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Purpose: Develop computer vision models for image-based differentiation of bacterial and fungal corneal
ulcers and compare their performance against human experts.

Design: Cross-sectional comparison of diagnostic performance.
Participants: Patients with acute, culture-proven bacterial or fungal keratitis from 4 centers in South India.
Methods: Five convolutional neural networks (CNNs) were trained using images from handheld cameras

collected from patients with culture-proven corneal ulcers in South India recruited as part of clinical trials con-
ducted between 2006 and 2015. Their performance was evaluated on 2 hold-out test sets (1 single center and 1
multicenter) from South India. Twelve local expert cornea specialists performed remote interpretation of the
images in the multicenter test set to enable direct comparison against CNN performance.

Main Outcome Measures: Area under the receiver operating characteristic curve (AUC) individually and for
each group collectively (i.e., CNN ensemble and human ensemble).

Results: The best-performing CNN architecture was MobileNet, which attained an AUC of 0.86 on the single-
center test set (other CNNs range, 0.68e0.84) and 0.83 on the multicenter test set (other CNNs range, 0.75e0.83).
Expert human AUCs on the multicenter test set ranged from 0.42 to 0.79. The CNN ensemble achieved a sta-
tistically significantly higher AUC (0.84) than the human ensemble (0.76; P < 0.01). CNNs showed relatively higher
accuracy for fungal (81%) versus bacterial (75%) ulcers, whereas humans showed relatively higher accuracy for
bacterial (88%) versus fungal (56%) ulcers. An ensemble of the best-performing CNN and best-performing human
achieved the highest AUC of 0.87, although this was not statistically significantly higher than the best CNN (0.83;
P ¼ 0.17) or best human (0.79; P ¼ 0.09).

Conclusions: Computer vision models achieved superhuman performance in identifying the underlying
infectious cause of corneal ulcers compared with cornea specialists. The best-performing model, MobileNet,
attained an AUC of 0.83 to 0.86 without any additional clinical or historical information. These findings suggest the
potential for future implementation of these models to enable earlier directed antimicrobial therapy in the man-
agement of infectious keratitis, which may improve visual outcomes. Additional studies are ongoing to incor-
porate clinical history and expert opinion into predictive models. Ophthalmology Science 2022;2:100119 ª 2022
by the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Corneal opacification is the fifth leading cause of blindness
worldwide, with most cases attributable to infection.1e3

Prompt identification of the cause of infectious keratitis is
important to guide antimicrobial therapy. Of particular
importance is the expeditious differentiation between bac-
terial and fungal keratitis, which together account for more
than 95% of corneal ulcers.4e6 Cultures of corneal scrapings
are the current gold standard for determining the causative
pathogen of corneal ulcers, but show false-negative results
in approximately half of cases.4,7 Even when culture results
are positive, the results typically are not available for several
ª 2022 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
days, which may result in a delay in effective antimicrobial
therapy and worse visual outcomes. In the absence of
microbiologic data, empiric therapy must be selected
based on the clinical impression of the cause of infection,
which is unreliable even among cornea specialists.8e10

Applying artificial intelligence using deep learning with
convolutional neural networks (CNNs) for image-based
diagnosis of infectious keratitis may minimize the delay in
initiating targeted antimicrobial therapy.

In the past 2 decades, deep CNNs have achieved un-
precedented performance in computer vision applications,
1https://doi.org/10.1016/j.xops.2022.100119
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particularly using supervised learning for image classifica-
tion.11 State-of-the-art model architectures leverage the
exponential gains in modern computer processing speeds to
abstract complex features and develop highly nonlinear
decision boundaries in multidimensional feature space.
Transfer learning has enabled machine learning engineers to
repurpose models initially trained on very large image sets
to perform medically relevant image classification tasks
using the relatively small training databases available in
health care.12 This has resulted in human-level or even su-
perhuman performance in image-based diagnosis of a vari-
ety of eye diseases, including glaucoma, macular
degeneration, diabetic retinopathy, and retinopathy of pre-
maturity, among others.13e16 Several prior studies have
described deep learning models for image-based differenti-
ation of bacterial and fungal keratitis using photographs
from slit-lamp cameras with some success.17e20 However,
infrastructure limitations in low- and middle-income coun-
tries where the burden of disease is highest result in rela-
tively limited potential for implementation of models that
require slit-lampemounted cameras. Telemedicine applica-
tions using less expensive and more portable imaging
methods may significantly increase the potential public
health impact of this technology. Herein, we describe the
development and evaluation of deep CNN models for
automated image-based differentiation of bacterial and
fungal ulcers using images from handheld portable cameras.
Methods

