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Abstract

Background: Reactive astrocytes are implicated in the development and maintenance of neuroinflammation in the
demyelinating disease multiple sclerosis (MS). The sphingosine kinase 1 (SphK1)/sphingosine1-phosphate (S1P) receptor
signaling pathway is involved in modulation of the inflammatory response in many cell types, but the role of S1P receptor
subtype 3 (S1P3) signaling and SphK1 in activated rat astrocytes has not been defined.

Methodology/Principal Findings: Using immunohistochemistry we observed the upregulation of S1P3 and SphK1
expression on reactive astrocytes and SphK1 on macrophages in MS lesions. Increased mRNA and protein expression of S1P3

and SphK1, as measured by qPCR and Western blotting respectively, was observed after treatment of rat primary astrocyte
cultures with the pro-inflammatory stimulus lipopolysaccharide (LPS). Activation of SphK by LPS stimulation was confirmed
by SphK activity assay and was blocked by the use of the SphK inhibitor SKI (2-(p-hydroxyanilino)-4-(p-chlorphenyl) thiazole.
Treatment of astrocytes with a selective S1P3 agonist led to increased phosphorylation of extracellular signal-regulated
kinase (ERK)-1/2), which was further elevated with a LPS pre-challenge, suggesting that S1P3 upregulation can lead to
increased functionality. Moreover, astrocyte migration in a scratch assay was induced by S1P and LPS and this LPS-induced
migration was sensitive to inhibition of SphK1, and independent of cell proliferation. In addition, S1P induced secretion of
the potentially neuroprotective chemokine CXCL1, which was increased when astrocytes were pre-challenged with LPS. A
more prominent role of S1P3 signaling compared to S1P1 signaling was demonstrated by the use of selective S1P3 or S1P1

agonists.

Conclusion/Significance: In summary, our data demonstrate that the SphK1/S1P3 signaling axis is upregulated when
astrocytes are activated by LPS. This signaling pathway appears to play a role in the establishment and maintenance of
astrocyte activation. Upregulation of the pathway in MS may be detrimental, e.g. through enhancing astrogliosis, or
beneficial through increased remyelination via CXCL1.
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Introduction

Astrocytes are the most abundant glial cells in the mammalian

central nervous system (CNS). They have important functions in

maintenance of homeostasis and are involved in synaptic function

and physical structuring of the CNS during development [1], and

become reactive in response to pathological insults [2,3]. They

can upregulate genes involved in amplification of inflammation

by attracting inflammatory cells to specific sites and limit immune

cell invasion of adjacent healthy parenchyma [4,5]. In inflam-

matory demyelinating multiple sclerosis (MS) lesions, reactive

astrocytes present a hypertrophic phenotype and form astroglial

scars.

Astrocytes can be activated in vitro by various stimuli such as

LPS, a bacterial polysaccharide commonly used as a pro-

inflammatory stimulus which signals mainly through the Toll-like

receptor (TLR) 4. LPS activates the sphingosine kinase 1/

sphingosine-1-phosphate (SphK1/S1P) signaling axis in other cell

types including microglia [6] and macrophages [7], leading to

translocation of SphK1 to the plasma membrane where it converts

its substrate sphingosine to the bioactive sphingolipid S1P [8–10].

S1P can elicit a wide variety of cellular responses including

inflammation and can act intracellularly as a second messenger or

extracellularly by binding to the G protein-coupled receptors S1P1

to S1P5 [11,12]. In the CNS, S1P is involved in induction of

astrocyte proliferation, migration and survival [13], and was found
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to be increased in the cerebrospinal fluid of MS patients,

suggesting its involvement in chronic neuroinflammation [14].

SphK1 CNS expression is increased by kainic acid or hypoxia

[15,16], and probably results in increased production of S1P.

However, the expression of SphK1 in MS CNS tissues has not

been reported.

All S1P receptors except S1P4 are expressed in the CNS as

assessed at the mRNA level. In experimental autoimmune

encephalomyelitis (EAE), an animal model commonly used to

study inflammatory aspects of MS, S1P receptors were shown to

be differentially regulated as S1P1 and S1P5 mRNAs were

downregulated at days 11 and 29 in spinal cord, whereas S1P4

and S1P3 mRNAs were upregulated [17]. The increase of S1P4

expression probably resulted from infiltration of immune cells.

