal brain.
Acknowledgments

This research was supported in part by HL60190 (SMB),
HL67841 (SMB), HL101902 (SMB), HD039110 (SMB) from the Na-
tional Institutes of Health and a Scientist Development Grant
(14SDG20480354) from the American Heart Association National
Office (RR).
References

[1] D.M. Ferriero, Neonatal brain injury, N. Engl. J. Med. 351 (19) (2004)
1985–1995, http://dx.doi.org/10.1056/NEJMra041996 15525724.

[2] P. Lipton, Ischemic cell death in brain neurons, Physiol. Rev. 79 (4) (1999)
1431–1568 10508238.

[3] L.J. Martin, A.M. Brambrink, A.C. Price, A. Kaiser, D.M. Agnew, R.N. Ichord, et al.,
Neuronal death in newborn striatum after hypoxia–ischemia is necrosis and
evolves with oxidative stress, Neurobiol. Dis. 7 (3) (2000) 169–191, http://dx.
doi.org/10.1006/nbdi.2000.0282 10860783.

[4] A.N. Clarkson, B.A. Sutherland, I. Appleton, The biology and pathology of hy-
poxia–ischemia: an update, Arch. Immunol. Ther. Exp. (Warsz.) 53 (3) (2005)
213–225 15995582.

[5] Q. Lu, M.S. Wainwright, V.A. Harris, S. Aggarwal, Y. Hou, T. Rau, et al., Increased
NADPH oxidase-derived superoxide is involved in the neuronal cell death
induced by hypoxia–ischemia in neonatal hippocampal slice cultures, Free
Radic. Biol. Med. 53 (5) (2012) 1139–1151, http://dx.doi.org/10.1016/j.free-
radbiomed.2012.06.012 22728269.

[6] Q. Lu, T.F. Rau, V. Harris, M. Johnson, D.J. Poulsen, S.M. Black, Increased p38
mitogen-activated protein kinase signaling is involved in the oxidative stress
associated with oxygen and glucose deprivation in neonatal hippocampal slice
cultures, Eur. J. Neurosci. 34 (7) (2011) 1093–1101, http://dx.doi.org/10.1111/
j.1460-9568.2011.07786.x 21939459.

[7] R.A. Sheldon, X. Jiang, C. Francisco, S. Christen, Z.S. Vexler, M.G. Täuber, et al.,
Manipulation of antioxidant pathways in neonatal murine brain, Pediatr. Res.
56 (4) (2004) 656–662, http://dx.doi.org/10.1203/01.
PDR.0000139413.27864.50 15295091.

[8] X. Jiang, D. Mu, C. Manabat, A.A. Koshy, S. Christen, M.G. Täuber, et al., Dif-
ferential vulnerability of immature murine neurons to oxygen–glucose de-
privation, Exp. Neurol. 190 (1) (2004) 224–232, http://dx.doi.org/10.1016/j.
expneurol.2004.07.010 15473995.

[9] T. Moos, Developmental profile of non-heme iron distribution in the rat brain
during ontogenesis, Brain Res. Dev. Brain Res. 87 (2) (1995) 203–213 7586503.

http://dx.doi.org/10.1056/NEJMra041996
http://dx.doi.org/10.1056/NEJMra041996
http://dx.doi.org/10.1056/NEJMra041996
http://www.ncbi.nlm.nih.gov/pubmed/15525724
http://www.ncbi.nlm.nih.gov/pubmed/10508238
http://dx.doi.org/10.1006/nbdi.2000.0282
http://dx.doi.org/10.1006/nbdi.2000.0282
http://dx.doi.org/10.1006/nbdi.2000.0282
http://dx.doi.org/10.1006/nbdi.2000.0282
http://www.ncbi.nlm.nih.gov/pubmed/10860783
http://www.ncbi.nlm.nih.gov/pubmed/15995582
http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.012
http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.012
http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.012
http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.012
http://www.ncbi.nlm.nih.gov/pubmed/22728269
http://dx.doi.org/10.1111/j.1460-9568.2011.07786.x
http://dx.doi.org/10.1111/j.1460-9568.2011.07786.x
http://dx.doi.org/10.1111/j.1460-9568.2011.07786.x
http://dx.doi.org/10.1111/j.1460-9568.2011.07786.x
http://www.ncbi.nlm.nih.gov/pubmed/21939459
http://dx.doi.org/10.1203/01.PDR.0000139413.27864.50
http://dx.doi.org/10.1203/01.PDR.0000139413.27864.50
http://dx.doi.org/10.1203/01.PDR.0000139413.27864.50
http://dx.doi.org/10.1203/01.PDR.0000139413.27864.50
http://www.ncbi.nlm.nih.gov/pubmed/15295091
http://dx.doi.org/10.1016/j.expneurol.2004.07.010
http://dx.doi.org/10.1016/j.expneurol.2004.07.010
http://dx.doi.org/10.1016/j.expneurol.2004.07.010
http://dx.doi.org/10.1016/j.expneurol.2004.07.010
http://www.ncbi.nlm.nih.gov/pubmed/15473995
http://www.ncbi.nlm.nih.gov/pubmed/7586503


Q. Lu et al. / Redox Biology 6 (2015) 112–121120
[10] T. Moos, T. Rosengren Nielsen, Ferroportin in the postnatal rat brain: im-
plications for axonal transport and neuronal export of iron, Semin. Pediatr.
Neurol. 13 (3) (2006) 149–157, http://dx.doi.org/10.1016/j.spen.2006.08.003
17101453.

[11] T. Moos, P.S. Oates, E.H. Morgan, Expression of the neuronal transferrin re-
ceptor is age dependent and susceptible to iron deficiency, J. Comp. Neurol.
398 (3) (1998) 420–430 9714152.

[12] E.H. Morgan, T. Moos, Mechanism and developmental changes in iron trans-
port across the blood–brain barrier, Dev. Neurosci. 24 (2–3) (2002) 106–113
12401948.