Image Sets

Several large clinical trials evaluating management options for
bacterial and fungal keratitis were conducted at the Aravind Eye
Care System in South India between 2006 and 2015, including the
Steroids for Corneal Ulcers Trial (SCUT) and Mycotic Ulcer
Treatment Trials (MUTT) I and II.21e23 Each corneal ulcer in these
trials was microbiologically proven to be either bacterial or fila-
mentous fungal keratitis, and each patient underwent corneal
photography at initial presentation using a handheld Nikon D-se-
ries digital single-lens reflex camera according to a standardized
lighting and photography protocol. From these trials, we collated a
database of 980 high-quality images from 980 patients with corneal
ulcers photographed at the initial presentation, including 500
fungal ulcers and 480 bacterial ulcers. Only 1 image per ulcer was
included. All images were obtained from 1 of 4 study sites within
the Aravind Eye Care System in South India (Madurai, Coimba-
tore, Pondicherry, or Tirunelveli). No culture-negative or poly-
microbial infections were included.

The 2 largest-volume sites (Madurai and Coimbatore) partici-
pated in both bacterial and fungal ulcer trials during this period,
whereas the smaller sites participated only in the fungal ulcer trials
(Pondicherry) or only the bacterial ulcer trial (Tirunelveli). Initial
iterations of CNN model development using a randomly selected
training set comprising 90% of the above image database demon-
strated that deep CNNs were leveraging this fact by learning to
identify the study site (likely using subtle differences in room
lighting, flash used, etc.) to predict whether an ulcer was bacterial or
fungal, a phenomenon known as “label leakage.”24 This allowed the
models to perform reasonably well on a multicenter test set
comprising the remaining 10% of images, but provided little
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generalizable predictive usefulness when evaluated on a holdout
test set from a single site. To obviate this issue, we restricted the
training set to only a single location (Madurai), resulting in 396
training cases comprising 215 bacterial ulcers (54%) and 181
fungal ulcers. This forced the model to identify more generalizable
features to distinguish between bacterial and fungal ulcers. We
then tuned model hyperparameters according to performance on a
separate validation set of 50 ulcers from a different study site
(Coimbatore) consisting of 25 bacterial ulcers (50%) and 25 fungal
ulcers to assess generalizability. Finally, we evaluated model
performance using 2 holdout test sets: the first consisting of 100
images from Coimbatore selected using stratified random sampling
to contain 50% bacterial ulcers and 50% fungal ulcers, and the
second comprising 80 images randomly selected from the
multicenter image database containing images from all 4 study
sites (48 from bacterial ulcers [60%] and 32 from fungal ulcers).
Figure S1 depicts the partitioning of the image database into
training, validation, and testing sets.

Deep Convolutional Neural Network Model
Development

During CNN model training, image augmentation was performed
to reduce overfitting using random flipping along the vertical axis
and random rotation of up to 20� in either direction.25 Images were
then resized and preprocessed according to the standard required
for each model architecture. No manual annotation or additional
image preprocessing was performed.

We trained and evaluated 5 deep CNN architectures: Mobile-
NetV2,26 DenseNet201,27 ResNet152V2,28 VGG19,29 and
Xception.30 Each model was pretrained on the ImageNet imaging
database consisting of more than 10 million images with 10000
class labels and was repurposed to this classification task using a
transfer learning approach.12,31 Specifically, the learned
parameters from the ImageNet training set were used as the
initialization values for subsequent training on this image set.
The final layer of each model (consisting of 10 000 densely
connected nodes with a softmax activation function) was
removed and replaced with a global average pooling layer, a
dropout layer for regularization effect, and a final layer
consisting of a single L2-regularized node with a sigmoid activa-
tion function. This resulted in an output value ranging from 0 to 1,
which in this binary classification task could be interpreted as an
estimated probability of fungal etiology [P(fungal)] and estimated
probability of bacterial etiology [1 e P(fungal)]. Optimization of
model parameters was performed using minibatch gradient descent
with RMSprop minimizing the binary cross-entropy loss function.

