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Abstract: Introduction: Glycogen storage disease type VI (GSD VI) is a disorder of glycogen
metabolism due to mutations in the PYGL gene. Patients with GSD VI usually present with hep-
atomegaly, recurrent hypoglycemia, and short stature. Results: We report on two non-related Turkish
patients with a novel homozygous splice site variant, c.345G>A, which was shown to lead to exon 2
skipping of the PYGL-mRNA by exome and transcriptome analysis. According to an in silico analysis,
deletion Arg82_Gln115del is predicted to impair protein stability and possibly AMP binding. Con-
clusion: GSD VI is a possibly underdiagnosed disorder, and in the era of next generation sequencing,
more and more patients with variants of unknown significance in the PYGL-gene will be identified.
Techniques, such as transcriptome analysis, are important tools to confirm the pathogenicity and to
determine therapeutic measures based on genetic results.

Keywords: glycogen metabolism; splice variant; glycogen phosphorylase; PYGL; transcriptome
analysis; in silico analysis

1. Introduction

Glycogen storage disease type VI (GSD VI, OMIM #232700) is a disorder of glycogen
metabolism due to mutations in the PYGL gene resulting in deficiency of hepatic glycogen
phosphorylase (PYGL). Different isoforms of glycogen phosphorylase are expressed in
various tissues including brain (PYGB), heart (PYGB), muscle (PYGM), and liver (PYGL). In
contrast to the intra-organ activity of brain and muscle isoforms of glycogen phosphorylase,
liver PYGL allows rapid release of free glucose into circulation, thus providing a constant
supply of energy to extrahepatic tissues [1]. It is also the rate-limiting enzyme of glycogen
degradation.

GSD VI affects approximately 1:65,000–1:85,000 live births [2]. The disorder is clinically
characterized by hepatomegaly, poor growth, and short stature [2]. Typical laboratory
findings include ketotic hypoglycemia, elevated hepatic transaminases, hyperlipidemia,
and reduced prealbumin concentrations. Hepatic fibrosis is a common finding in GSD
VI, while cirrhosis and hypertrophic cardiomyopathy are rare complications [2]. Clinical
and biochemical abnormalities may decrease with age, but the risk of hypoglycemia and
ketosis may persist. Only about 50 patients have been described in the literature so far [3].
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GSD VI is considered a relatively mild disorder that presents in infancy and childhood [2],
however, some severe cases with recurrent hypoglycemia and marked hepatomegaly have
also been described [4].

Some individuals with GSD VI may not require any treatment, others significantly ben-
efit from a high-protein diet (2–3 g/kg/day) with frequent small meals and supplementa-
tion of uncooked cornstarch to improve growth. Reduction of total carbohydrates and espe-
cially simple sugars is recommended to reduce glycogen storage in the liver [2]. Suboptimal
metabolic control may result in short stature, delayed puberty, osteopenia/osteoporosis,
and hepatic fibrosis. Although the tumor risk is low, hepatic adenomas and hepatocellular
carcinoma can develop [5,6].

We herein describe two non-related Turkish patients with a novel homozygous splice
site variant that was shown to lead to exon 2 skipping of the PYGL-mRNA by exome
and transcriptome analysis. According to in silico analysis, deletion Arg82_Gln115del is
predicted to impair AMP-mediated activation.

2. Materials and Methods
2.1. Sample Collection and RNA Isolation

Blood was collected in a PAXgeneTM Blood RNA Tube (Qiagen, England Biolabs,
MA, USA) using a standard blood collection set. Total RNA was extracted with the
QIAsymphony RNA Kit (Qiagen, England Biolabs, MA, USA) and RNA purification was
done using RNeasy technology (silica membrane).

2.2. Trio Exome Sequencing

Coding genomic regions were enriched with a SureSelectXT Human All Exon Kit V7
(Agilent Technologies, Santa Clara, CA, USA) for subsequent sequencing on a NovaSeq
6000 (Illumina, San Diego, CA, USA).