[13] B. Lipinski, Hydroxyl radical and its scavengers in health and disease, Oxid.
Med. Cell Longev. 2011 (2011) 809696, http://dx.doi.org/10.1155/2011/809696
21904647.

[14] G.M. Edelman, J.A. Gally, Nitric oxide: linking space and time in the brain, Proc.
Natl. Acad. Sci. USA 89 (24) (1992) 11651–11652, http://dx.doi.org/10.1073/
pnas.89.24.11651 1334544.

[15] A.A. Mongin, P. Dohare, D. Jourd’heuil, Selective vulnerability of synaptic sig-
naling and metabolism to nitrosative stress, Antioxid. Redox Signal. 17 (7)
(2012) 992–1012, http://dx.doi.org/10.1089/ars.2012.4559 22339371.

[16] J. Dachtler, N.R. Hardingham, K. Fox, The role of nitric oxide synthase in cor-
tical plasticity is sex specific, J. Neurosci. 32 (43) (2012) 14994–14999, http:
//dx.doi.org/10.1523/JNEUROSCI.3189-12.2012 23100421.

[17] V. Tórtora, C. Quijano, B. Freeman, R. Radi, L. Castro, Mitochondrial aconitase
reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechan-
isms and relative contributions to aconitase inactivation, Free Radic. Biol. Med.
42 (7) (2007) 1075–1088, http://dx.doi.org/10.1016/j.free-
radbiomed.2007.01.007 17349934.

[18] L.A. Castro, R.L. Robalinho, A. Cayota, R. Meneghini, R. Radi, Nitric oxide and
peroxynitrite-dependent aconitase inactivation and iron-regulatory protein-1
activation in mammalian fibroblasts, Arch. Biochem. Biophys. 359 (2) (1998)
215–224, http://dx.doi.org/10.1006/abbi.1998.0898 9808763.

[19] G. Cairo, R. Ronchi, S. Recalcati, A. Campanella, G. Minotti, Nitric oxide and
peroxynitrite activate the iron regulatory protein-1 of J774A.1 macrophages by
direct disassembly of the Fe�S cluster of cytoplasmic aconitase, Biol. Chem. 41
(23) (2002) 7435–7442, http://dx.doi.org/10.1021/bi025756k 12044177.

[20] T. Cronberg, A. Rytter, F. Asztély, A. Söder, T. Wieloch, Glucose but not lactate
in combination with acidosis aggravates ischemic neuronal death in vitro,
Stroke 35 (3) (2004) 753–757, http://dx.doi.org/10.1161/01.
STR.0000117576.09512.32 14963271.

[21] P.R. Gardner, I. Raineri, L.B. Epstein, C.W. White, Superoxide radical and iron
modulate aconitase activity in mammalian cells, J. Biol. Chem. 270 (22) (1995)
13399–13405, http://dx.doi.org/10.1074/jbc.270.22.13399 7768942.

[22] D.H. Lee, L.J. Zhou, Z. Zhou, J.X. Xie, J.U. Jung, Y. Liu, C.X. Xi, L. Mei, W.C. Xiong,
Neogenin inhibits HJV secretion and regulates BMP-induced hepcidin ex-
pression and iron homeostasis, Blood 115 (15) (2010) 3136–3145, http://dx.
doi.org/10.1182/blood-2009-11-251199 20065295.

[23] M.F. Casanova, S.O. Comparini, R.W. Kim, J.E. Kleinman, Staining intensity of
brain iron in patients with schizophrenia: a postmortem study, J. Neu-
ropsychiatry Clin. Neurosci. 4 (1) (1992) 36–41, http://dx.doi.org/10.1176/
jnp.4.1.36 1627959.

[24] G.M. Pieper, C.C. Felix, B. Kalyanaraman, M. Turk, A.M. Roza, Detection by ESR
of DMPO hydroxyl adduct formation from islets of langerhans, Free Radic. Biol.
Med. 19 (2) (1995) 219–225 7649493.

[25] M.W. Hentze, L.C. Kühn, Molecular control of vertebrate iron metabolism:
mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative
stress, Proc. Natl. Acad. Sci. USA 93 (16) (1996) 8175–8182, http://dx.doi.org/
10.1073/pnas.93.16.8175 8710843.

[26] B.R. Henderson, Iron regulatory proteins 1 and 2, Bioessays 18 (9) (1996)
739–746, http://dx.doi.org/10.1002/bies.950180909 8831290.

[27] D.P. Mascotti, D. Rup, R.E. Thach, Regulation of iron metabolism: translational
effects mediated by iron, heme, and cytokines, Annu. Rev. Nutr. 15 (1995)
239–261, http://dx.doi.org/10.1146/annurev.nu.15.070195.001323 8527220.

[28] L.C. Kühn, Molecular regulation of iron proteins, Baillieres Clin. Haematol. 7 (4)
(1994) 763–785, http://dx.doi.org/10.1016/S0950-3536(05)80123-4 7881153.

[29] D.J. Piñero, J. Hu, J.R. Connor, Alterations in the interaction between iron
regulatory proteins and their iron responsive element in normal and Alzhei-
mer's diseased brains, Cell. Mol. Biol. Noisy le Grand 46 (4) (2000) 761–776
10875438.

[30] A.J. du Plessis, M.V. Johnston, Hypoxic–ischemic brain injury in the newborn.
cellular mechanisms and potential strategies for neuroprotection, Clin. Peri-
natol. 24 (3) (1997) 627–654 9394864.

[31] G.M. Fenichel, Hypoxic–ischemic encephalopathy in the newborn, Arch.
Neurol. 40 (5) (1983) 261–266, http://dx.doi.org/10.1001/arch-
neur.1983.04050050029002 6405725.

[32] R.C. Vannucci, J.M. Perlman, Interventions for perinatal hypoxic-ischemic en-
cephalopathy, Pediatrics 100 (6) (1997) 1004–1014, http://dx.doi.org/10.1542/
peds.100.6.1004 9374573.