Each model was first trained for several epochs with all layers
frozen except for the final layer, allowing the model to essentially
act as a feature extractor using the learned features from ImageNet.
We subsequently fine-tuned each model by unfreezing the pa-
rameters of deeper layers (with the learning rate reduced by an
order of magnitude) to allow the models to learn complex features
more specific to corneal ulcer images. The number of frozen layers
and number of epochs during the feature extractor and fine-tuning
phases were treated as hyperparameters and were adjusted ac-
cording to model performance on the validation set. The primary
outcome measure for model tuning and evaluation was the area
under the receiver operating characteristic curve (AUC).

All model training was conducted in Python 3 using Tensorflow
2 with the Keras application programming interface on an AWS
EC2 remote instance (Amazon, Inc) with a Tesla V100 GPU
(NVIDIA Corp).32 All source code used to develop the optimal
model is publicly available on GitHub (https://github.com/
tkredd2/MobileNet_corneal_ulcers).

https://github.com/tkredd2/MobileNet_corneal_ulcers
https://github.com/tkredd2/MobileNet_corneal_ulcers
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Human Grading

A detailed description of the quantification of human performance
in image-based differentiation of bacterial and fungal keratitis us-
ing this multicenter test set was previously published.10 Briefly, an
international cohort of 66 expert cornea specialists individually
interpreted these images via a web-based portal. Participants pro-
vided their estimated probability that an ulcer image represented
bacterial or fungal infection. This allowed direct comparison
against the CNN model outputs. Graders were informed that each
image represented either a culture-proven bacterial ulcer or a
culture-proven fungal ulcer, but no additional information
regarding clinical history or examination findings was provided.
Each human grader thus had access to the same amount of infor-
mation as the CNNs to formulate their predictions. This prior study
determined that experts practicing in India demonstrated statisti-
cally significantly better performance than their counterparts
practicing outside India in classifying these ulcer images from
South India.10 As a result, in the current analysis, we restricted the
human comparison group to include only these 12 Indian cornea
specialists to ensure the most rigorous standard of comparison
against CNN model performance.

Statistical Analysis

Because each of the 2 classes (bacterial ulcers and fungal ulcers)
are of equal importance in determining appropriate directed anti-
microbial therapy and our test sets were well balanced with respect
to the 2 classes, we elected to use the AUC as the primary eval-
uation metric of CNN and human grader performance. The 95%
confidence interval (CI) of the AUC was computed using boot-
strapping with 2000 replications.33 To summarize overall human
and CNN performance, we generated a CNN ensemble
prediction and a human ensemble prediction by determining the
group mean predicted probability for each image. We compared
CNN and human ensembles using the DeLong method for
nonparametric statistical comparisons of correlated receiver
operating characteristic curves.34 The ensemble predictions were
further analyzed categorically using confusion matrices to
determine their accuracy for bacterial ulcers and for fungal ulcers
specifically. Because the outputs of both human and CNN
predictions were a probability value on a continuous scale
ranging from 0 to 1, this required identifying a threshold value
to determine whether to classify a prediction as bacterial or
fungal. The probability cutoff value that maximized both
sensitivity and specificity (Youden’s index) was assigned as this
threshold value for each of the 2 ensembles and was used to
determine the categorical prediction for each image.35 If the
estimated P(fungal) was more than this threshold, the prediction
was labeled as fungal; if the estimated P(fungal) was less than
the threshold, the prediction was labeled bacterial. Of note, these
threshold values were used only to facilitate categorical analysis
of these binary classification models. Final threshold values for
production models will be determined using prospectively
collected, population-based samples based on sensitivity, speci-
ficity, and positive and negative predictive values.

