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Developmental changes in story-
evoked responses in the neocortex 
and hippocampus
Samantha S Cohen*, Nim Tottenham, Christopher Baldassano

Department of Psychology, Columbia University, New York, United States

Abstract How does the representation of naturalistic life events change with age? Here, we 
analyzed fMRI data from 414 children and adolescents (5–19 years) as they watched a narrative 
movie. In addition to changes in the degree of inter-subject correlation (ISC) with age in sensory 
and medial parietal regions, we used a novel measure (between-group ISC) to reveal age-related 
shifts in the responses across the majority of the neocortex. Over the course of development, brain 
responses became more discretized into stable and coherent events and shifted earlier in time to 
anticipate upcoming perceived event transitions, measured behaviorally in an age-matched sample. 
However, hippocampal responses to event boundaries actually decreased with age, suggesting a 
shifting division of labor between episodic encoding processes and schematic event representations 
between the ages of 5 and 19.

Editor's evaluation
Cohen et al., present analyses of a large publicly available set of neuroimaging data from children 
and adolescents watching an animated video, and is likely to be of interest to neuroscientists inter-
ested in methods for analyzing naturalistic neuroimaging data, or those interested in the devel-
opment of narrative processing in the brain. The methodological approach developed here is a 
valuable addition to the repertoire of developmental neuroscience.

Introduction
The ability to perceive and remember the world changes radically throughout the first twenty years 
of life (Aslin and Smith, 1988; Schneider and Pressley, 2013). Older children and adolescents are 
better able to understand and interpret the world around them, and anticipate upcoming situations 
(Carpendale and Lewis, 2006; Casillas and Frank, 2017; Richardson and Saxe, 2020). Much of 
this increase in ability can be attributed to greater familiarity with the events that they are likely to 
encounter (Schneider and Pressley, 2013). For instance, children have better memory for situations 
that they have expertise in (e.g. Chess; Chi, 1978). Here, we characterize changes that occur in the 
brain’s response to complex naturalistic stimuli during this period of the acquisition of structured 
knowledge about the world.

Previous research has examined developmental changes in neural activity when learning principled 
relationships between items in a laboratory setting (Brod et al., 2017). Children, however, normally 
acquire and organize novel information about their world over the course of weeks, if not years (Nelson, 
1986). Naturalistic narrative stimuli provide a tool for probing this complex, real-world knowledge 
that children have acquired across repeated experiences and can deploy automatically (Cantlon and 
Li, 2013; Lerner et al., 2019; Petroni et al., 2018; Moraczewski et al., 2018; Moraczewski et al., 
2020; Richardson et al., 2019; Richardson and Saxe, 2020; Vanderwal et al., 2020).
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We utilized functional magnetic resonance imaging (fMRI) data acquired while children and adoles-
cents between the ages of 5 and 19 watched a short narrative cartoon that contained both social and 
emotional content (Alexander et al., 2017; Petroni et al., 2018). Although cartoons do not physi-
cally replicate the characteristics of everyday perception, there is evidence to suggest that children 
respond similarly to the social cues in cartoons and live action videos (Han et al., 2007). Analyzing 
brain responses to complex stories or movies is challenging, since we do not yet have models that 
can predict brain-wide responses to these types of stimuli, especially given the fact that the repre-
sentation of meaning likely changes with age (Clark, 1973). A model-free approach to assess brain 
responses to this kind of stimuli is inter-subject correlation (ISC), which measures the similarity of 
brain responses in a brain region across movie viewers (Cantlon and Li, 2013; Lerner et al., 2019; 
Petroni et al., 2018; Moraczewski et al., 2018; Moraczewski et al., 2020). ISC within an age group 
has generally been found to increase with age, possibly due to more mature engagement with the 
content, greater shared knowledge about the world, or more exposure to widely used cinematic 
conventions (Cantlon and Li, 2013; Lerner et al., 2019; Moraczewski et al., 2018; Moraczewski 
et al., 2020). We therefore measured ISC in parcels throughout the cortex (Schaefer et al., 2018) to 
assess if processing becomes more similar with age. In line with previous studies, we hypothesized 
that the magnitude of ISC would increase with age, although decreases have been found in studies in 
other modalities (Petroni et al., 2018).

ISC has also been measured between age groups to assess the similarity between the responses 
of children and adults (Cantlon and Li, 2013; Lerner et  al., 2019; Moraczewski et  al., 2018). 
If a child is more similar to adults, they are considered more mature, and therefore likely to have 
better academic or social abilities (Cantlon and Li, 2013; Moraczewski et al., 2018). This previous 
work is consistent with the idea that children are simply noisy versions of adults, and the noise 
level decreases with age. We test an alternative hypothesis: that children and adolescents have 
different average response timecourses, corresponding to different age-related interpretations of 
the movie. We therefore employed a new across-group ISC measure that allows for comparisons 
across age groups while controlling for the degree of similarity within each age group. This allowed 
us to determine whether there was a consistent shift in the group-level temporal patterns of activity, 
independent of changes in within-group consistency. We hypothesized that in default mode network 
regions responsible for story interpretation and self-referential thought, even where within-age ISC 
magnitude does not change, the pattern of activity representing the movie will change across devel-
opment, just as the semantic interpretation of movies changes with age (Nelson, 1986; Raichle 
et al., 2001).

How can we characterize the changes that are occurring in response timecourses? Although some 
knowledge of the hierarchical structure of the events that compose a narrative develops in infancy, the 
ability to reliably notice these events does not mature until at least the teenage years (Yates et al., 
2021; Zacks and Tversky, 2001; Zheng et al., 2020). It is likely that the characterization of events 
changes with age. We therefore asked both children and adults to subjectively report where they 
believed meaningful scene changes occurred in the narrative. We hypothesized that although there 
would be no change in the behaviorally reported location of these coarse-grained narrative segments, 
the neural representation of events along the cortical hierarchy would change with age.

Recent work in adults has shown that the neural activity evoked by narratives are characterized by 
stable patterns of responses, and that the moments of transition between stable patterns in associa-
tion areas correspond to these meaningful boundaries between ‘events’' in a continuous perceptual 
stream (Baldassano et al., 2020; Baldassano et al., 2018; Chen et al., 2017). These event patterns 
are driven in part by learned schematic scripts about common experiences in the world, such as the 
sequence of events that characterize a visit to a restaurant (Baldassano et al., 2018).

We hypothesized that with age, the strength of schematic event representations, that are able 
to generalize across different instances of similar events, will increase due to more experience with 
different exemplars. These kinds of representations should be stored in default mode regions such as 
the medial prefrontal cortex and posterior medial cortex (PMC). Following previous research in adults, 
we assessed the ability of children of different ages to segment their world into discrete chunks with 
a Hidden Markov model (HMM; Baldassano et al., 2020; Baldassano et al., 2018; Lee et al., 2021). 
We predicted that activity patterns will be more consistent among older subjects and become more 
stable across timepoints within events, providing a better fit to the HMM event segmentation model. 

https://doi.org/10.7554/eLife.69430
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If we do not find a general improvement in event model fits with age, this will refute the hypothesis 
that the schematic event representations that support event models are strengthened with age.