The S1P3 receptor is expressed by several CNS cell types including

astrocytes, microglia and neurons, and by immune cells such as

dendritic cells and B lymphocytes [18,19]. The increased

expression of this receptor during EAE could therefore be due

either to immune cell infiltration or upregulation by CNS cells, or

both. In normal CNS tissues, astrocytes were reported to express

mainly S1P3 and S1P1 mRNA, with very low levels of S1P2 and

S1P5 [20–22].

FTY720 is a S1P analogue that has recently been approved as

an anti-inflammatory therapy for MS. It is a pro-drug that needs

to be phosphorylated to FTY720P by sphingosine kinase 2

(SphK2) to become active and act as agonist of S1P1, 3, 4 and 5

receptors [23,24]. It decreases immune cell trafficking by

activating S1P1 on lymphocytes, thereby inducing internalization

and degradation of these receptors [25–27], which in consequence

leads to sequestration of the lymphocytes in lymph nodes by

preventing them from following the S1P gradient that would guide

them into the bloodstream [28]. The resulting lymphopenia

decreases the migration of immune cells into the CNS. FTY720

readily crosses the blood-brain barrier [29], and it may exert

additional effects in the CNS which would probably be mediated

via S1P1, S1P3 and S1P5, although there is no strong evidence

demonstrating direct neuroprotective effects.

Until recently the expression of S1P3 on astrocytes in vitro or in

neuroinflammatory disorders and the roles of this signaling axis in

CNS inflammation had not been investigated, but van Doorn and

colleagues [30] have demonstrated S1P3 upregulation in MS

tissues.

In the present study, we have confirmed this observation and

shown for the first time the enhanced expression of SphK1 on

Figure 1. S1P3 and SphK1 are upregulated in MS lesions. (A, B): Immunohistochemical peroxidise staining shows that S1P3 receptor and
SphK1 enzyme expressions are increased in a chronic-active MS lesion which was located in parietal subventricular white matter. S1P3 expression is
strong on reactive astrocytes in this lesion border (C), in the lesion (D) and on perivascular cells (G), but is weak in normal control brain white matter
(H). SphK1 expression is increased in reactive astrocytes (E) and in macrophages in this MS lesion (F). A particularly high expression of SphK1 is seen in
perivascular inflammatory cells (I), whereas its expression is very low in normal control brain white matter (J). This Figure shows representative
stainings. Scale bars are 200 mm for A and B, and 20 mm for C–J. The sections were counterstained with haematoxylin.
doi:10.1371/journal.pone.0023905.g001
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macrophages and astrocytes in MS lesions. We have further

showed increased expression and functionality of both SphK1 and

S1P3 in cultures of activated rat astrocytes, which demonstrated

the potential therapeutic impact of targeting this signaling axis in

MS.

Results

S1P3 and SphK1 are expressed on reactive astrocytes in
MS lesions

Eight MS lesions from seven patients, and scored as actively

demyelinating, chronic-active or chronic-inactive were analyzed

by immunohistochemistry. Expression of the receptor S1P3 was

especially strong on reactive astrocytes in plaques and their lesion

borders (Fig. 1A, C, D). Expression of S1P3 was also detected in

perivascular inflammatory cells in cuffs within plaques and also in

surrounding tissue (Fig. 1G). In comparison, only weak expression

of S1P3 was detected in normal control brain (Fig. 1H). Co-

expression of S1P3 and glial fibrillary acidic protein (GFAP) on all

reactive astrocytes in MS lesions and surrounding tissues was

confirmed by double-immunostaining (Fig. 2A), but only small

numbers of S1P3-expressing CD68-positive macrophages could

also be detected (data not shown).

We also found an increased expression of SphK1 in MS lesions

(Fig. 1B), with only very weak expression of the enzyme in normal

control brain (Fig. 1J). This increase was particularly marked on

cells with a macrophage-like morphology in plaques and their

borders (Fig. 1F). Expression of SphK1 was also increased on

reactive astrocytes (Fig. 1E) in the same areas, and in perivascular

inflammatory cell cuffs (Fig. 1I). Co-expression of SphK1 and

GFAP on reactive astrocytes in MS lesions and their borders was

confirmed by double immunostaining (Fig. 2B), and SphK1

expression on macrophages in MS lesions, lesion borders and

around blood vessels was confirmed by double immunostaining for

SphK1 and CD68 (Fig. 2C, D).