Gradient class activation heatmaps were used to qualitatively
assess which image regions exerted the greatest influence on the
best-performing CNN’s prediction.36 Twenty heatmaps were
generated in total; 10 visualized the images on which the CNN
performed best (i.e., images on which the difference between
model prediction and ground truth were smallest) and 10
depicted images on which the CNN performed worst. All
statistical analyses were performed in R software version 4.0.5
(R Foundation for Statistical Computing, Vienna, Austria).
This study adhered to the tenets of the Declaration of Helsinki
and was approved by the internal review board at Oregon Health &
Science University. Informed consent was obtained from all human
expert participants.
Results

The final hyperparameters used to train each model are re-
ported in Table S1.

Performance on the Single-Center External Test
Set

Figure 1 depicts receiver operating characteristic curves for
each of the 5 CNN architectures (trained only on images
from Madurai) on the single-center external testing set
comprising 100 images (50 bacterial and 50 fungal) exclu-
sively from Coimbatore. MobileNet achieved the highest
performance with an AUC of 0.86 (95% CI, 0.78e0.93),
followed by DenseNet (AUC, 0.84; 95% CI, 0.76e0.92),
ResNet (AUC, 0.76; 95% CI, 0.67e0.85), VGG (AUC,
0.74; 95% CI, 0.64e0.84), and Xception (AUC, 0.68; 95%
CI, 0.57e0.78). The ensemble of all 5 CNNs reached an
AUC of 0.84 (95% CI, 0.76e0.92).

Performance on Multicenter Test Set

Figure 2 depicts the receiver operating characteristic curves
of all 5 CNNs and the 12 human graders on the multicenter
holdout test set of 80 images randomly selected from the
image database collated from all 4 study sites. MobileNet
and DenseNet again achieved the highest performance
(AUC, 0.83 for both), followed by ResNet (AUC, 0.82),
VGG (AUC, 0.75), and Xception (AUC, 0.75; Table 1).
The AUC among individual human graders ranged from
0.42 to 0.79. The CNN ensemble achieved an AUC of
0.84, which was statistically significantly higher than the
AUC of the human ensemble (AUC, 0.76; P < 0.01; Fig 2).

The ideal threshold value (Youden’s index) for the CNN
ensemble prediction was 0.36. Using this cut point, the CNN
ensemble achieved 81% accuracy for identifying fungal ulcers
and 75% accuracy for identifying bacterial ulcers (Fig 3). The
ideal threshold for the human grader ensemble was 0.58. The
human grader ensemble demonstrated higher accuracy for
identifying bacterial ulcers (88%), but lower accuracy for
fungal ulcers (56%). This suggested that the 2 classifiers may
be complementary to each other when combining their
outputs into a single prediction. An ensemble (arithmetic
mean of the 2 outputs: the CNN plus the human ensemble) of
the best-performing CNN (MobileNet) and the best-
performing human grader (grader 1) attained an AUC of 0.87
(95%CI, 0.79e0.95). This was higher than the AUC of grader
1 (AUC, 0.79) and MobileNet (AUC, 0.83) individually, but
the differenceswere not statistically significantly (P¼ 0.09 and
P ¼ 0.17, respectively; Fig 4). The optimal threshold for the
CNN plus the human ensemble was 0.51, which
demonstrated 72% accuracy for fungal ulcers and 90%
accuracy for bacterial ulcers. Similarly, an ensemble of the
outputs of the CNN ensemble and the human grader
3



Figure 1. Receiver operating characteristic curves of 5 deep convolutional neural network (CNN) models on a single-center external testing set consisting
of 100 corneal ulcer images (50% fungal, 50% bacterial) from Coimbatore. The performance of the CNN ensemble is also depicted, representing the average
output of all 5 models for each image. MobileNet demonstrated the highest performance among the model architectures tested. Ninety-five percent
confidence intervals are depicted next to each area under the receiver operating characteristic curve (AUC) estimate.
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ensemble (an ensemble of ensembles) attained anAUC of 0.87
(95% CI, 0.79e0.95).

Figure 5 demonstrates gradient class activation heatmaps
for the MobileNet model including the 10 images for which
Figure 2. Receiver operating characteristic curves of the 5 convolutional neural
consisting of 80 corneal ulcer images (48 bacterial, 32 fungal). The CNN ensem
operating characteristic curve (AUC; 0.84) than the human ensemble (AUC, 0.
each AUC estimate.