It is also likely that the timing of event transitions changes as a function of age. Activity in regions 
responsible for representing the viewpoints of others occurs earlier during the second presentation of 
a movie in children between six and seven years then in children between three and four years (Rich-
ardson and Saxe, 2020). Here we test whether, on an initial viewing of a naturalistic video, the timing 
of event transitions varies with age. Unlike previous work that considered anticipation at only a fixed 
offset of two seconds (Richardson and Saxe, 2020), the HMM-derived transition timings provide a 
flexible approach for detecting timing shifts between age groups that can vary across brain regions 
with different processing timescales (Baldassano et  al., 2020; Hasson et  al., 2015) and can vary 
across timepoints throughout the movie. In line with the idea that schematic event representations 
improve with age, older adolescents should be able to anticipate events further into the future due to 
their increased experience with the world.

Another characteristic of adult responses to narrative movies is the robust hippocampal activity 
evoked by boundaries between events (Baldassano et al., 2020; Ben-Yakov and Henson, 2018). 
Age-related changes in this signal have been previously observed in older adults, with response 
decreases between ages 18 and 88 in the posterior hippocampus (Reagh et al., 2020). It is therefore 
possible that development of event-structured responses in the cortex is mirrored by changes in 
the hippocampus’s ability to respond to event transitions. We predicted that the magnitude of the 
hippocampal response to event boundaries would increase with age, in line with a model of matura-
tion wherein the ability to encode the unique episodes of daily experience increase into middle age 
and then decreases with senescence (Grady, 2012; Reagh et al., 2020). However, should we find 
a decrease in the hippocampal response to event boundaries with age, this would provide support 

Figure 1. Inter-subject correlation (ISC) increases with age in sensory regions and decreases with age in the PMC. (a) Within-group ISC was computed 
for five distinct age groups, and a statistical comparison was performed between the Oldest and Youngest age groups. (b) The difference in ISC 
between the Youngest (5–8years) group and the Oldest (16–19years) group is displayed in significant parcels (q<0.05) on the cortical surface. ISCs for 
all age groups are plotted for four significant parcels, selected post hoc for illustration, along with the ISC difference between the Youngest and Oldest 
groups compared to the null distribution.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Inter-subject correlation (ISC) across a random mixture of the Youngest and Oldest subjects.

Figure supplement 2. Inter-subject correlation (ISC) within the Youngest and Oldest subjects.

Figure supplement 3. The demographic breakdown of the subject groups studied.

https://doi.org/10.7554/eLife.69430
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for the idea that younger children may focus on the episodic encoding processes responsible for 
encoding the specific details of events as they work towards creating more stable schematic event 
representations (Keresztes et al., 2018; Maril et al., 2010).

Results
We sought to uncover whether and how the neural representation of naturalistic stimuli change with 
age between 5 and 19 years. To accomplish this, we used a large, publicly available dataset (Alex-
ander et al., 2017) of functional magnetic resonance imaging (fMRI) data recorded while children 
watch a short video animation with both social and emotional themes. As the data were not equally 
distributed with age, the results are derived from equally sized subsamples from each age group (each 
with an age span of approximately 3 years). To maximize the power and reproducibility of the results, 
our analyses were averaged across five random subsamples from each age group (See Methods; 
Poldrack et al., 2017).

We first measured inter-subject correlation (ISC) across all subjects, as well as within the youngest 
(5–8 years) and oldest (16–19 years) age groups, as a general measure of story comprehension and 
engagement (Figure 1—figure supplement 1 and Figure 1—figure supplement 2; Nastase et al., 
2019). To statistically examine changes in this measure due to age, we compared ISCs for the youngest 
and oldest age groups, calculated within parcels (Schaefer et al., 2018). We found (Figure 1) that ISC 
increases with age in low level sensory regions such as the auditory cortex, and decreases with age 
in some higher level association regions such as the retrosplenial cortex (RSC) portion of the PMC. 
To ensure that the increases in ISC with age are not due to differences in the level of noise between 
the groups, we measured the relationship between the framewise displacement of each child in the 
Youngest group and their ISC with the other subjects. There was no relationship between framewise 
displacement and ISC in any of the parcels where ISC increased with age, indicating that motion did 
not drive the result in these parcels (all q’s>0.05).

In most of the cortex, there is no difference in ISC magnitude as a function of age, which could 
indicate that children of all ages engage similarly with the movie (Petroni et  al., 2018). It is also 
possible, however, that responses are highly consistent within each age group but differ systematically 
across age groups. For instance, it is possible that the most salient features of the video change with 

Figure 2. Stimulus processing differs in semantic and default mode regions between the Youngest and Oldest ages. (a) Response timecourses were 
correlated within the Oldest and Youngest groups separately, and also correlated between groups. (b) For each parcel, between-group ISC (ISCb) is 
calculated by dividing the across-group correlation by the geometric mean of the within-group correlation. This allows us to identify regions in which 
the correlations between groups are smaller than we would expect based on the within-group similarities, reflecting differing mean responses across 
groups. (c) The Youngest and Oldest groups are most dissimilar (indicated by darker colors) in regions in the default mode network, such as the 
temporoparietal junction, and in regions responsible for semantic processing, such as the inferior temporal cortices, temporoparietal junction, and 
dorsolateral prefrontal cortex (parcels shown have ISCb values less than age-shuffled null permutations, thresholded at q<0.05).

https://doi.org/10.7554/eLife.69430
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age, eliciting responses that are predictable within an age group but different across groups. To get 
a pure measure of across-group similarity that is insensitive to within-group variation, we use a novel 
measure called between-group ISC (ISCb; see Appendix 1) (Figure 2a). To calculate the correlation 
between groups, ISCb is computed by dividing the between-group (Youngest to Oldest) correlation 
by the geometric mean of the within-group correlation (Figure 2b).

Eighty-one of the 100 (Schaefer et al., 2018) parcels tested show significant age-specific response 
timecourses including default mode regions, such as the temporoparietal junction (TPJ) and PMC 
(Raichle et al., 2001), and language and concept sensitive regions, such as the dorsolateral prefrontal 
cortex (dlPFC) and inferior temporal cortices, and orbitofrontal cortex (Binder and Desai, 2011; 
Ralph et al., 2017; Figure 2c).

This result demonstrates that responses are changing substantially with age in many brain regions, 
but does not indicate how these responses are changing. One possibility is that the interpretation 
of the events and scenes in the narrative changes with age. We therefore assessed when adults and 
children, age-matched to the fMRI sample, report that an event in the narrative has finished, and a 
new event has begun. There are small but significant differences in the timing of the event boundaries 
marked by adults and children (ISCb = 0.97, p=0.009). This discrepancy was true for both the younger 
and older children, separated by a median split based on age (adult-older children ISCb = 0.95, adult-
younger children ISCb = 0.91, both p’s<1 × 10–5). The timing of event boundaries was also slightly, but 
significantly different between the younger half and older half of the children (ISCb = 0.96, p=0.01, 
Figure 3). Given this overall similarity in behavior, we next ask whether there are differences in how 
these events are represented and tracked in the brain.

In adults, movie responses are often characterized by rapid transitions between stable periods of 
brain activity, corresponding to meaningful events in the narrative (Baldassano et al., 2020; Chen 
et al., 2017). To identify the extent of this temporal clustering in our data, and the timescale of this 
clustering, we use a Hidden Markov Model (HMM) (Baldassano et al., 2020). Fitting the HMM sepa-
rately to the Youngest and Oldest groups, we found that the HMM was able to identify event structure 
in at least one of the groups (Youngest and/or Oldest) for 70 out of our 100 parcels (Figure 5—figure 
supplement 1). In these 71 parcels, we found that the optimal timescale (optimal number of events) 
was highly correlated between the Youngest and Oldest ages (r=0.78, RMS difference between 
groups = 12.3  s), showing increasing timescales from sensory regions to higher level association 
regions (Figure 5—figure supplement 2). This replicates previous research showing increasing event 
timescales across the cortical hierarchy (Baldassano et al., 2020; Geerligs et al., 2021; Hasson et al., 
2015), and shows that this timescale hierarchy is present even in our Youngest (5–8 years) age group.