S1P3 and SphK1 mRNA and protein are increased in
activated astrocytes in vitro

To test whether the upregulation of S1P3 receptor and the

enzyme SphK1 observed in MS lesions can be induced in vitro

under pro-inflammatory conditions, primary rat astrocytes were

activated with the pro-inflammatory stimulus LPS (100 ng/ml) for

5 h and 24 h. This concentration of LPS was found to induce

maximal response of the astrocytes (data not shown). The mRNA

level of S1P3 was significantly upregulated after a 5 h incubation

with LPS (3-fold) compared to untreated cells (Fig. 3B), and

SphK1 was upregulated by 10-fold (Fig. 3C). At 24 h post-

stimulation, expression of S1P3 and SphK1 was back to basal level.

Neither S1P1 nor SphK2 were regulated by the LPS (Fig. 3A, D).

The increase of S1P3 and SphK1 was confirmed at the protein

Figure 2. S1P3 and SphK1 are expressed by reactive astrocytes and macrophages in MS lesions. Immunofluorescence co-localization
studies confirmed that S1P3 is predominately expressed by reactive astrocytes (A). SphK1 is also expressed on reactive astrocytes (B), but the major
cell type expressing SphK1 is macrophage in lesions and perivascular cuffs (C–D). Scale bars are 10 mm.
doi:10.1371/journal.pone.0023905.g002
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Figure 3. S1P3 and SphK1 mRNAs and protein are upregulated in rat primary astrocytes by LPS stimulation. Primary astrocytes were
incubated in culture medium for 5 or 24 h with LPS (100 ng/ml). The mRNA levels of S1P1 (A), S1P3 (B), SphK1 (C) and SphK2 (D) were assessed after
5 h and 24 h incubation. Quantitative PCR results are shown as the percentage expression of HKG (GAPDH) and represent mean 6 SEM of three
independent experiments. LPS mediated sustained upregulation of S1P3 (E–F) and SphK1 (G–H) as shown by Western blots of plasma membrane
fractions. Primary rat astrocytes were incubated with LPS (100 ng/ml) in serum-free medium containing 0.25% BSA for 12 and 48 h. Representative
immunoblots are shown. Graphs represent the mean 6 SEM of three independent experiments and are reported as protein expression normalized to
actin, expressed as fold change over basal level. One-Way ANOVA followed by Bonferroni’s multiple comparison test: *p,0.05, **p,0.01 vs.
respective control.
doi:10.1371/journal.pone.0023905.g003
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level in membrane preparations following LPS challenge. Both

S1P3 receptor and SphK1 were upregulated on astrocyte plasma

membranes in response to LPS challenge after a 12 h treatment

(Fig. 3E, G), which was maintained for at least 48 h (Fig. 3F, H).

LPS induces SphK1 activity and increases S1P3 receptor
signaling

The upregulation of SphK1 on plasma membranes indicates

that the enzyme was translocated and thus activated in response to

stimulation with LPS. This was confirmed by thin layer

chromatography, using extracts of serum-deprived cells stimulated

or not with LPS (100 ng/ml) for 30 min. SphK1 activity was

significantly increased in LPS-stimulated astrocytes, and pre-

incubation with SKI (10 mg/ml), described as a selective SphK1

inhibitor [31], reversed the activity of the enzyme to the basal level

(Fig. 4A).

Phosphorylation of ERK-1/2 and Akt, two signaling pathways

downstream of S1P receptors, was then assessed following

stimulation with the S1P3 specific agonist Compound 20, a

dicyclohexylamide molecule which showed an agonistic activity on

S1P3 (EC50 = 350 nM), while not activating any other S1P

receptor (EC50s.40 mM) [32]. Primary rat astrocytes were pre-

incubated with 100 ng/ml LPS for 12 h in serum-free medium

and then stimulated with the S1P3 agonist (Compound 20, 10 mM)

for 20 min. LPS treatment alone for 12 h did not affect ERK-1/2

phosphorylation compared to untreated controls (Fig. 5A).