2.3. Transcriptome Sequencing of PAXgene Blood

RNA quality was assessed with the Agilent 2100 Fragment Analyzer total RNA kit
(Agilent Technologies, Inc., Santa Clara, CA, USA). The sample had high RNA integrity
number (RIN > 9). Using the NEBNext Ultra II Directional RNA Library Prep kit with
100 ng of total RNA input for each sequencing library, poly(A)-selected sequencing libraries
were generated according to the manufacturer’s manual. All libraries were sequenced
on the Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA) as 2 × 100 bp
paired-end reads and to a depth of approximately 50 million clusters each. Quality of raw
RNA-seq data in FASTQ files was assessed using Read QC (version 2020_03, https://github.
com/imgag/ngs-bits, (accessed on 15 December 2020)) to identify potential sequencing
cycles with low average quality and base distribution bias. Reads were preprocessed
with SeqPurge (version 2020_03, https://github.com/imgag/ngs-bits, (accessed on 15
December 2020)) and aligned using STAR (version 2.7.3a, https://github.com/alexdobin/
STAR/, (accessed on 15 December 2020)) allowing spliced read alignment to the human
reference genome (build GRCh37).

2.4. Analysis of PYGL Protein Structure

The X-ray crystal structure of human liver PYGL was downloaded from the Protein
Data Bank under accession number 1FA9 (PYGL complexed with AMP, pyridoxal phos-
phate, and alpha-D-glucopyranose). The complete description of PYGL structure 1FA9 can
be found in its associated publication [7]. Images of human recombinant PYGL highlighting
amino acid residues lost due to the mutation were created with PyMOL for Mac (PyMOL™
version 2.4.0, Schrodinger, LLC).

https://github.com/imgag/ngs-bits
https://github.com/imgag/ngs-bits
https://github.com/imgag/ngs-bits
https://github.com/alexdobin/STAR/
https://github.com/alexdobin/STAR/
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3. Results
3.1. Case Presentations
3.1.1. Patient 1

The female patient is the first child of Turkish parents. The family history is unremark-
able for metabolic disorders. Pregnancy and birth were uneventful. The girl was partially
breastfed until age 2.5 years. She showed normal growth until 6 months of age. At that
age, failure to thrive occurred and the body length dropped below the 3rd centile. At the
age of 3, elevated transaminase activities were first noted and the patient was referred to
the pediatric gastroenterology department. Clinical investigation was unremarkable apart
from mild hepatomegaly (liver 2–3 cm below costal margin, ultrasound: liver diameter
about 11 cm) and failure to thrive. Her body length was on the 0.2nd centile, and body
weight on the 7th centile. Transaminase activities were elevated (AST 105 U/L, normal
< 35 U/L; ALT 156 U/L, normal < 45 U/L), while the serum triglyceride concentration was
at the upper limit of the reference range (166 mg/dL, normal 30–150 mg/dL). Glycogen
storage disease type Ia was ruled out by mutation analysis, and liver biopsy was performed
at the age of 3 years and 10 months revealing glycogen accumulation with mild fibrosis
and steatosis. Phosphorylase and phosphorylase B kinase activities were decreased in liver
tissue suggestive of GSD VI. The diagnosis was confirmed by Sanger mutation analysis
in PYGL, which yielded a novel homozygous variant affecting the last base of exon 2,
c.345G>A. The mutation was classified as variant of unknown significance as the base
exchange itself would be associated with a silent mutation (p.Q115=). However, due to the
position of the variant, effects on splicing were considered likely. Blood glucose monitoring
showed mild hypoglycemia after an overnight fast and the patient was put on a diet with
frequent meals. The further clinical course was uncomplicated with short stature and ele-
vated transaminase activities remaining the major clinical features. Lactate concentrations
were found to be slightly elevated at several occasions (maximum 3.6 mmol/L). At 10 years
of age, a protein-rich diet was started, which has led to a slight catch-up growth. Body
length at age 14 years is however still below the 3rd centile. The concentration of AST
normalized (31 U/L, normal < 35 U/L), the ALT is only mildly elevated (50 U/L, normal
< 35 U/L). Her overall clinical condition is excellent.