[33] J. Volpe, Hypoxic–ishcemic encephalopathy, Neurology of the Newborn, WB
Saunders, Philadelphia, 1995.

[34] D.M. Ferriero, L.J. Arcavi, R.P. Simon, Ontogeny of excitotoxic injury to nicoti-
namide adenine dinucleotide phosphate diaphorase reactive neurons in the
neonatal rat striatum, Neuroscience 36 (2) (1990) 417–424, http://dx.doi.org/
10.1016/0306-4522(90)90437-9 2145527.

[35] D.M. Ferriero, R.A. Sheldon, S.M. Black, J. Chuai, Selective destruction of nitric
oxide synthase neurons with quisqualate reduces damage after hypoxia–
ischemia in the neonatal rat, Pediatr. Res. 38 (6) (1995) 912–918, http://dx.doi.
org/10.1203/00006450-199512000-00014 8618793.
[36] D.M. Ferriero, D.M. Holtzman, S.M. Black, R.A. Sheldon, Neonatal mice lacking

neuronal nitric oxide synthase are less vulnerable to hypoxic–ischemic injury,
Neurobiol. Dis. 3 (1) (1996) 64–71, http://dx.doi.org/10.1006/nbdi.1996.0006
9173913.

[37] R.E. Burke, K.G. Baimbridge, Relative loss of the striatal striosome compart-
ment, defined by calbindin-D28k immunostaining, following developmental
hypoxic–ischemic injury, Neuroscience 56 (2) (1993) 305–315, http://dx.doi.
org/10.1016/0306-4522(93)90333-B 8247262.

[38] J.P. Nowicki, D. Duval, H. Poignet, B. Scatton, Nitric oxide mediates neuronal
death after focal cerebral ischemia in the mouse, Eur. J. Pharmacol. 204 (3)
(1991) 339–340, http://dx.doi.org/10.1016/0014-2999(91)90862-K 1773832.

[39] S. Yamamoto, E.V. Golanov, S.B. Berger, D.J. Reis, Inhibition of nitric oxide
synthesis increases focal ischemic infarction in rat, J. Cereb. Blood Flow Metab.
12 (5) (1992) 717–726, http://dx.doi.org/10.1038/jcbfm.1992.102 1380515.

[40] C. Depré, L. Fiérain, L. Hue, Activation of nitric oxide synthase by ischaemia in
the perfused heart, Cardiovasc. Res. 33 (1) (1997) 82–87, http://dx.doi.org/
10.1016/S0008-6363(96)00176-9 9059531.

[41] K. Wada, K. Chatzipanteli, R. Busto, W.D. Dietrich, Role of nitric oxide in
traumatic brain injury in the rat, J. Neurosurg. 89 (5) (1998) 807–818, http:
//dx.doi.org/10.3171/jns.1998.89.5.0807 9817419.

[42] L.S. Brevetti, D.S. Chang, G.L. Tang, R. Sarkar, L.M. Messina, Overexpression of
endothelial nitric oxide synthase increases skeletal muscle blood flow and
oxygenation in severe rat hind limb ischemia, J. Vasc. Surg. 38 (4) (2003)
820–826, http://dx.doi.org/10.1016/S0741-5214(03)00555-X 14560236.

[43] T.M. Dawson, D.S. Bredt, M. Fotuhi, P.M. Hwang, S.H. Snyder, Nitric oxide
synthase and neuronal NADPH diaphorase are identical in brain and periph-
eral tissues, Proc. Natl. Acad. Sci. USA 88 (17) (1991) 7797–7801, http://dx.doi.
org/10.1073/pnas.88.17.7797 1715581.

[44] V.L. Dawson, T.M. Dawson, E.D. London, D.S. Bredt, S.H. Snyder, Nitric oxide
mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl.
Acad. Sci. USA 88 (14) (1991) 6368–6371, http://dx.doi.org/10.1073/
pnas.88.14.6368 1648740.

[45] P.L. Huang, T.M. Dawson, D.S. Bredt, S.H. Snyder, M.C. Fishman, Targeted dis-
ruption of the neuronal nitric oxide synthase gene, Cell 75 (7) (1993)
1273–1286, http://dx.doi.org/10.1016/0092-8674(93)90615-W 7505721.

[46] Z. Huang, P.L. Huang, N. Panahian, T. Dalkara, M.C. Fishman, M.A. Moskowitz,
Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase,
Science 265 (5180) (1994) 1883–1885, http://dx.doi.org/10.1126/sci-
ence.7522345 7522345.

[47] Z. Huang, P.L. Huang, J. Ma, W. Meng, C. Ayata, M.C. Fishman, et al., Enlarged
infarcts in endothelial nitric oxide synthase knockout mice are attenuated by
nitro-L-arginine, J. Cereb. Blood Flow Metab. 16 (5) (1996) 981–987, http://dx.
doi.org/10.1097/00004647-199609000-00023 8784243.

[48] S.M. Black, M.A. Bedolli, S. Martinez, J.D. Bristow, D.M. Ferriero, S.J. Soifer,
Expression of neuronal nitric oxide synthase corresponds to regions of se-
lective vulnerability to hypoxia–ischaemia in the developing rat brain, Neu-
robiol. Dis. 2 (3) (1995) 145–155, http://dx.doi.org/10.1006/nbdi.1995.0016
9173998.

[49] L.L. Li, V. Ginet, X. Liu, O. Vergun, M. Tuittila, M. Mathieu, et al., The nNOS-
p38MAPK pathway is mediated by NOS1AP during neuronal death, J. Neurosci.
33 (19) (2013) 8185–8201, http://dx.doi.org/10.1523/JNEUROSCI.4578-12.2013
23658158.

[50] R.M. Tribe, L. Poston, Oxidative stress and lipids in diabetes: a role in en-
dothelium vasodilator dysfunction? Vasc. Med. 1 (3) (1996) 195–206 9546938.

[51] R.S. Ronson, M. Nakamura, J. Vinten-Johansen, The cardiovascular effects and
implications of peroxynitrite, Cardiovasc. Res. 44 (1) (1999) 47–59, http://dx.
doi.org/10.1016/S0008-6363(99)00184-4 10615389.