As all 71 parcels had similar timescales in both groups, we jointly fit an HMM (with the parcel’s 
optimal number of events) simultaneously to the Youngest and Oldest groups. As expected based 

Figure 3. Event boundary alignment between children and adults. The proportion of Adult, Older Children, and Younger Children raters who marked a 
boundary during the stimulus. Colored lines indicate the event durations and boundaries agreed upon by at least half of a group of independent adult 
raters (see Methods). Brief descriptions of each scene are written in italics.

https://doi.org/10.7554/eLife.69430
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on previous research in adults, the event boundaries from this model correspond to the bound-
aries subjectively placed by human raters in association regions, such as PMC, TPJ, and precuneus 
(Figure 5—figure supplement 3; Baldassano et al., 2020). The jointly fit HMM produced an ordered 
set of event patterns which were shared across both groups (Figure 4a). We then tested this event 
model in held-out subjects, allowing us to measure in each group: (1) the model fit (log likelihood 
on held-out data), indicating the extent to which brain responses could be explained as an ordered 
sequence of these stable event patterns (Figure 4b–c), and (2) the timing of event transitions. We 
hypothesized that the Oldest subjects would have a better model fit than the Youngest subjects, 
indicating increased stability and reliability of event representations. We also hypothesized that the 

Figure 4. Measuring fits to the HMM event model. (a) The Hidden Markov Model (HMM) assumes that brain activity in response to a movie should 
proceed through a specific sequence of stable event patterns, each with a specific pattern of high and low activities across voxels (represented here as 
the saturation of each color). (b) The model is a good fit to brain responses that exhibit patterns consistent with the model assumptions, sequentially 
transitioning between the HMM event patterns with little variability during events. (c) A poor model fit indicates that this event model does not capture 
a brain region’s dynamics, because the order of the relative activity levels does not match the model’s sequence of event patterns (Voxel 1), the event 
transitions do not align between voxels (Voxel 2), or there is high within-event variability (across time or across subjects) (Voxel 3).

Figure 5. The Oldest group has better event models in regions including visual cortex and auditory cortex, whereas the Youngest group has a better 
model-fit in PMC. Regions with a significant model-fit difference between the youngest and oldest age group (at the optimal timescale for that region) 
are plotted on the cortical surface. Redder shades indicate that the event model fits improve with age, and bluer shades indicate that they weaken 
with age. The model fits for event models with different event durations are shown across all age groups and event durations in four example regions, 
selected post hoc for illustration. Error bars represent the standard deviation of model fit in the held out subjects, averaged across five cross-validated 
folds.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparing the model-fit difference for all parcels between the Youngest and Oldest ages.

Figure supplement 2. The best-fitting average duration of events for the optimal HMMs trained and tested on either the Youngest or the Oldest ages.

Figure supplement 3. The HMM-derived event boundaries correlate with behaviorally estimated event boundaries from children.

https://doi.org/10.7554/eLife.69430
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Oldest group would exhibit earlier event transitions than the Youngest group, due to predictive, 
anticipatory, or preparatory processes (Carpendale and Lewis, 2006; Lee et al., 2021; Richardson 
and Saxe, 2020).

As hypothesized, the neural activity of the Oldest group can be better represented by an event 
model in most of the parcels that significantly differ with age. These regions include sensory areas, 
such as the auditory and visual cortex, as well as the left parietal operculum and dlPFC (Figure 5). In 
sensory regions, the largest change in event model-fit occurs between children 5–8 years and those 
8–11 years (Figure 5, side panels). The left parietal operculum increases in model-fit through approxi-
mately age 13. These developmental trajectories hold not just for these regions' optimal event times-
cale, but also across a wide range of event timescales (Figure 5, side panels). Surprisingly, the HMM 
exhibits better model fits in the PMC, including both the posterior cingulate cortex (PCC) and RSC, 
for the Youngest group than the Oldest group. These results partially reflect changes in across-subject 

Figure 6. The timing of event boundaries shifts with age. (a) The Oldest group represents upcoming events before the Youngest group in auditory 
and visual cortex, as well as left lateralized associative regions including the left precuneus and left dorsolateral prefrontal cortex (reddish hues). The 
Youngest group anticipates events sooner in the right ventral temporal cortex (bluish hues). Highlighted parcels showing age anticipation trajectories 
were selected post hoc for illustration. (b) The event boundaries in the brains of the Oldest group generally lead behaviorally-derived event boundaries, 
whereas the transitions in the brains of the Youngest group generally lag behind behavior. In both (a) and (b), the parcels shown have differences greater 
than age shuffled permutations (q<0.05).

https://doi.org/10.7554/eLife.69430
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consistency as identified by the model-free ISC analysis (Figure 1), but also show effects in additional 
regions including the dlPFC.

We also expected that event boundaries would occur earlier in time with age, because adoles-
cents are more experienced with real-world schemas and can thus predictively represent upcoming 
situations. This hypothesis was borne out in sensory regions including auditory and visual cortex, as 
well as left lateralized associative regions including the left precuneus and left dlPFC (Figure 6a). 
Sensory regions are predictive at shorter time scales, consistent with their quicker processing speed 
(Baldassano et al., 2020; Hasson et al., 2015; Lee et al., 2021), while the higher level association 
regions anticipate upcoming events on average up to tens of seconds into the future. This anticipation 
increases rapidly across ages 5–11 in the left dlPFC and left precuneus, with a more variable trajectory 
in left postcentral sulcus (side panels). However, as was seen for model-fit, this trend reverses in the 
right ventral temporal cortex where the Youngest children anticipate upcoming events slightly sooner, 
and anticipation decreases almost linearly with age.

To determine whether developmental changes in the timing of event transitions reflect an increased 
level of anticipation in the Oldest group, or, alternatively, a delayed response in the Youngest group, 
we compared the HMM-derived event boundaries to event transitions behaviorally identified by an 
age-matched group of children. Across the cortex we find that the Oldest ages generally anticipate 
event shifts, while the Youngest ages lag behind them to some degree (Figure 6b).

Finally, we asked whether hippocampal responses differ as a function of age at the event bound-
aries reported by our age-matched sample of children. We found a robust response to event bound-
aries in all ages (all p’s<0.0001 for each age group’s response at time 0, see Figure 7a, right side). This 
response decreases with age between 5 and 19 years old (r=0.–16, p=1 × 10–3, N=414; Figure 7a). As 
previous research has indicated that the anterior and posterior HPC may potentially respond differ-
ently to event boundaries (Reagh et al., 2020), we examined whether the anterior or posterior HPC 
were driving this change in boundary-driven response with age. We found that there is a significant 
decrease in the anterior hippocampal (aHPC) response to event boundaries with age (r=−0.18, p=2 × 
10–4, Figure 7b). We did not find a significant decrease in the posterior HPC (pHPC; r=−0.09, p=0.06, 
Figure 7c), nor a significant interaction between HPC subregions (p=0.7). In none of these regions was 
the change in boundary-related response explained by anatomical volume changes (see Methods).