3.1.2. Patient 2

The girl, first child of consanguineous Turkish parents, first presented at age 13 months
with hepatomegaly and short stature (body length < 1st centile, body weight 18th centile).
Further diagnostic work-up revealed elevated transaminase activities (AST 65 U/L, ALT
123 U/L, normal < 35 U/L) and severe hypertriglyceridemia (triglycerides 1406 mg/dl,
normal < 150 mg/dL). Uric acid, creatine kinase, total cholesterol, and coagulation parame-
ters were normal. Liver sonography showed distinct hepatomegaly, but no splenomegaly.
Intensive investigations to rule out infectious diseases (toxoplasma, EBV, CMV, parvovirus
B19, HHV6, hepatitis A, B, and C), alpha-1 antitrypsin deficiency, mucopolysaccharidoses
and other metabolic diseases were performed and yielded negative results. A blood glucose
and lactate profile for 30 h showed only one mild episode of hypoglycemia of 61 mg/dL
with lactate levels ranging from 1.6 to 6.7 mmol/L. Clinical symptoms of hypoglycemia
were not reported by the parents. The psychomotor development was normal. Trio exome
sequencing revealed homozygosity for the same variant of unknown significance as in
patient 1, c.345G>A.

After the diagnosis was made, another blood glucose and ketone profile was made
which showed mild hypoglycemia during the night (minimum 62 mg/dL) with elevated ke-
tone levels up to 1.7 mmol/L, while glucose levels during the day were stable > 80 mg/dL.
The girl was put on a protein-rich diet with mild reduction of carbohydrates. Additionally,
two doses of cornstarch (1 g/kg) were added at bedtime and at 3 am at night. Under
this treatment, no hypoglycemia was documented, and transaminase activities as well as
triglyceride concentrations almost normalized within 3 months (AST 44 U/L, ALT 37 U/L,
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normal < 35 U/L; triglycerides 175 mg/dL, normal < 150 mg/dL). The girl also showed
some catch-up growth (3 cm within 3 months).

3.2. Exome and Transcriptome Analysis in Patient 2

Trio exome analysis of patient 2 and both parents yielded a novel homozygous splice
site variant in PYGL, c.345G>A. This variant was predicted to change the last nucleotide of
exon 2, resulting in loss of the splice donor site of exon 2 of the PYGL gene. On protein level
this results in an in-frame deletion of 34 amino acids corresponding with deletion of exon
2 in the main transcript. As the pathogenicity of this variant was unclear transcriptome
analysis was performed. This technique indeed confirmed a homozygous loss of exon
2 in the PYGL-mRNA and a consequently reduced activity of hepatic phosphorylase
(Figure 1). According to HGVS: PYGL(ENST00000216392):c.[244_356del]; [244_356del],
p.[(Arg82_Gln115del)]; [(Arg82_Gln115del)].
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show comparable expression for all samples, exon 2 (ex2, middle) is skipped in patient RNA of PYGL (exon numbering and
exon/intron structure displayed is according to ENST00000216392.7).

3.3. Predicted Effect of the Homozygous p.Arg82_Gln115del Mutation on the Enzymatic Activity
of PYGL

Human liver glycogen phosphorylase (PYGL) is a homodimer formed by monomers
of 846 amino acid residues. The activity of the enzyme is controlled by phosphorylation
of a highly conserved serine residue (Ser14) [1]. The homodimer possesses two regions,
namely, a regulatory region that contains the phosphorylation peptide harboring Ser14
(amino acids 5–22) and AMP, and a catalytic region located on the opposite side of the
protein that binds to the carbohydrate substrate and the cofactor pyridoxal phosphate (PLP)
(Figure 2A, PDB accession code 1FA9) [7]. The binding site for the allosteric regulator AMP
is located in helix-2 of the protein structure spanning amino acid residues 48–78 (colored in
dark blue in Figure 2A–C, with Tyr75 providing stabilizing bonding interactions [7]. The
deletion identified in the patients comprises amino acids 82 to 115 (Figure 2A–C, colored
in yellow), hence only three amino acid residues away from the essential AMP binding
site. The large structural loss caused by deletion of residues Arg82 to Gln115 is likely to
disrupt protein stability, and possibly AMP binding, thereby impairing the transition of
PYGL from its inactive to active states via allosteric modulation. AMP acts by reducing the
KM of the enzyme for its substrate glucose-1-phosphate [1]. While the deleted amino acids
are not located within or near the catalytic site in the primary structure, the conformational
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contacts and motions that are lost between the regulatory and catalytic domains could
conceivably impact catalysis.
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residues Arg82 to Gln115 (ribbons, yellow) in the regulatory region of the protein. Cofactor pyridoxal phosphate (PLP)
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4. Discussion