[52] J.K. Lynch, K.B. Nelson, Epidemiology of perinatal stroke, Curr. Opin. Pediatr. 13
(6) (2001) 499–505, http://dx.doi.org/10.1097/00008480-200112000-00002
11753097.

[53] M.V. Johnston, W.H. Trescher, A. Ishida, W. Nakajima, Neurobiology of hy-
poxic-ischemic injury in the developing brain, Pediatr. Res. 49 (6) (2001)
735–741, http://dx.doi.org/10.1203/00006450-200106000-00003 11385130.

[54] M.V. Johnston, W.H. Trescher, A. Ishida, W. Nakajima, Novel treatments after
experimental brain injury, Semin. Neonatol. 5 (1) (2000) 75–86, http://dx.doi.
org/10.1053/siny.1999.0116 10802752.

[55] B. Halliwell, Reactive oxygen species and the central nervous system, J. Neu-
rochem. 59 (5) (1992) 1609–1623, http://dx.doi.org/10.1111/j.1471-4159.1992.
tb10990.x 1402908.

[56] J.Y. Khan, S.M. Black, Developmental changes in murine brain antioxidant
enzymes, Pediatr. Res. 54 (1) (2003) 77–82, http://dx.doi.org/10.1203/01.
PDR.0000065736.69214.20 12646716.

[57] H. Kinouchi, C.J. Epstein, T. Mizui, E. Carlson, S.F. Chen, P.H. Chan, Attenuation
of focal cerebral ischemic injury in transgenic mice overexpressing CuZn su-
peroxide dismutase, Proc. Natl. Acad. Sci. USA 88 (24) (1991) 11158–11162,
http://dx.doi.org/10.1073/pnas.88.24.11158 1763030.

[58] P.H. Chan, C.J. Epstein, Y. Li, T.T. Huang, E. Carlson, H. Kinouchi, et al., Trans-
genic mice and knockout mutants in the study of oxidative stress in brain
injury, J. Neurotrauma 12 (5) (1995) 815–824, http://dx.doi.org/10.1089/
neu.1995.12.815 8594209.

[59] P.H. Chan, M. Kawase, K. Murakami, S.F. Chen, Y. Li, B. Calagui, et al., Over-
expression of SOD1 in transgenic rats protects vulnerable neurons against
ischemic damage after global cerebral ischemia and reperfusion, J. Neurosci.
18 (20) (1998) 8292–8299 9763473.

[60] H.J. Fullerton, J.S. Ditelberg, S.F. Chen, D.P. Sarco, P.H. Chan, C.J. Epstein, et al.,