Stimulation with the S1P3 agonist (Compound 20), increased

ERK-1/2 phosphorylation by two-fold in cells not treated with

LPS and was further elevated in cells pre-challenged with LPS.

Phosphorylation of Akt was also induced by treatment with the

S1P3 agonist, but statistical significance was not reached (Fig. 5B).

However, in the case of pre-activation with LPS, very little or no

elevation of Akt phosphorylation was observed with the S1P3

agonist when compared to the non-activated cells.

In contrast, when using the specific S1P1 receptor agonist

AUY954, no further increase in ERK-1/2- or Akt-phosphoryla-

tion levels was observed in LPS-stimulated cells compared to the

phosphorylation mediated by the agonist alone (Fig. 5C, D).

Involvement of SphK1 activity in LPS-induced astrocyte
migration

Because of the potential role of ERK signaling in cell migration,

a scratch assay was then performed to investigate the role of LPS-

induced activation in the migratory behaviour of astrocytes in

response to S1P. Astrocytes were allowed to migrate for 48 h after

treatment with LPS (100 ng/ml), S1P (500 nM) or a combination

of both in a scratch assay. Treatments were repeated after 24 h

without changing the medium. As shown in Figure 6, all

treatments significantly increased migration of astrocytes into the

scratches when compared to untreated cells (Fig. 6A). When LPS

and S1P were combined, astrocyte migration was not significantly

increased compared to migration induced by LPS or S1P alone

(Fig. 6D).

Long-term treatment with the S1P3 agonist (Compound 20)

caused cells to detach, thus the role of the S1P3 receptor in

astrocyte migration in LPS-stimulated astrocytes could not be

assessed directly. We instead investigated whether LPS-induced

migration depends directly on SphK1 activity. Cells were pre-

incubated with SKI (10 mg/ml) 1 h before performing the

scratches, followed by treatment with LPS (100 ng/ml) and they

were then allowed to migrate for 48 h. Pre-incubation with SKI

significantly inhibited LPS-induced migration of astrocytes

(Fig. 7C) whilst not affecting cell survival, as assessed by visual

observation and lack of LDH release in the supernatants (data not

shown).

S1P was previously reported to be mitotic [33], and ERK

signaling is involved in cell proliferation. Therefore we investigated

if this was also the case in our cultures by stimulating the cells for

24 hours with increasing concentrations of S1P or LPS in the

presence of [3H]-thymidine. Figure 7A shows the dose-dependent

increase in astrocyte proliferation in response to S1P. In contrast

LPS has no effect on astrocyte proliferation (Fig. 7B).

In order to define if the S1P-induced astrocyte migration

depends on proliferation, the scratch migration assay was repeated

as before, but in presence or absence of an antimitotic agent

(Cytosine b-D-arabinofuranoside hydrochloride, 10 mM) (Fig. 7

D). Data show that the astrocyte migration in the control wells was

partially dependent on proliferation, as cells cover less area of the

scratch in the presence of the antimitotic factor. Similarly, S1P-

induced migration was also strongly dependent on astrocyte

proliferation and significantly reduced in the presence of the

antimitotic factor compared to S1P alone. In contrast, the

migration induced by LPS did not depend significantly on

proliferation as there was no significant difference between cells

treated with LPS, or with LPS and the antimitotic factor.

LPS and S1P induce CXCL1 release
The release of cytokines and chemokines was shown to be

induced by stimulation with S1P in different cell types [6,34]. In

order to better define the link between TLRs and the SphK1/S1P

axis, cytokines and chemokines produced by astrocytes in response

to stimulation with LPS (10 ng/ml, 100 ng/ml, 1 mg/ml) or S1P

(100 nM, 1 mM, 5 mM) were analyzed by a Multiplex ELISA for a

total of 23 different factors. Following 24 h stimulation, CXCL1

was shown to be the factor most induced by both stimuli (data not

shown). Other factors induced by both stimuli were RANTES and

monocyte chemoattractant protein-1 (MCP-1), but to a lesser

extent (data not shown).