GSD type VI is a rare inborn error of glycogen metabolism with only about 50 cases
reported so far. The severity of clinical symptoms varies significantly. While most patients
present with hepatomegaly [2,3,6], the risk of hypoglycemia is lower than compared to
most other types of hepatic GSDs [2]. This was also true for our two patients, and ketotic
hypoglycemia only occurred after prolonged fasting in early childhood. However, both
our patients showed severe failure to thrive/short stature. In a study by Szymanska et al.
including 16 patients with ketotic hepatic GSDs (type III/VI/IX,) short stature was the most
common complication during the long-term follow-up in this patient cohort. Unfortunately,
the authors did not distinguish between the different subtypes of ketotic GSDs, but short
stature was present in 31% of cases in the whole cohort [8]. In contrast, Aeppli et al., who
recently reported on the long-term outcome of six GSD VI patients, found that dietary
treatment was successful in all cases to normalize growth and development [3]. Although
some patients do not require treatment for hypoglycemia, most have better growth with
therapy [2]. Growth hormone therapy should be avoided because it usually exacerbates
ketosis and may increase the risk of complications [2].

While hyperlactatemia is a typical feature of GSD type I and is associated with im-
paired growth, it is no common finding in patients with ketotic forms of hepatic GSDs [9].
Interestingly, both our patients showed elevated lactate levels, at least intermittently.
Beauchamp et al. described elevated lactate concentrations in six GSD VI patients, of which
some only showed postprandial lactate elevations, while in others, lactate was elevated
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both pre- and postprandially [4]. In the patients reported by Beauchamp et al., hyper-
lactatemia was usually associated with severe and recurrent hypoglycemia and severe
hepatomegaly [4].

The genetic background of GSD VI is heterogeneous, and apart from the Mennonite
pathogenic variant c.1620+1G>A that generates a transcript lacking all or part of exon
13 while maintaining some residual enzyme activity, no common mutations have been
identified so far [10]. Therefore, it is interesting that we found the same homozygous
splice site mutation in two unrelated Turkish families. Besides the Mennonite variant
c.1620+1G>A that is known to be associated with a milder course of the disease, no clear
genotype-phenotype correlations exist in GSD VI [2]. Although in the majority of patients
deficiency of liver glycogen phosphorylase is the result of missense mutations that either
affect substrate binding, pyridoxal phosphate binding or activation of glycogen phosphory-
lase, several splice site mutations have been reported [11]. For the novel splice site mutation
c.244_356del identified in our patients we could show by transcriptome analysis that this
variant leads to loss of exon 2 of the PYGL-mRNA confirming its pathogenicity. In silico
analysis suggests deleterious effects on protein stability and possibly on the activation
mediated by AMP binding to PYGL and possible reduction of enzymatic activity. In vitro
studies with purified human recombinant PYGL missing amino acid 82 to 115 would be
helpful to determine the degree of residual activity of this pathogenic variant.

5. Conclusions

As GSD VI is often associated with rather mild symptoms, it is well conceivable that
this disorder is underdiagnosed. In the era of next generation sequencing, it can be assumed
that more and more patients with variants of unknown significance in the PYGL-gene will
be identified by these diagnostic approaches. Therefore, techniques such as transcriptome
analysis are important tools to confirm the pathogenicity and to determine therapeutic
measures based on the genetic results.
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