http://dx.doi.org/10.1016/j.spen.2006.08.003
http://dx.doi.org/10.1016/j.spen.2006.08.003
http://dx.doi.org/10.1016/j.spen.2006.08.003
http://www.ncbi.nlm.nih.gov/pubmed/17101453
http://www.ncbi.nlm.nih.gov/pubmed/9714152
http://www.ncbi.nlm.nih.gov/pubmed/12401948
http://dx.doi.org/10.1155/2011/809696
http://dx.doi.org/10.1155/2011/809696
http://dx.doi.org/10.1155/2011/809696
http://www.ncbi.nlm.nih.gov/pubmed/21904647
http://dx.doi.org/10.1073/pnas.89.24.11651
http://dx.doi.org/10.1073/pnas.89.24.11651
http://dx.doi.org/10.1073/pnas.89.24.11651
http://dx.doi.org/10.1073/pnas.89.24.11651
http://www.ncbi.nlm.nih.gov/pubmed/1334544
http://dx.doi.org/10.1089/ars.2012.4559
http://dx.doi.org/10.1089/ars.2012.4559
http://dx.doi.org/10.1089/ars.2012.4559
http://www.ncbi.nlm.nih.gov/pubmed/22339371
http://dx.doi.org/10.1523/JNEUROSCI.3189-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.3189-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.3189-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.3189-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23100421
http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.007
http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.007
http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.007
http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.007
http://www.ncbi.nlm.nih.gov/pubmed/17349934
http://dx.doi.org/10.1006/abbi.1998.0898
http://dx.doi.org/10.1006/abbi.1998.0898
http://dx.doi.org/10.1006/abbi.1998.0898
http://www.ncbi.nlm.nih.gov/pubmed/9808763
http://dx.doi.org/10.1021/bi025756k
http://dx.doi.org/10.1021/bi025756k
http://dx.doi.org/10.1021/bi025756k
http://www.ncbi.nlm.nih.gov/pubmed/12044177
http://dx.doi.org/10.1161/01.STR.0000117576.09512.32
http://dx.doi.org/10.1161/01.STR.0000117576.09512.32
http://dx.doi.org/10.1161/01.STR.0000117576.09512.32
http://dx.doi.org/10.1161/01.STR.0000117576.09512.32
http://www.ncbi.nlm.nih.gov/pubmed/14963271
http://dx.doi.org/10.1074/jbc.270.22.13399
http://dx.doi.org/10.1074/jbc.270.22.13399
http://dx.doi.org/10.1074/jbc.270.22.13399
http://www.ncbi.nlm.nih.gov/pubmed/7768942
http://dx.doi.org/10.1182/blood-2009-11-251199
http://dx.doi.org/10.1182/blood-2009-11-251199
http://dx.doi.org/10.1182/blood-2009-11-251199
http://dx.doi.org/10.1182/blood-2009-11-251199
http://www.ncbi.nlm.nih.gov/pubmed/20065295
http://dx.doi.org/10.1176/jnp.4.1.36
http://dx.doi.org/10.1176/jnp.4.1.36
http://dx.doi.org/10.1176/jnp.4.1.36
http://dx.doi.org/10.1176/jnp.4.1.36
http://www.ncbi.nlm.nih.gov/pubmed/1627959
http://www.ncbi.nlm.nih.gov/pubmed/7649493
http://dx.doi.org/10.1073/pnas.93.16.8175
http://dx.doi.org/10.1073/pnas.93.16.8175
http://dx.doi.org/10.1073/pnas.93.16.8175
http://dx.doi.org/10.1073/pnas.93.16.8175
http://www.ncbi.nlm.nih.gov/pubmed/8710843
http://dx.doi.org/10.1002/bies.950180909
http://dx.doi.org/10.1002/bies.950180909
http://dx.doi.org/10.1002/bies.950180909
http://www.ncbi.nlm.nih.gov/pubmed/8831290
http://dx.doi.org/10.1146/annurev.nu.15.070195.001323
http://dx.doi.org/10.1146/annurev.nu.15.070195.001323
http://dx.doi.org/10.1146/annurev.nu.15.070195.001323
http://www.ncbi.nlm.nih.gov/pubmed/8527220
http://dx.doi.org/10.1016/S0950-3536(05)80123-4
http://dx.doi.org/10.1016/S0950-3536(05)80123-4
http://dx.doi.org/10.1016/S0950-3536(05)80123-4
http://www.ncbi.nlm.nih.gov/pubmed/7881153
http://www.ncbi.nlm.nih.gov/pubmed/10875438
http://www.ncbi.nlm.nih.gov/pubmed/9394864
http://dx.doi.org/10.1001/archneur.1983.04050050029002
http://dx.doi.org/10.1001/archneur.1983.04050050029002
http://dx.doi.org/10.1001/archneur.1983.04050050029002
http://dx.doi.org/10.1001/archneur.1983.04050050029002
http://www.ncbi.nlm.nih.gov/pubmed/6405725
http://dx.doi.org/10.1542/peds.100.6.1004
http://dx.doi.org/10.1542/peds.100.6.1004
http://dx.doi.org/10.1542/peds.100.6.1004
http://dx.doi.org/10.1542/peds.100.6.1004
http://www.ncbi.nlm.nih.gov/pubmed/9374573
http://refhub.elsevier.com/S2213-2317(15)00058-0/sbref33
http://refhub.elsevier.com/S2213-2317(15)00058-0/sbref33
http://dx.doi.org/10.1016/0306-4522(90)90437-9
http://dx.doi.org/10.1016/0306-4522(90)90437-9
http://dx.doi.org/10.1016/0306-4522(90)90437-9
http://dx.doi.org/10.1016/0306-4522(90)90437-9
http://www.ncbi.nlm.nih.gov/pubmed/2145527
http://dx.doi.org/10.1203/00006450-199512000-00014
http://dx.doi.org/10.1203/00006450-199512000-00014
http://dx.doi.org/10.1203/00006450-199512000-00014
http://dx.doi.org/10.1203/00006450-199512000-00014
http://www.ncbi.nlm.nih.gov/pubmed/8618793
http://dx.doi.org/10.1006/nbdi.1996.0006
http://dx.doi.org/10.1006/nbdi.1996.0006
http://dx.doi.org/10.1006/nbdi.1996.0006
http://www.ncbi.nlm.nih.gov/pubmed/9173913
http://dx.doi.org/10.1016/0306-4522(93)90333-B
http://dx.doi.org/10.1016/0306-4522(93)90333-B
http://dx.doi.org/10.1016/0306-4522(93)90333-B
http://dx.doi.org/10.1016/0306-4522(93)90333-B
http://www.ncbi.nlm.nih.gov/pubmed/8247262
http://dx.doi.org/10.1016/0014-2999(91)90862-K
http://dx.doi.org/10.1016/0014-2999(91)90862-K
http://dx.doi.org/10.1016/0014-2999(91)90862-K
http://www.ncbi.nlm.nih.gov/pubmed/1773832
http://dx.doi.org/10.1038/jcbfm.1992.102
http://dx.doi.org/10.1038/jcbfm.1992.102
http://dx.doi.org/10.1038/jcbfm.1992.102
http://www.ncbi.nlm.nih.gov/pubmed/1380515
http://dx.doi.org/10.1016/S0008-6363(96)00176-9
http://dx.doi.org/10.1016/S0008-6363(96)00176-9
http://dx.doi.org/10.1016/S0008-6363(96)00176-9
http://dx.doi.org/10.1016/S0008-6363(96)00176-9
http://www.ncbi.nlm.nih.gov/pubmed/9059531
http://dx.doi.org/10.3171/jns.1998.89.5.0807
http://dx.doi.org/10.3171/jns.1998.89.5.0807
http://dx.doi.org/10.3171/jns.1998.89.5.0807
http://dx.doi.org/10.3171/jns.1998.89.5.0807
http://www.ncbi.nlm.nih.gov/pubmed/9817419
http://dx.doi.org/10.1016/S0741-5214(03)00555-X
http://dx.doi.org/10.1016/S0741-5214(03)00555-X
http://dx.doi.org/10.1016/S0741-5214(03)00555-X
http://www.ncbi.nlm.nih.gov/pubmed/14560236
http://dx.doi.org/10.1073/pnas.88.17.7797
http://dx.doi.org/10.1073/pnas.88.17.7797
http://dx.doi.org/10.1073/pnas.88.17.7797
http://dx.doi.org/10.1073/pnas.88.17.7797
http://www.ncbi.nlm.nih.gov/pubmed/1715581
http://dx.doi.org/10.1073/pnas.88.14.6368
http://dx.doi.org/10.1073/pnas.88.14.6368
http://dx.doi.org/10.1073/pnas.88.14.6368
http://dx.doi.org/10.1073/pnas.88.14.6368
http://www.ncbi.nlm.nih.gov/pubmed/1648740
http://dx.doi.org/10.1016/0092-8674(93)90615-W
http://dx.doi.org/10.1016/0092-8674(93)90615-W
http://dx.doi.org/10.1016/0092-8674(93)90615-W
http://www.ncbi.nlm.nih.gov/pubmed/7505721
http://dx.doi.org/10.1126/science.7522345
http://dx.doi.org/10.1126/science.7522345
http://dx.doi.org/10.1126/science.7522345
http://dx.doi.org/10.1126/science.7522345
http://www.ncbi.nlm.nih.gov/pubmed/7522345
http://dx.doi.org/10.1097/00004647-199609000-00023
http://dx.doi.org/10.1097/00004647-199609000-00023
http://dx.doi.org/10.1097/00004647-199609000-00023
http://dx.doi.org/10.1097/00004647-199609000-00023
http://www.ncbi.nlm.nih.gov/pubmed/8784243
http://dx.doi.org/10.1006/nbdi.1995.0016
http://dx.doi.org/10.1006/nbdi.1995.0016
http://dx.doi.org/10.1006/nbdi.1995.0016
http://www.ncbi.nlm.nih.gov/pubmed/9173998
http://dx.doi.org/10.1523/JNEUROSCI.4578-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.4578-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.4578-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23658158
http://www.ncbi.nlm.nih.gov/pubmed/9546938
http://dx.doi.org/10.1016/S0008-6363(99)00184-4
http://dx.doi.org/10.1016/S0008-6363(99)00184-4
http://dx.doi.org/10.1016/S0008-6363(99)00184-4
http://dx.doi.org/10.1016/S0008-6363(99)00184-4
http://www.ncbi.nlm.nih.gov/pubmed/10615389
http://dx.doi.org/10.1097/00008480-200112000-00002
http://dx.doi.org/10.1097/00008480-200112000-00002
http://dx.doi.org/10.1097/00008480-200112000-00002
http://www.ncbi.nlm.nih.gov/pubmed/11753097
http://dx.doi.org/10.1203/00006450-200106000-00003
http://dx.doi.org/10.1203/00006450-200106000-00003
http://dx.doi.org/10.1203/00006450-200106000-00003
http://www.ncbi.nlm.nih.gov/pubmed/11385130
http://dx.doi.org/10.1053/siny.1999.0116
http://dx.doi.org/10.1053/siny.1999.0116
http://dx.doi.org/10.1053/siny.1999.0116
http://dx.doi.org/10.1053/siny.1999.0116
http://www.ncbi.nlm.nih.gov/pubmed/10802752
http://dx.doi.org/10.1111/j.1471-4159.1992.tb10990.x
http://dx.doi.org/10.1111/j.1471-4159.1992.tb10990.x
http://dx.doi.org/10.1111/j.1471-4159.1992.tb10990.x
http://dx.doi.org/10.1111/j.1471-4159.1992.tb10990.x
http://www.ncbi.nlm.nih.gov/pubmed/1402908
http://dx.doi.org/10.1203/01.PDR.0000065736.69214.20
http://dx.doi.org/10.1203/01.PDR.0000065736.69214.20
http://dx.doi.org/10.1203/01.PDR.0000065736.69214.20
http://dx.doi.org/10.1203/01.PDR.0000065736.69214.20
http://www.ncbi.nlm.nih.gov/pubmed/12646716
http://dx.doi.org/10.1073/pnas.88.24.11158
http://dx.doi.org/10.1073/pnas.88.24.11158
http://dx.doi.org/10.1073/pnas.88.24.11158
http://www.ncbi.nlm.nih.gov/pubmed/1763030
http://dx.doi.org/10.1089/neu.1995.12.815
http://dx.doi.org/10.1089/neu.1995.12.815
http://dx.doi.org/10.1089/neu.1995.12.815
http://dx.doi.org/10.1089/neu.1995.12.815
http://www.ncbi.nlm.nih.gov/pubmed/8594209
http://www.ncbi.nlm.nih.gov/pubmed/9763473