Discussion
Using a novel measure of response similarity, we found that the processes used to perceive a dynamic 
narrative change from ages 5–19 throughout the majority of the neocortex and in the hippocampus. 
These developmental changes are characterized by increasingly event-structured dynamics in the 
neocortex, with periods of stability punctuated by rapid transitions, and anticipatory shifts in event 
timing. In parallel, hippocampal responses at event boundaries decrease in magnitude with age. These 
changes suggest that the brain’s strategy for narrative processing shifts from encoding each event as a 
novel episode in the hippocampus to activating and maintaining generalized event knowledge in the 
cortex, storing only episode-specific information into long-term memory.

Older ages exhibit more across-subject synchrony in auditory cortex (Figure 1), consistent with prior 
work showing developmental increases in ISC evoked by other similarly highly produced animated 
movies (Moraczewski et  al., 2018). These results are likely related to more strongly correlated 
semantic processing in adolescents, resulting in top-down increases in auditory understanding (Fran-
chak et al., 2016; Kirkorian et al., 2012). Unfortunately, as eye movements were not recorded, we 
cannot establish the relationship between eye movements and synchrony in sensory cortex (Alex-
ander et al., 2017). The growth of coordinated responses with age may also drive the stronger event 
models in these regions (Figure 5). The ISCb analysis (Figure 2) found relatively small but significant 
shifts in the group-level responses in sensory regions, and auditory responses shifted slightly earlier in 
time with age (Figure 6). This indicates that the age-related changes in sensory regions are not only 
largely characterized by increasing synchrony across subjects, but also (to some extent) a shift from a 
more child-like to more adult-like timecourse of responses.

Theory of mind regions responsible for representing the mental states of others (Gallagher et al., 
2000; Saxe and Kanwisher, 2003), including TPJ (Samson et al., 2004), develop immensely in the 
age range studied (Sebastian et al., 2012). We found very large age-related changes in the functional 
responses of TPJ (Figure 2). Older children, due to stronger schematic event representations, are 

https://doi.org/10.7554/eLife.69430
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likely able to construct better internal models of social and emotional structure (Dumontheil et al., 
2010; Pavias et al., 2016), allowing them to form more cohesive models of the world. Previous work 
found that responses in a network of regions, including TPJ, shift approximately 2  s earlier when 
6–7  year-olds watch a movie for a second time (Richardson et  al., 2019). In the right posterior-
superior temporal sulcus (part of TPJ as defined by Dufour et al., 2013) and in the TPJ-adjacent left 

Figure 7. The hippocampus in children as young as 5 responds to event boundaries, an effect that decreases with age. (a) The event-boundary driven 
response decreases as a function of age in the hippocampus (HPC). This can be shown across individuals at the time point where hippocampus-to-
event correlation is maximal (left), and throughout the time-course of the HPC’s correlation with event boundaries. (b) The correlation between the HPC 
and event boundaries significantly decreases with age in the anterior HPC (aHPC), but in (c) posterior HPC (pHPC) there is no significant relationship 
between the boundary-driven signal and age. The shaded region surrounding each line represents the 95% confidence interval across all 415 subjects.

https://doi.org/10.7554/eLife.69430
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postcentral sulcus, we found that neural representations in 16–19 year-olds can be as far as 20 s ahead 
of those for 5–8 year-olds on the first viewing of a movie clip. This reveals a protracted development 
in this region, likely due to continued growth in the ability to proactively represent the minds of others 
(Dumontheil et al., 2010; Pavias et al., 2016), or possibly due to a growth in attentional abilities in 
this region more generally (Corbetta and Shulman, 2002; Downar et al., 2001).

We also found age-related shifts in dlPFC (Figure 2) and increasing anticipation from ages 5–11 
(Figure  6). This region, along with other regions showing age-related shifts such as the inferior 
temporal cortex and orbitofrontal cortex, are a part of a network responsible for processing concep-
tual knowledge about the world (Binder et al., 2009). The age-driven differences in story responses 
may therefore be partially due to changes in the understanding of the people, actions, and culture 
presented in the movie (Binder et al., 2009). The dlPFC is also critical for working memory, or the 
ability to keep recently learned information readily accessible (Curtis and D’Esposito, 2003). The 
dlPFC exhibits an improvement in event structure with age (Figure  5), which may be due to the 
ongoing development of working memory (Kwon et al., 2002), a cognitive function necessary to 
chunk incoming information into discrete events (Clewett et al., 2019). The changes in dlPFC may 
also be related to development of theory of mind as discussed above, as it overlaps with the theory 
of mind network identified by Richardson et al., 2019.

In the PMC event model fits worsened with age (Figure 5), and in the more posterior RSC portion, 
reliability also decreased with age (Figure 1). This finding contrasts with our hypothesis that schematic 
event representations should increase with age in regions such as the PMC. One possible reason for 
this discrepancy is that PMC performs additional processing due to its lack of strong schemas about 
observed events; Keidel et  al., 2018 found that the PMC (RSC) had significantly more activity in 
response to movies when the narrative topic was new than when it was a continuation of themes from 
the previous clip. Younger children may therefore more consistently rely on this region to understand 
a relatively more novel environment. RSC is also known to be responsible for processing visual scenes 
and is fully developed by age 7 (Epstein and Baker, 2019; Meissner et al., 2019). It is therefore 
possible that young children are more consistently reliant on spatial scene representations as they 
process an ongoing narrative. PMC has an intrinsically long timescale for information processing, one 
that emerges in infancy, which may thus support strong event models in children as young as five 
(Hasson et al., 2015; Stephens et al., 2013; Yates et al., 2021). However, we did find both age-
related shifts in the pattern by which the narrative was represented bilaterally (Figure 2) and increased 
anticipation in the left PMC (Figure 6). These findings in the more dorsal portion of PMC are notable 
because there were no significant age-related differences in this region, suggesting that these shifts 
are not due to overall changes in attention or executive function. This result is in line with our hypoth-
esis that increasing age is associated with more anticipation of higher level themes, and different ages 
likely process these themes with a different overall pattern of activity.

We found small, but significant changes in the timecourse of narrative processing in the medial 
prefrontal cortex (Figure 2). This region has been previously implicated in tracking schematic knowl-
edge during movie-watching (Baldassano et al., 2018; van Kesteren et al., 2010), suggesting that 
schematic responses evolve across this age range. However, we surprisingly did not find a change 
in the strength of event representations with age. This may be due to an overall low level of ISC 
in this region, either due to idiosyncratic cognition, inconsistent neuroanatomy across subjects, or 
noisy signals in this region (Figure  1—figure supplement 1), making it challenging to study this 
region using the group-level approaches in this study. This result is not entirely unexpected given 
that previous studies have found low levels of ISC in this region (Baldassano et al., 2020), especially 
in developmental populations (Lerner et al., 2019; Moraczewski et al., 2018). Furthermore, as has 
been found previously, it may be that only a subregion of the medial prefrontal cortex represents 
events (Baldassano et al., 2020; Brod et al., 2017; Masís-Obando et al., 2022; van Kesteren et al., 
2010).

The HPC was found to reliably respond to the boundaries between events (Figure 7). This result 
extends evidence that the HPC tracks event changes in adults to children as young as five (Ben-Yakov 
and Henson, 2018; Baldassano et al., 2020; Reagh et al., 2020). This boundary-triggered response 
decreased with age across our sample, which is surprising given that adolescents have stronger event 
models and event anticipation in most of the cortical regions with significant effects. The decrease in 
HPC responsiveness with age may be a signature of age-related increases in the reliance on schematic 
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representations of the environment which are stored in the cortex, thus decreasing the reliance on 
the HPC to encode newly encountered events (Sekeres et  al., 2018). The HPC may thus have a 
more robust signal in young children who need to focus on encoding the specific details of events 
as they use them to extract commonalities across experiences (Keresztes et al., 2018; Maril et al., 
2010). Likewise, the HPC has been shown to have increased activity during memory consolidation, 
and in response to novel events (Nadel and Moscovitch, 1997; Stern et al., 1996). It is possible that 
younger children found the events in the movie generally more novel, or needed to spend more effort 
consolidating them due to their impoverished schematic representations. However, if this was truly a 
novelty-related response we would have expected to see a greater age-related change in the pHPC 
which has been shown to be more responsive to novelty (Stern et al., 1996).