4

the model performed best and the 10 images demonstrating
worst performance. Although this is a limited sample and
subject to confirmation bias, qualitative review of the
heatmaps suggests that the model seems to identify the
network (CNN) models and 12 human graders on a multicenter testing set
ble demonstrated a statistically significantly higher area under the receiver
76; P < 0.01). Ninety-five percent confidence intervals are depicted next to



Table 1. Convolutional Neural Network and Human Grader Performance on External Test Sets

Single Center Test Set (Coimbatore) Multicenter Test Set
Classifier AUC (95% CI) AUC (95% CI)

CNNs
MobileNet 0.86 (0.78-0.93) 0.83 (0.74-0.92)
DenseNet 0.84 (0.76-0.92) 0.83 (0.74-0.92)
ResNet 0.76 (0.67-0.85) 0.82 (0.72-0.91)
VGG 0.74 (0.64-0.84) 0.75 (0.64-0.86)
Xception 0.68 (0.57-0.78) 0.75 (0.64-0.86)
CNN Ensemble 0.84 (0.76-0.92) 0.84 (0.80-0.88)*

Human Graders
Grader 1 - 0.79 (0.69-0.89)
Grader 2 - 0.78 (0.68-0.88)
Grader 3 - 0.76 (0.65-0.87)
Grader 4 - 0.73 (0.61-0.83)
Grader 5 - 0.70 (0.58-0.81)
Grader 6 - 0.69 (0.57-0.81)
Grader 7 - 0.67 (0.20-1.00)
Grader 8 - 0.65 (0.52-0.77)
Grader 9 - 0.64 (0.41-0.87)
Grader 10 - 0.61 (0.48-0.73)
Grader 11 - 0.57 (0.45-0.69)
Grader 12 - 0.42 (0.05-0.95)
Human Grader Ensemble - 0.76 (0.73-0.80)*

CNN ¼ convolutional neural network; d ¼ not available.
Boldface values indicate ensemble rather than individual performance. Data are presented as area under the receiver operating curve (95% confidence
interval).
*P < 0.01 (DeLong method).
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cornea (specifically the corneal infiltrate) consistently as a
region of interest without any human annotation or a
priori indication that the model should pay attention to
this area. These examples also emphasize the impact of
image quality on model performance; 6 of the 10 images
on which the model performed worst demonstrated
relatively limited quality, including underexposure,
overexposure, and eccentric gaze.
Figure 3. Confusion matrices of the convolutional neural network (CNN) and
according to the threshold defined by Youden’s index. Percent values indicate co
for identifying fungal infections and 75% accuracy for bacterial infections.
Discussion

These results demonstrate that deep learning computer
vision models can achieve superhuman performance in
image-based differentiation of bacterial and fungal keratitis,
surpassing even expert cornea specialists. Our MobileNet
model achieved an AUC of 0.83 interpreting ulcer images
from handheld cameras, which may enable greater
human ensembles, with prediction categories (bacterial or fungal) assigned
lumn proportions. For example, the CNN ensemble showed 81% accuracy
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Figure 4. Receiver operating characteristic curves of the best-performing convolutional neural network (CNN) (MobileNet), best-performing human
(grader 1), and the ensemble of the 2 (CNN plus human ensemble). The area under the receiver operating characteristic curve (AUC) of the ensemble was
0.87, compared with an AUC of 0.79 for grader 1 (P ¼ 0.09) and AUC of 0.83 for MobileNet (P ¼ 0.17). Ninety-five percent confidence intervals are
depicted next to each AUC estimate.
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portability and lower cost compared to slit-lamp image
classifiers. Combining human and AI predictions seemed to
further increase predictive value on post hoc analysis, but
additional studies are required to investigate this possibility.
These results emphasize the potential of computer vision
applications for automated image interpretation in the etio-
logic evaluation of infectious keratitis.