Q. Lu et al. / Redox Biology 6 (2015) 112–121 121
Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen
peroxide after perinatal hypoxia ischemia, Ann. Neurol. 44 (3) (1998)
357–364, http://dx.doi.org/10.1002/ana.410440311 9749602.

[61] J.L. Beard, J.R. Connor, B.C. Jones, Iron in the brain, Nutr. Rev. 51 (6) (1993)
157–170, http://dx.doi.org/10.1111/j.1753-4887.1993.tb03096.x 8371846.

[62] J.L. Beard, J.D. Connor, B.C. Jones, Brain iron: location and function, Prog. Food
Nutr. Sci. 17 (3) (1993) 183–221 7901870.

[63] J. Beard, Iron deficiency alters brain development and functioning, J. Nutr. 133
(5 Suppl. 1) (2003) 1468S–1472S 12730445.

[64] B. Halliwell, R. Aeschbach, J. Löliger, O.I. Aruoma, The characterization of an-
tioxidants, Food Chem. Toxicol. 33 (7) (1995) 601–617, http://dx.doi.org/
10.1016/0278-6915(95)00024-V 7628797.

[65] B. Halliwell, The antioxidant paradox, Lancet 355 (9210) (2000) 1179–1180,
http://dx.doi.org/10.1016/S0140-6736(00)02075-4 10791396.

[66] A.J. Nappi, E. Vass, Hydroxyl radical formation via iron-mediated Fenton
chemistry is inhibited by methylated catechols, Biochim. Biophys. Acta 1425
(1) (1998) 159–167.

[67] J.R. Connor, Iron acquisition and expression of iron regulatory proteins in the
developing brain: manipulation by ethanol exposure, iron deprivation and
cellular dysfunction, Dev. Neurosci. 16 (5–6) (1994) 233–247, http://dx.doi.
org/10.1159/000112115 7768202.

[68] J.R. Connor, Iron regulation in the brain at the cell and molecular level, Adv.
Exp. Med. Biol. 356 (1994) 229–238, http://dx.doi.org/10.1007/978-1-4615-
2554-7_25 7887227.

[69] C. Palmer, S.L. Menzies, R.L. Roberts, G. Pavlick, J.R. Connor, Changes in iron
histochemistry after hypoxic–ischemic brain injury in the neonatal rat, J.
Neurosci. Res. 56 (1) (1999) 60–71 10213476.