Interestingly, previous research in older adults also found a decrease in the HPC response to event 
boundaries (Reagh et al., 2020). However, in this previous research the decrease with age was seen 
in the pHPC (Reagh et  al., 2020). Here, we find that only the response in the aHPC significantly 
decreases with age. This shift in age-related decline may be due to the developmental changes in 
the mnemonic roles along the long axis of the HPC (Demaster and Ghetti, 2013; Langnes et al., 
2019). The decline in the response of the aHPC may also be related to the process of semanticization 
(Sekeres et al., 2018), whereas older ages may be experiencing age-related mnemonic, and thus 
perceptual declines (Reagh et al., 2020).

Jointly fitting an HMM across children of different ages was sensible because we found that the 
optimal event timescales in all regions with high model fits were similar between the Youngest and 
Oldest groups. This was not a foregone conclusion, because infants under one year of age segment 
ongoing narratives into far fewer events than adults (Yates et al., 2021) and behaviorally, we found 
small, but significant differences in segmentation behavior between adults and children, and children 
of different ages. However, at least neurally, children therefore develop enough narrative comprehen-
sion to segment the story in an adult-like manner by age five.

Although we largely attribute the better segmentation ability and prediction to adolescents’ 
greater experience with the world in general, it is possible that our Oldest cohort also had more 
previous experience watching the specific stimulus used (a clip from "Despicable Me"), as it was first 
released when they were young children themselves. Alternatively, younger children may have had 
more recent exposure to the film because it was more age appropriate for them, and this may have 
elicited a retrieval induced increase in HPC activity. Future research should collect data on prior stim-
ulus exposure or aim to use stimulus-naive subjects for better control. Furthermore, we cannot distin-
guish whether the improvements that we see with age are due to the overall maturation of the brain 
or the increased life experience that underlies schematic knowledge. Additionally, although we chose 
to use this dataset because it is one of the few large databases of movie-watching in a developmental 
population, the subjects recruited for this study had a high prevalence of psychopathology and limited 
socioeconomic diversity. Future work should generalize our findings to more diverse and represen-
tative subject samples. Finally, our analyses require stimuli that exhibit multiple transitions between 
events that are at least 30 s. We were therefore unable to make use of the other movie available in this 
dataset or data from the short video clips used in other developmental datasets (Alexander et al., 
2017; Richardson et al., 2019). Future studies should seek to generalize these results to stimuli with 
greater content diversity, and duration.

Our results reveal that brain responses to a narrative movie do not simply become more synchro-
nized across children as they age, but in fact change their dynamics and timing to become more adult-
like. Brain activity patterns in many regions become more cleanly structured into discrete, consistent 
events, and the timing of these events shifts to anticipate upcoming content in the movie. We also 
found that hippocampal responses to event boundaries are present in children as young as 5 years 
old, and that these event-boundary responses are in fact larger in children than in adolescents. This 
study provides the groundwork for assessing how children acquire schematic knowledge about the 
world and ultimately deploy that knowledge at the appropriate time.

https://doi.org/10.7554/eLife.69430
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Materials and methods
Participants
The data in these analyses was downloaded from the Child Mind Institute’s Health Brain Network 
(HBN) project (Alexander et al., 2017) when 1758 MRI datasets were available (data release 6). All 
participants provided written consent or assent, and consent was obtained from the parents or legal 
guardians for participants younger than 18 years. The goal of the HBN project was to collect data 
from subjects with heterogeneous developmental psychopathologies. As such, although the demo-
graphics and prevalence of psychopathology may not be representative of the general population, 
this is one of the largest developmental datasets collected while children viewed natural stimuli, and 
it therefore allows us to do the novel analyses outlined below. The HBN project was approved by 
the Chesapeake Institutional Review Board. No task functional magnetic resonance imaging (fMRI) 
data was available for 343 subjects. Of the remaining subjects, 803 subjects were rejected because 
they did not contain recordings for one of the two possible movie stimuli, they lacked one of the two 
possible fieldmap scans, or one of the two movies had a different number of time samples than was 
expected if the subject watched the entire movie. Of the remaining subjects, 183 were rejected due 
to unacceptably poor T1 scans, as assessed by four independent raters. Two additional subjects were 
eliminated as the field of view of the acquisition did not cover the whole brain, one subject was elim-
inated due to a damaged T1 file, and one subject was eliminated due to median framewise displace-
ment greater than three standard deviations above the mean. Four hundred and twenty six subjects 
remained after these eliminations. To allow for a sufficient number of subjects (N=40) in each age 
group spanning 2.76 years, with an equivalent ratio of males to females in each age group, subjects 
older than 19 were not used in further analyses (N=11). Most analyses were computed on gender-
matched (22 males) samples of the Youngest (5.04–7.8 years, rounded in displays to 5–8 years) and 
Oldest (16.10–18.87 years, rounded in displays to 16–19 years) subjects, although illustrative analyses 
were also computed on the intermediate age groups. The subjects were not evenly distributed across 
the age groups (Figure 1—figure supplement 3). Many different groups of 40 subjects could there-
fore be drawn from the Youngest group (N=87, 47 males). Since the results change slightly depending 
on which group of 40 was selected, we conducted our analyses on the average of five random subsa-
mples of each age group.

MRI data collection
Magnetic Resonance Imaging (MRI) data used in this study were collected at both the HBN Rutgers 
University Brain Imaging Center site on a Siemens Trio Tim 3T scanner and the HBN CitiGroup Cornell 
Brain Imaging Center site on a Siemens Prisma 3T scanner. The scan parameters at both sites were 
identical: TR = 800ms, TE = 30ms, # slices = 60, flip angle = 31°, # volumes = 750, voxel size = 2.4 mm. 
Complete information regarding the scan parameters used for the Healthy Brain Network project can 
be found at: http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/MRI%20Protocol.​
html.

Stimulus and event rating
fMRI data were collected while participants viewed a 10  min clip from the movie Despicable Me 
(01:02:09–01:12:09; presentation details available at http://fcon_1000.projects.nitrc.org/indi/cmi_​
healthy_brain_network/MRI%20Protocol.html). To obtain the timing of event boundaries, a separate 
group of 21 adult raters (6 males) watched the clip and were given the following instructions: “The 
movie clip can be divided into meaningful segments. Record the times (in seconds) denoting when 
you feel like a meaningful segment has ended. Pause the clip at the end of the segment, write down 
the time in the attached spreadsheet, and provide a short, descriptive title. Try to do this when you 
watch the clip for the first time.” No one reported watching the clip more than once. Event bound-
aries were determined as time points where over half of the group agreed an event had occurred and 
are displayed for reference at the top of Figure 3. On average, raters found 14.4+/-6.5 events in the 
movie (minimum = 4, maximum = 30).