Several prior studies have investigated computer vision
applications in the differentiation of bacterial and fungal
corneal ulcers using slit-lamp cameras. Kuo et al17 described
a DenseNet model with a small training set that achieved an
AUC of only 0.65. Ghosh et al18 reported an ensemble of 3
CNN architectures that achieved a reasonably high F1 score
of 0.83 (the harmonic mean of precision [positive predictive
value] and recall [sensitivity]), but was only evaluated on a
very small test set of < 20 patients. Hung et al19 described a
DenseNet161 model that attained nearly identical
performance to our best-performing model (AUC, 0.85),
but required the addition of a preceding U2 segmentation
model. Xu et al37 developed a deep sequential feature
learning model to differentiate bacterial and fungal
keratitis that also attained similar accuracy to our own
(84% for fungal keratitis, 65% for bacterial keratitis), but
required manual annotation of images and a complicated
and computationally expensive pipeline of models. In
addition to providing improved potential for telemedicine
implementation, our MobileNet model has several
advantageous features within the context of these prior
studies: (1) every image in our database was obtained
from a culture-proven bacterial or fungal ulcer, resulting
in a robust ground truth label for training and evaluation; (2)
6

we used only 1 image from each participant in our training,
validation, and testing sets, which reduces the risk of label
leakage; (3) we evaluated model performance on both
single-center and multicenter testing sets; and (4) we
directly compared CNN performance against expert cornea
specialists.

The CNNs in our study attained a statistically signifi-
cantly higher AUC than expert humans with experience
examining this population of corneal ulcer patients. Spe-
cifically, CNNs tended to perform well identifying fungal
ulcers, whereas humans showed high accuracy for bacterial
ulcers. As a result of this finding, we evaluated an ensemble
model combining the predictions of humans and CNNs that
achieved an even higher AUC (0.87). This suggests the
possibility that future prediction models may benefit from
incorporating multiple sources of input, including computer
vision model predictions and expert opinion. Several
structured data elements have also been shown to provide
predictive information relating to the cause of infection,
including aspects of the clinical history (onset of symptoms,
contact lens wear, trauma, etc.) and slit-lamp examination
findings (including the elevation and texture of corneal
infiltrates).38e41 In much the same way that an expert
clinician typically gathers information from multiple sources
before formulating a diagnosis, predictive models for iden-
tifying the underlying cause of infection will likely benefit
from accessing this additional contextual information in
addition to imaging data. These models may also benefit
from adopting a Bayesian decision framework accounting
for the pretest probability of different infectious agents
based on local epidemiologic factors, which demonstrates



Figure 5. Representative gradient class activation heatmaps of the images on which the best-performing convolutional neural network model (MobileNet)
achieved highest agreement (top 5 fungal and top 5 bacterial) between model prediction and ground truth and lowest agreement (bottom 5 fungal and
bottom 5 bacterial). Red coloration indicates regions of the input image that conferred the highest influence on the model’s prediction. Superimposed on
each image is the percent agreement between the model’s prediction and the ground truth (for fungal images, P(fungal) � 100%; for bacterial images: 1 e

P(fungal) � 100%). Adjacent to each heatmap is the raw image input to the model. The model tended to perform well when focusing attention on the
corneal infiltrate, with relatively worse performance when areas of attention strayed from the cornea or when tested on images with quality limitations
including overexposure (O), underexposure (U), or eccentric fixation (E).

Redd et al � AI for Corneal Ulcers
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marked geographic variability.5,42 Theoretically, future
iterations of these prediction models may enable users to
take a picture, enter their own expert prediction of the
causative organism, input basic information from the
clinical history and slit-lamp examination, and receive a
unified output from the prediction model detailing the sus-
pected cause of infection based on all of this information.
Efforts are ongoing to develop the prospectively collected
training databases necessary to develop such models and to
allow determination of their diagnostic performance
including sensitivity, specificity, and positive and negative
predictive values.