[70] R.B. Dietrich, W.G. BradleyJr., Iron accumulation in the basal ganglia following
severe ischemic–anoxic insults in children, Radiology 168 (1) (1988) 203–206,
http://dx.doi.org/10.1148/radiology.168.1.3380958 3380958.

[71] K.O. Hamilton, L. Stallibrass, I. Hassan, Y. Jin, C. Halleux, M. Mackay, The
transport of two iron chelators, desferrioxamine B and L1, across Caco-2
monolayers, Br. J. Haematol. 86 (4) (1994) 851–857, http://dx.doi.org/10.1111/
j.1365-2141.1994.tb04841.x 7918082.

[72] C. Palmer, R.L. Roberts, C. Bero, Deferoxamine posttreatment reduces ischemic
brain injury in neonatal rats, Stroke 25 (5) (1994) 1039–1045, http://dx.doi.
org/10.1161/01.STR.25.5.1039 8165675.

[73] D.P. Sarco, J. Becker, C. Palmer, R.A. Sheldon, D.M. Ferriero, The neuroprotec-
tive effect of deferoxamine in the hypoxic–ischemic immature mouse brain,
Neurosci. Lett. 282 (1–2) (2000) 113–116, http://dx.doi.org/10.1016/S0304-
3940(00)00878-8 10713409.

[74] P. Ponka, Hereditary causes of disturbed iron homeostasis in the central ner-
vous system, Ann. N. Y. Acad. Sci. 1012 (2004) 267–281, http://dx.doi.org/
10.1196/annals.1306.022 15105272.

[75] M.J. Gruer, P.J. Artymiuk, J.R. Guest, The aconitase family: three structural
variations on a common theme, Trends Biochem. Sci. 22 (1) (1997) 3–6, http:
//dx.doi.org/10.1016/S0968-0004(96)10069-4 9020582.

[76] E. Paraskeva, M.W. Hentze, Iron–sulphur clusters as genetic regulatory
switches: the bifunctional iron regulatory protein-1, FEBS Lett. 389 (1) (1996)
40–43, http://dx.doi.org/10.1016/0014-5793(96)00574-1 8682202.

[77] J.C. Drapier, Interplay between NO and [Fe�S] clusters: relevance to biological
systems, Methods 11 (3) (1997) 319–329, http://dx.doi.org/10.1006/
meth.1996.0426 9073575.

[78] G. Cairo, A. Pietrangelo, Nitric-oxide-mediated activation of iron-regulatory
protein controls hepatic iron metabolism during acute inflammation, Eur. J.
Biochem. 232 (2) (1995) 358–363, http://dx.doi.org/10.1111/j.1432-
1033.1995.358zz.x 7556182.

[79] R. Oria, L. Sánchez, T. Houston, M.W. Hentze, F.Y. Liew, J.H. Brock, Effect of
nitric oxide on expression of transferrin receptor and ferritin and on cellular
iron metabolism in K562 human erythroleukemia cells, Blood 85 (10) (1995)
2962–2966 7742556.

[80] K. Pantopoulos, M.W. Hentze, Nitric oxide signaling to iron-regulatory protein:
direct control of ferritin mRNA translation and transferrin receptor mRNA
stability in transfected fibroblasts, Proc. Natl. Acad. Sci. USA 92 (5) (1995)
1267–1271, http://dx.doi.org/10.1073/pnas.92.5.1267 7533289.

[81] P. Ponka, Cellular iron metabolism, Kidney Int. Suppl. 69 (1999) S2–11, http:
//dx.doi.org/10.1046/j.1523-1755.1999.055Suppl.69002.x 10084280.

[82] Q. Chen, D.S. Xiao, Long-term aerobic exercise increases redox-active iron
through nitric oxide in rat hippocampus, Nitric Oxide 36 (2014) 1–10, http:
//dx.doi.org/10.1016/j.niox.2013.10.009 24184442.

[83] N. Verma, M. Pink, F. Petrat, A.W. Rettenmeier, S. Schmitz-Spanke, Proteomic
analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals
TCDD-induced alterations of calcium and iron homeostasis possibly mediated
by nitric oxide, J. Proteome Res. 14 (1) (2015) 202–213, http://dx.doi.org/
10.1021/pr501051f 25348606.