The perceived timing of event boundaries according to participants within the age range that 
fMRI was recorded (5–19 years) was assessed online via the Gorilla platform (https://​gorilla.​sc; Anwyl-
Irvine et  al., 2020). The online experiment involved a brief training to ensure comprehension of 
the task. Participants first watched a different clip from Despicable Me (03:25 to 04:47 in the full 
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movie). Participants were notified after the first event boundary (04:10 in the full movie) and asked to 
identify the next event boundary (04:37 in the full movie). Participants were given three attempts to 
correctly identify the second boundary. If a participant successfully identified the second boundary, 
they watched the same clip that was used during fMRI scanning and identified boundaries in that clip 
at their discretion. The children’s data were first analyzed in aggregate, and then analyzed after split-
ting based on the median age (12.25 years).

The online task was also administered to 25 adults (9 male, 19–56  years) recruited via Prolific 
(https://www.​prolific.​co). The data from two adults were not analyzed as their ages overlapped with 
the age range of the fMRI participants (they were under 19 years). Data from 66 participants (39 male, 
7–18 years) within the age range of the fMRI participants were recruited via word of mouth and Face-
book. The data from eight subjects were eliminated as their median event duration was less than one 
second. All online experimental procedures were approved by the Columbia University IRB (protocol 
number AAAS0252, for adults, and AAAT8550, for children), and the data is available online: https://​
github.com/samsydco/HBN.

Anatomical data preprocessing
The results included in this manuscript come from preprocessing performed using fMRIPprep 1.1.4 
(Esteban et  al., 2018; RRID:SCR_016216), based on Nipype 1.1.1 (Gorgolewski et  al., 2011; 
RRID:SCR_002502). The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 
using `N4BiasFieldCorrection` (Tustison et al., 2010; ANTs 2.2.0; RRID:SCR_004757), and is referred 
to as ‘T1w-reference’ throughout the workflow description. The T1w-reference was then skull-stripped 
using `​antsBrainExtraction.​sh` (ANTs 2.2.0), using OASIS as a target template. Brain surfaces were 
reconstructed using `recon-all` (Dale et al., 1999; FreeSurfer 6.0.1,RRID:SCR_001847), and the brain 
mask estimated was refined with a custom variation of the method used to reconcile the ANTs-derived 
and the FreeSurfer-derived segmentations of the cortical gray-matter in Mindboggle (Klein et al., 
2017; RRID:SCR_002438). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template 
version 2009c (Fonov et  al., 2009; MNI152NLin2009cAsym; RRID:SCR_008796) was performed 
through nonlinear registration with `antsRegistration` (ANTs 2.2.0, RRID:SCR_004757), using brain-
extracted versions of both the T1w volume and the template. Brain tissue segmentation of cerebro-
spinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 
T1w using `fast` (Zhang et al., 2001; FSL 5.0.9, RRID:SCR_002823).

Functional data preprocessing
A reference volume and its skull-stripped version were generated using custom fMRIprep method-
ology. For the cortical results, a B0-nonuniformity map (or fieldmap) was estimated based on two 
echo-planar imaging (EPI) references with opposing phase-encoding directions, with `3dQwarp` (Cox, 
1996; AFNI 20160207). Based on the estimated susceptibility distortion, a corrected EPI reference 
was calculated for a more accurate co-registration with the anatomical reference. For the hippocampal 
results, "Fieldmap-less" distortion correction was performed by co-registering the functional image 
to the same-subject T1w image with intensity inverted, (Huntenburg, 2014; Wang et  al., 2017) 
constrained with an average fieldmap template (Treiber et al., 2016), implemented with antsRegis-
tration (ANTs).

Head-motion parameters with respect to the BOLD reference (transformation matrices, and six 
corresponding rotation and translation parameters) were estimated before any spatiotemporal 
filtering using `mcflirt` (Jenkinson et  al., 2002; FSL 5.0.9). The BOLD time-series was resampled 
into its original, native space by applying a single, composite transform to correct for head-motion 
and susceptibility distortions. This resampled BOLD time-series will be referred to as ‘preprocessed 
BOLD’. The BOLD reference was then co-registered to the T1w reference using `bbregister` (Free-
Surfer) which implements boundary-based registration (Greve and Fischl, 2009). To account for 
distortions remaining in the BOLD reference, co-registration was configured with nine degrees of 
freedom. The BOLD time-series was resampled to the ‘fsaverage6’ space for the cortical analyses, 
and to the 'MNI152NLin2009cAsym' space for the hippocampal analyses. Confound time-series were 
calculated based on the preprocessed BOLD. Framewise displacement (FD) was calculated using the 
Nipype implementation (Power et al., 2013). Global signals were extracted within the CSF and the 
WM masks. Eight discrete cosine filters were extracted with 128 s cut-off. These nuisance regressors, 
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as well as the head-motion estimates, were placed in a confounds file and subsequently regressed out 
of the BOLD time series separately for the cortex and the hippocampus using custom python scripts. 
All resamplings can be performed with a single interpolation step by composing all the pertinent 
transformations (i.e. head-motion transform matrices, susceptibility distortion correction, and co-reg-
istration to anatomical and template spaces). Gridded (volumetric) resamplings were performed using 
`antsApplyTransforms` (ANTs), configured with Lanczos interpolation to minimize the smoothing effects 
of other kernels. Non-gridded (surface) resamplings were performed using `mri_vol2surf` (FreeSurfer).

Many of the internal operations of fMRIPrep use Nilearn (version 0.4.2, Abraham et al., 2014, 
RRID:SCR_001362), mostly within the functional processing workflow. (For more details of the pipe-
line, see https://fmriprep.readthedocs.io/en/latest/workflows.html "FMRIPrep’s documentation".) 
After these preprocessing steps were taken, the cortical surface was parcellated into the 100 parcel, 
seven network parcellation from Schaefer et al., 2018.

Defining temporoparietal junction
To better understand how our findings relate to the previous literature we defined the portion of 
the temporoparietal junction (TPJ) responsible for theory of mind processes based on its definition 
in Dufour et al., 2013. We projected the definition of the TPJ from this paper, originally in voxel 
space, onto the cortical surface, and parcels in which over two-thirds of their vertices were within the 
boundary of the TPJ were labeled as members of this region.

Inter-subject correlation (ISC) calculations
After preprocessing, split-half inter-subject correlation (shISC) was calculated by splitting the group 
within which ISC will be calculated, into two equal halves, averaging each halves’ timecourse, and then 
correlating the two average timecourses. We chose to use shISC since we found that it could produce 
ISC estimates for a large group much more quickly than using pairwise ISC (pwISC) and leave-one-out 
ISC (looISC). Using a model similar to Nastase et al., 2019, it can be shown that, in expectation, 
pwISC and looISC can be calculated from shISC if the sample size is known (see Appendix 2). shISC 
was calculated for each vertex on the cortical surface, and then averaged within each parcel.

The overall level of ISC among the participants, irrespective of age, was calculated in a randomized 
mixture of the Youngest and Oldest subjects (Figure 1—figure supplement 1). This calculation can 
be viewed as a quality assurance step because if there is no baseline level of ISC, it is possible that the 
movie was not engaging to subjects, or that the sample is dominated by movement artifacts (Cohen 
et al., 2017; Vanderwal et al., 2020). After establishing the level of the overall group ISC, ISC was 
calculated within the Youngest and Oldest groups and compared between the groups, following the 
methods used in previous research (Cantlon and Li, 2013; Moraczewski et al., 2018). To ensure that 
any regions in which ISC increased with age were not driven by an increase in the level of noise in the 
Youngest group, we calculated the correlation between each individual’s median framewise displace-
ment and their looISC with the other subjects for the Youngest group in parcels where ISC was found 
to increase with age.