A major advantage of our MobileNet model is its porta-
bility and potential for telemedicine implementation, making
it a particularly attractive option considering the high burden
of morbidity resulting from corneal ulceration in low- and
middle-income countries.43 In addition to being the best-
performing model in our study, MobileNet is also the small-
est in terms of memory requirements (22MB) and requires no
manual image annotation or complicated computational
pipeline, making it a strong candidate for potential imple-
mentation in portable imaging devices. This model interprets
images from handheld cameras, which are less expensive and
more portable than slit-lampemounted cameras and may
provide better substrate for computer visionmodels compared
with high-magnification slit-lamp images because of their
greater depth of field. Difficulty maintaining focus on the
entire cornea with slit-lamp imaging was identified as a po-
tential source of error in the model developed by Kuo et al.17

For similar reasons, the advent of ubiquitous smartphone
cameras makes this imaging method a particularly
appealing candidate for future model implementation.
Additional imaging databases consisting of smartphone
imaging of corneal ulcers will be required to determine the
feasibility of this possibility.

Broad geographic generalizability of computer vision
models for etiologic diagnosis of infectious keratitis is
complicated by the significant geographic variability in
ulcer epidemiology.5,42 During the early stages of model
development using a multicenter training set, we
identified significant label leakage that markedly
impaired model performance. This occurred because of
differential participation in the SCUT, MUTT I, and
MUTT II trials among different study sites. Although
this would not necessarily be the case with a
prospectively collected multicenter sample of corneal
ulcers, differences in local epidemiologic features among
sites may still result in some degree of problematic label
leakage when used as a multicenter batch of training
images. A federated learning approach may help to
address this, but will require a data-centric mentality
with care to avoid this label leakage issue.44,45 In this case,
our final models were trained on data from a single site, but
were evaluated on both a multicenter test set and an
external single-center testing set. The single-center test
set confirmed that the model was not learning site-specific
features to perform this task, whereas the multicenter test
set demonstrated that its performance generalized well in
several centers throughout South India.
8

Several limitations should be considered in interpreting
these results. First, image quality is of crucial importance to
both AI and human performance in image classification, as
demonstrated by the gradient class activation heatmaps
(Fig 5). However, in the randomized trials from which this
database was derived, image collection was repeated until at
least 1 high-quality photograph was obtained for each ulcer,
which was achieved in nearly every case (e.g., only 2 of the
500 ulcers photographed in SCUT did not produce accept-
able images).21 Nonetheless, we are currently investigating
the impact of image quality on model performance and
training additional classifiers to interpret image quality
automatically, which may be enable real-time feedback for
future users of these models. Second, we used only bacterial
and fungal ulcers to train and evaluate these models, but a
small minority of ulcers are caused by other pathogens,
including parasitic organisms. It is also possible that these
models may not generalize to culture-negative infections.
Data collection efforts are ongoing to train multiclass,
multilabel classification models to address these limitations
and to evaluate performance on all types of ulcers, including
culture-negative and polymicrobial infections. Third, we
demonstrated generalizability to 4 sites in India, but this
does not imply that the model will generalize successfully to
other geographic regions. Additional testing and model
adaptation among geographically diverse populations will
be required before implementation. Fourth, we trained and
evaluated these models on acute, severe corneal ulcers, but
both duration of infection and ulcer severity likely impact
model performance. These aspects will need to be evaluated
further before implementation. Fifth, we compared human
experts and CNNs using the multicenter test set, but not the
single-center test set from Coimbatore. However, the
multicenter test set is a better representation of the potential
for generalizability, and thus a better measure of classifi-
cation performance. Finally, images were obtained from
distinct clinical trials, and thus do not necessarily represent
a cohesive cohort. However, the photography protocols
for SCUT, MUTT I, and MUTT II were identical, and
images for each trial were obtained with the same equip-
ment, so this would not be expected to introduce label
leakage.

Based on these findings, we conclude that sufficient
information is contained within 2-dimensional corneal ulcer
images obtained using handheld cameras to predict whether
an ulcer is bacterial or fungal with an AUC of 0.87. Nearly
all of this predictive information was identified by state-of-
the-art deep CNN models, which demonstrated superhuman
performance on this task compared with local cornea ex-
perts who previously were shown to outperform an inter-
national cohort of cornea specialists. Further work is
underway to generate models capable of identifying less
common causes of corneal infection, to incorporate struc-
tured clinical and historical data as well as human input,
and to evaluate additional imaging methods, including
smartphone cameras. Future implementation of this tech-
nology may allow earlier initiation of directed antimicro-
bial therapy and better visual outcomes for patients with
infectious keratitis.
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