http://dx.doi.org/10.1002/ana.410440311
http://dx.doi.org/10.1002/ana.410440311
http://dx.doi.org/10.1002/ana.410440311
http://www.ncbi.nlm.nih.gov/pubmed/9749602
http://dx.doi.org/10.1111/j.1753-4887.1993.tb03096.x
http://dx.doi.org/10.1111/j.1753-4887.1993.tb03096.x
http://dx.doi.org/10.1111/j.1753-4887.1993.tb03096.x
http://www.ncbi.nlm.nih.gov/pubmed/8371846
http://www.ncbi.nlm.nih.gov/pubmed/7901870
http://www.ncbi.nlm.nih.gov/pubmed/12730445
http://dx.doi.org/10.1016/0278-6915(95)00024-V
http://dx.doi.org/10.1016/0278-6915(95)00024-V
http://dx.doi.org/10.1016/0278-6915(95)00024-V
http://dx.doi.org/10.1016/0278-6915(95)00024-V
http://www.ncbi.nlm.nih.gov/pubmed/7628797
http://dx.doi.org/10.1016/S0140-6736(00)02075-4
http://dx.doi.org/10.1016/S0140-6736(00)02075-4
http://dx.doi.org/10.1016/S0140-6736(00)02075-4
http://www.ncbi.nlm.nih.gov/pubmed/10791396
http://refhub.elsevier.com/S2213-2317(15)00058-0/sbref66
http://refhub.elsevier.com/S2213-2317(15)00058-0/sbref66
http://refhub.elsevier.com/S2213-2317(15)00058-0/sbref66
http://refhub.elsevier.com/S2213-2317(15)00058-0/sbref66
http://dx.doi.org/10.1159/000112115
http://dx.doi.org/10.1159/000112115
http://dx.doi.org/10.1159/000112115
http://dx.doi.org/10.1159/000112115
http://www.ncbi.nlm.nih.gov/pubmed/7768202
http://dx.doi.org/10.1007/978-1-4615-2554-7_25
http://dx.doi.org/10.1007/978-1-4615-2554-7_25
http://dx.doi.org/10.1007/978-1-4615-2554-7_25
http://dx.doi.org/10.1007/978-1-4615-2554-7_25
http://www.ncbi.nlm.nih.gov/pubmed/7887227
http://www.ncbi.nlm.nih.gov/pubmed/10213476
http://dx.doi.org/10.1148/radiology.168.1.3380958
http://dx.doi.org/10.1148/radiology.168.1.3380958
http://dx.doi.org/10.1148/radiology.168.1.3380958
http://www.ncbi.nlm.nih.gov/pubmed/3380958
http://dx.doi.org/10.1111/j.1365-2141.1994.tb04841.x
http://dx.doi.org/10.1111/j.1365-2141.1994.tb04841.x
http://dx.doi.org/10.1111/j.1365-2141.1994.tb04841.x
http://dx.doi.org/10.1111/j.1365-2141.1994.tb04841.x
http://www.ncbi.nlm.nih.gov/pubmed/7918082
http://dx.doi.org/10.1161/01.STR.25.5.1039
http://dx.doi.org/10.1161/01.STR.25.5.1039
http://dx.doi.org/10.1161/01.STR.25.5.1039
http://dx.doi.org/10.1161/01.STR.25.5.1039
http://www.ncbi.nlm.nih.gov/pubmed/8165675
http://dx.doi.org/10.1016/S0304-3940(00)00878-8
http://dx.doi.org/10.1016/S0304-3940(00)00878-8
http://dx.doi.org/10.1016/S0304-3940(00)00878-8
http://dx.doi.org/10.1016/S0304-3940(00)00878-8
http://www.ncbi.nlm.nih.gov/pubmed/10713409
http://dx.doi.org/10.1196/annals.1306.022
http://dx.doi.org/10.1196/annals.1306.022
http://dx.doi.org/10.1196/annals.1306.022
http://dx.doi.org/10.1196/annals.1306.022
http://www.ncbi.nlm.nih.gov/pubmed/15105272
http://dx.doi.org/10.1016/S0968-0004(96)10069-4
http://dx.doi.org/10.1016/S0968-0004(96)10069-4
http://dx.doi.org/10.1016/S0968-0004(96)10069-4
http://dx.doi.org/10.1016/S0968-0004(96)10069-4
http://www.ncbi.nlm.nih.gov/pubmed/9020582
http://dx.doi.org/10.1016/0014-5793(96)00574-1
http://dx.doi.org/10.1016/0014-5793(96)00574-1
http://dx.doi.org/10.1016/0014-5793(96)00574-1
http://www.ncbi.nlm.nih.gov/pubmed/8682202
http://dx.doi.org/10.1006/meth.1996.0426
http://dx.doi.org/10.1006/meth.1996.0426
http://dx.doi.org/10.1006/meth.1996.0426
http://dx.doi.org/10.1006/meth.1996.0426
http://www.ncbi.nlm.nih.gov/pubmed/9073575
http://dx.doi.org/10.1111/j.1432-1033.1995.358zz.x
http://dx.doi.org/10.1111/j.1432-1033.1995.358zz.x
http://dx.doi.org/10.1111/j.1432-1033.1995.358zz.x
http://dx.doi.org/10.1111/j.1432-1033.1995.358zz.x
http://www.ncbi.nlm.nih.gov/pubmed/7556182
http://www.ncbi.nlm.nih.gov/pubmed/7742556
http://dx.doi.org/10.1073/pnas.92.5.1267
http://dx.doi.org/10.1073/pnas.92.5.1267
http://dx.doi.org/10.1073/pnas.92.5.1267
http://www.ncbi.nlm.nih.gov/pubmed/7533289
http://dx.doi.org/10.1046/j.1523-1755.1999.055Suppl.69002.x
http://dx.doi.org/10.1046/j.1523-1755.1999.055Suppl.69002.x
http://dx.doi.org/10.1046/j.1523-1755.1999.055Suppl.69002.x
http://dx.doi.org/10.1046/j.1523-1755.1999.055Suppl.69002.x
http://www.ncbi.nlm.nih.gov/pubmed/10084280
http://dx.doi.org/10.1016/j.niox.2013.10.009
http://dx.doi.org/10.1016/j.niox.2013.10.009
http://dx.doi.org/10.1016/j.niox.2013.10.009
http://dx.doi.org/10.1016/j.niox.2013.10.009
http://www.ncbi.nlm.nih.gov/pubmed/24184442
http://dx.doi.org/10.1021/pr501051f
http://dx.doi.org/10.1021/pr501051f
http://dx.doi.org/10.1021/pr501051f
http://dx.doi.org/10.1021/pr501051f
http://www.ncbi.nlm.nih.gov/pubmed/25348606

	Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism
	Introduction
	Materials and methods
	Hippocampal slice culture and OGD exposure
	Quantification of slice culture cell death
	Aconitase activity
	LDH cytotoxicity assay
	Histologic evaluations
	Immunoblot analyses
	Measurement of hydroxyl radical levels
	Rat model of neonatal hypoxia–ischemia
	Statistical analysis

	Results
	OGD-mediated increases in nitric oxide is associated with neuronal cell death in rat hippocampal slice cultures
	OGD induced hydroxyl radical generation and iron deposition are attenuated by NOS inhibition in rat hippocampal slice...
	OGD alters the expression of proteins involved in cellular iron homeostasis in rat hippocampal slice cultures
	Iron regulation is disrupted in the neonatal rat brain exposed to HI
	The ferric iron chelator, deferoxamine reduces iron deposition and hydroxyl radical generation in rat hippocampal slice...
	Deferoxamine reduces hydroxyl radical generation and infract volume in the neonatal brain exposed to HI

	Discussion
	Acknowledgments
	References