In addition to measuring within-group ISC, we sought to compare the similarity between age 
groups (while controlling for within-group consistency). In order to assess a potential difference in 
stimulus response timecourses between the groups, while accounting for the relative level of within 
group correlation, we introduce a measure named between-group ISC (ISCb). Previous researchers 
have measured the timecourse correlations between subjects in two different groups (Cantlon and 
Li, 2013; Hasson et al., 2009; Moraczewski et al., 2018; Nastase et al., 2019), but this measure 
mixes information about across-group differences and within-group consistency. For example, if two 
groups are identical, we would expect the between-group correlation to be the same as the within-
group correlation. ISCb disentangles these effects, producing an estimate of the correlation between 
the average timecourses of two groups in the limit of infinite data (in which the group-average time-
courses are measured without noise). Mathematically, ISCb is computed as the correlation between 
two different groups divided by the geometric mean of the correlation within each group. The denom-
inator means that ISCb accounts for differences in ISC magnitude between the groups (see Appendix 
1 for mathematical derivation). ISCb was calculated between the Youngest and Oldest groups, using 
the shISC formulation (Appendix 1).
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Analysis of event segmentation behavior
Event segmentation behavioral data from each individual was first convolved with a canonical hemo-
dynamic response function (HRF, one parameter gamma model from AFNI’s 3dDeconvolve) at each 
timepoint (Lee et  al., 2021). This data was compared between children, adults, and the younger 
and older children as determined by a median split based on age. Data was compared within and 
between groups by splitting each group in half, and averaging the data across raters within a split, 
thus computing shISCs where appropriate. This procedure was done on five random splits of the data. 
The ISCb measure was used to compare response timecourses between the groups. These values 
were computed across five random splits of the data and results were averaged across the splits. All 
significance values were computed on 10,000 random permutations of the data.

Calculating the number of events in each age group
To determine whether the Oldest and Youngest groups perceived the same number of events in the 
movie, following Baldassano et al., 2020, we define an event as a stable spatial pattern of neural 
activity within a parcel. In each age group, and each parcel, event patterns and the number of events 
are chosen using a hidden markov model (HMM). To find the best fitting model, HMMs that used 
between 2 and 50 events (approximately logarithmically spaced) were trained and tested using five-
fold cross-validation by first averaging the brain activity of four-fifths of the subjects in an age group, 
and then testing on the average brain activity of the held-out subjects. The number of events in an age 
group were defined as the average of the number of events that maximized the log likelihood of the 
HMM (model fit) in the held out subjects in each of the five cross-validated folds.

Although most cortical regions are expected to exhibit event structure in response to a movie 
stimulus, some regions will not have activity that can be well modeled by a model of events. The 
difference in model fit between a baseline HMM in which two events were fit and the HMM with the 
number of events yielding the best fit was used as a measure of the extent to which event structure 
was successfully detected in this region (Figure 5—figure supplement 1). Regions that do not show 
substantial improvement in model fit over the two-event model either have preferred event lengths 
on the scale of 300 s or longer (since the stimulus was 600 s long) or do not have event-structured 
responses. In 30 parcels both the Youngest and Oldest groups had a model fit difference less than 
0.002 and were therefore not considered in future analyses (Figure 5—figure supplement 1). In 40 
parcels, the Youngest group had a model fit difference less than 0.002 and in 33 parcels the Oldest 
group had a model fit difference less than 0.002. In the remaining 71 parcels with a good model fit in 
at least one group, there was no significant difference in the number of events between the groups 
(Figure 5—figure supplement 2; see Statistical Significance section for permutation test details).

Comparison of event boundaries in brain regions to annotations
Following the methods of Lee et al., 2021, we jointly fit an HMM in each parcel to the Youngest and 
Oldest groups simultaneously. This joint-fitting procedure assumes that both groups share the same 
number of events and brain pattern in each event. Both the degree of model fit and the timing of 
these events can vary between the groups. The number of events and event patterns were deter-
mined by finding the maximum log likelihood of the model-fit on the average of five held-out folds 
of the data from all five age groups (including ages in between the Youngest and Oldest). This fitting 
procedure is similar to the case where HMMs are fit separately in each age group, except in this case, 
the log likelihood of the model-fit is averaged over all age groups in addition to all training folds.

We next evaluated the correspondence between the HMM-derived event boundaries and bound-
aries from age-matched children. To determine where event transitions occur in the model, we 
computed the derivative of the expected event label over time for each age group and parcel. The 
behavioral boundaries were derived from the number of boundary annotations at each timepoint 
convolved with a canonical HRF, as was done in the Analysis of event segmentation behavior (Lee 
et al., 2021). We related the two timecourses using Pearson correlation (Figure 5—figure supple-
ment 2).
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Determining the model fit in each age group
The log likelihood, or model-fit, of the best-fitting jointly-fit HMM was compared between the Oldest and 
Youngest groups. For illustration of the change in log likelihood with age, the average log likelihood was 
also computed on similarly sized folds of the age groups in between the Youngest and Oldest groups.

Measuring changes in event timing across age
Following the procedure from Lee et al., 2021, using the jointly-fit HMMs described in the previous 
section, the probability that each fold of the held-out data was in any of the events was determined 
for each age group in each parcel. Averaging these probabilities across all five-folds yielded a time-
point by number of events matrix. We then computed (separately for each group) the expected value 
of the event present at each timepoint. Summing over these expectation values produced a value 
describing the amount of time that this region spent in earlier versus later events, with larger numbers 
indicating that more time was spent in later events. If the sum of these expectation values is greater in 
one age group than in the other, this indicates that this age group represents upcoming events before 
the other age group.

In all parcels that had a significant change in event timing between age groups, we compared the 
timing of the event boundaries identified by the HMM to the event boundary timecourse obtained 
behaviorally from raters. Following methods used previously, the number of boundary annotations 
from the child raters at each timepoint during the movie were convolved with a canonical HRF (Lee 
et al., 2021). To obtain a measure of when the brain is switching between events, we took the deriva-
tive of the expected value of the event that the HMM assigned to each timepoint (following methods 
from Lee et al., 2021). To determine the timing of the alignment between these two signals, we 
cross-correlated the HMM-derived boundary timecourse with the behavioral event boundary time-
course from children, in aggregate. To precisely estimate the optimal lag, we fit a quadratic function 
to the maximum correlation lag and its two neighboring lags, and found the location of the peak of 
this quadratic fit. We computed the maximum-correlation lag separately in the Oldest and Youngest 
groups to determine whether there is a significant difference in the relationship between the brain’s 
event boundaries and the behavioral event boundaries.

Statistical significance
To test for a significant difference between the Youngest and Oldest groups in all of the above anal-
yses, Age permuted values were computed for each parcel for the difference in ISC magnitude (abso-
lute value of ISC difference), ISCb, number of events in age group specific HMMs, difference in model 
fit (maximum log likelihood) for jointly-fit HMMs, difference in event timing for jointly-fit HMMs, and 
difference the timing of the jointly-fit HMMs events with behavior. All age permuted groups had 
the same gender distribution as the true sample. For each parcel, the calculation of the real (non-
permuted) value, as well as all permuted values were calculated in five random subsamples of each 
age group (Youngest and Oldest) since random subsampling generates slightly different results. Both 
the real and permuted values were then averaged across all five subsamples to calculate both the 
values reported here and their significance. The permuted group assignment in each permutation was 
therefore maintained across the five subsamples.

If in any parcel, for any test, the number of the permuted values greater than (or less than, in the 
case of ISCb) the true value was less than 5% in any of the five random subsamples after 100 permuta-
tions, 1000 additional permutations were run. A total of 1000 additional permutations were computed 
until every parcel had at least one permuted value greater than (or less than) the value in the original 
data, or 6000 permutations had been computed (whichever came first). If after 6000 permutations, 
there were still no permuted values greater than (or less than) the value in the original data, the orig-
inal data was included as a permuted value for significance tests.

All HMMs were initially trained on the original (non age-permuted) training data (four-fifths of the 
full dataset). To compute permuted differences of the number of events, age-specific HMMs were 
tested on age-permuted testing data for all numbers of events. The jointly-fit HMMs were tested on 
permuted data for only the best fitting number of events, determined from the original data. In all 
statistical tests, the false discovery rate (FDR) of parcel differences was controlled for by setting the 
expected proportion of false positives to.05 (Benjamini and Hochberg, 1995). The code for all the 
included analyses is available at: https://github.com/samsydco/HBN.

https://doi.org/10.7554/eLife.69430
https://github.com/samsydco/HBN
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Hippocampal segmentation and event rating correlation
The hippocampus was defined using the Freesurfer segmentation generated using fMRIPrep 1.5.6 
(Esteban et al., 2018). Consistent with previous studies, the anterior hippocampus (aHPC) was 
defined as voxels anterior to y = –21 mm in MNI space, and the posterior hippocampus (pHPC) 
was defined as voxels including and posterior to y = –21 mm in MNI space (Poppenk et al., 2013; 
Zeidman et al., 2015). For each subject, voxel-wise activity was averaged within the entire hippo-
campus, the aHPC, and the pHPC. Each subject’s hippocampal timecourses was then correlated 
with an event boundary timecourse obtained behaviorally from age-matched children. Similarly 
to the behavioral timecourse related to the HMM, here, the event boundary timecourse was 
computed by convolving the number of boundary annotations at each timepoint during the movie 
with a canonical HRF (Lee et al., 2021). The hippocampal timecourses and the event boundary 
timecourse were correlated at differences in delay of up to 10 s. These lagged correlations were 
computed because previous research has shown that the hippocampal response to event bound-
aries can follow event boundaries by several seconds (Baldassano et al., 2020; Ben-Yakov and 
Henson, 2018; DuBrow and Davachi, 2016; Reagh et al., 2020). The correlation values for each 
hippocampal region, temporal lag, and subject were then grouped according to the age of the 
subject. The Pearson’s correlation at lag 0 between age and the hippocampus-to-event boundary 
correlation was assessed across all subjects in the entire hippocampus as well as in all hippocampal 
subregions.

Previous research has shown that the volume of the hippocampus may decrease with age (Gogtay 
et  al., 2006). The volume of the hippocampus and its subregions was therefore measured as the 
number of voxels that the Freesurfer parcellation allotted to the hippocampus. The aHPC volume was 
the number of voxels anterior to y = –21 mm in MNI space, and the pHPC volume was the number of 
voxels including and posterior to y = –21 mm in MNI space. The volume of the entire hippocampus 
and aHPC correlated with subject age (entire HPC: r=–0.1, p=0.03, aHPC: r=–0.1, p=0.03) while the 
volume of the pHPC did not (r=–0.05, p=0.3). However, in none of the regions was the age-matched 
event boundary response significantly correlated with the change in volume (entire HPC, r=0.01, 
p=0.9, aHPC, r=–0.01, p=0.9, pHPC, r=–0.03, p=0.6).
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Appendix 1
For across-group analyses, we want to calculate the ISC between two groups of subjects, with two 
different sets of shared responses, g1 and g2, and different levels of variance, ‍ϵi‍ and ‍ϵj‍. To simplify 
the notation, we define ‍g

T
1g1 = a1‍, ‍g

T
2g2 = a2‍, ‍g

T
1g2 = aB‍, ‍E[ϵT

i ϵi] = b1‍ and ‍E[ϵT
j ϵj] = b2‍. We would like 

to estimate the correlation between g1 and g2, regardless of the difference in signal-to-noise levels 
between the two groups. That is, our goal is to compute:

	﻿‍
ISCb = aB√

a1
√

a2 ‍�

If we know the ISCs for each group, from equation 1:

	﻿‍ shISC1 = N2a1
N2a1+4Nb1 ‍�

and

	﻿‍ shISC2 = N2a2
N2a2+4Nb2

,‍�

where ‍N ‍ is the number of subjects in each group, and the ISC between the two groups is:

‍
shISCB = N2aB√

N2a1+4Nb1
√

N2a2+4Nb2
.
‍

Dividing ‍shISCB‍ by the geometric mean of ‍shISC1‍ and ‍shISC2‍ allows us to calculate the between-
group ISC without the ‍b‍’s:

	﻿‍

ISCb = shISCB√
shISC1

√
shISC2

= aB√
a1
√

a2
.

‍�
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Appendix 2
We start by assuming that the response timecourse for every subject consists of a response that is 
shared across subjects, ‍g‍, and a subject-specific response, ‍ϵ‍. The response timecourse for subject ‍‍ 
can therefore be represented as ‍si = g + ϵi‍. For simplicity, all subject timecourses, ‍s‍, have zero mean, 
we define ‍a‍ as the norm of ‍g‍ (‍gTg = a‍), and we define ‍E[ϵT

i ϵi] = b‍. If we have N subjects in total, the 
split half ISC (‍shISC‍) is:

	﻿‍

shISC = E
[
ρ
(∑N/2

i=1 si,
∑N

j=N/2+1 sj

)]

= E
[
ρ
(

N
2 g +

∑N/2
i=1 ϵi, N

2 g +
∑N

j=N/2+1 ϵj

)]

=
N2
4 gTg√

N2
4 gTg+E[

∑N/2
i=1 ϵ

T
i ϵi]

√
N2
4 gTg+E[

∑N
j=N/2+1 ϵ

T
j ϵj]

= N2a
N2a+2Nb

= Nf
Nf+2 ‍�

(1)

where ‍f = a/b‍, or the signal to noise ratio (the ratio of norms between ‍g‍ and ‍ϵi‍).
If we rearrange the variables in Equation 1, we find that:

	﻿‍ f = 2∗shISC
−N∗shISC−N .‍� (2)

We can thus calculate ‍pwISC‍ and ‍looISC‍ from ‍shISC‍ as they relate to ‍f ‍ as follows. For ‍pwISC‍ between 
subjects ‍‍ and ‍j‍:

	﻿‍

pwISC = E[ρ(si, sj)]

= E[ρ(g + ϵi, g + ϵj)]

= E

[
(g+ϵi)T(g+ϵj)√

(g+ϵi)T(g+ϵi)
√

(g+ϵj)T(g+ϵj)

]

= gTg√
gTg+E[ϵT

i ϵi]
√

gTg+E[ϵT
j ϵj]

= a
a+b

= f
f+1 , ‍�

and for ‍looISC‍, between one left-out subject, and all others:

	﻿‍

looISC = E
[
ρ
(

s1,
∑N

j=2 sj

)]

= E
[
ρ
(

g + ϵ1, (N − 1)g +
∑N

j=2 ϵj

)]

= (N−1)a√
a+b

√
(N−1)2a+(N−1)b

= (N−1)f√
f+1

√
(N−1)2f+(N−1)

=
√

N−1f√
f+1

√
(N−1)f+1 .

‍�

Thus, for example, if there are 40 subjects, and ‍shISC‍ is 0.5, the estimated ‍pwISC = 0.05‍ and the 
estimated ‍looISC = 0.18‍.
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