Because CXCL1 has potential neuroprotective effects on

oligodendrocytes, we chose to focus the next experiments on the

regulation of its release through S1P1 or S1P3 receptors, following

pre-activation with LPS. Astrocytes were treated or not with LPS

(100 ng/ml) for 12 h, followed by stimulation with S1P (1 mM),

Figure 4. SphK1 is activated in response to LPS. Serum-deprived
astrocytes were incubated for 30 min with 100 ng/ml LPS in the
presence or absence of SKI (10 mg/ml). 100 mg of cell extracts were used
to determine SphK1 activity by thin layer chromatography. Data
represents the mean 6 SEM of three independent experiments. One-
Way ANOVA followed by Bonferroni’s multiple comparison test:
*p,0.05, **p,0.01.
doi:10.1371/journal.pone.0023905.g004
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the S1P3 agonist Compound 20 (10 mM) or the S1P1 agonist

AUY954 (10 mM) in fresh medium for another 5-hour period.

CXCL1 released into the supernatant was then measured by

ELISA. Cells pre-treated with LPS for 12 h followed by medium

replacement showed increased CXCL1 release without any

further activation, indicating that LPS-induced activation lasts

for several hours (Fig. 8). When S1P was given after pre-

stimulation with LPS, CXCL1 release was further increased by 3-

fold. Furthermore, although no induction of CXCL1 in response

to the S1P3 agonist was measured in non-activated cells, CXCL1

release was induced by the S1P3 agonist in cells pre-treated with

LPS. In contrast to the S1P3 agonist, AUY954 did not further

increase CXCL1 release induced by LPS challenge itself. These

data demonstrate that the LPS-induced increase of S1P3 receptor

leads to increased functionality, as CXCL1 release induced by S1P

in activated astrocytes is mediated mainly via the S1P3 rather than

the S1P1 receptor.

Discussion

We confirmed in this study an increased expression of the S1P3

receptor on reactive astrocytes in actively demyelinating and

chronic-inactive MS lesions, as described recently [30]. In

addition, we showed for the first time that the enzyme SphK1 is

strongly upregulated in macrophages, but also on reactive

astrocytes in both types of MS lesion. Furthermore, both S1P3

Figure 5. Increased S1P3-mediated ERK-1/2, but not Akt signaling by LPS. Astrocytes were serum-deprived during the 12 h treatment with
LPS and were then stimulated for 20 min with 10 mM S1P3 agonist (Compound 20) or 1 mM AUY954. The results show the relative ERK-1/2
phosphorylation (A, C ) and Akt phosphorylation (B, D) 6 SEM normalized against actin for three (A, B) and two (C, D) independent experiments. One-
Way ANOVA followed by Bonferroni’s multiple comparison test: *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0023905.g005
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and SphK1 expression was shown to be strongly expressed in

perivascular inflammatory cell cuffs in MS brain. In contrast, little

or no expression of SphK1 and S1P3 was seen in normal control

brain.

In MS, macrophages infiltrate the CNS parenchyma where they

contribute to tissue damage, release of pro-inflammatory media-

tors, impairment of BBB functions and also mediate damage and

phagocytosis of myelin, oligodendrocytes and axons. SphK1

activity was shown to drive macrophages towards a pro-

inflammatory phenotype, inducing the release of pro-inflammato-

ry stimuli which can cause further tissue damage [35]. Addition-

ally, SphK1 is upregulated by excitotoxicity and hypoxia in

astrocytes and glioma cells, respectively [15,16]. Both types of

injury probably contribute to neuronal damage in MS tissue [36],

and increased S1P production in the CNS could well be an

additional player in the neurodegenerative cascade by increasing

astrogliosis. Our finding of high SphK1 expression by infiltrating

macrophages and reactive astrocytes in MS lesions suggests that

inhibition of SphK1 activity may be beneficial in MS by

dampening macrophage- and astrocyte-mediated inflammation

and tissue damage. This is a potential additional benefit of the new

MS drug FTY720 as it was recently shown to inhibit SphK1 [37].

In agreement with the study by van Doorn et al. [30] S1P3 was

not substantially expressed on macrophages in MS lesions, and a

recent study showed that in human donor macrophages and

microglia S1P3 is expressed only at relatively low levels [37]. We

therefore chose to focus on the role of the SphK1/S1P3 axis in

activated astrocytes.

Upregulation of receptor S1P3 mRNA in CNS tissues was

previously demonstrated in EAE [17], although the identity of the

cells overexpressing S1P3 was not elucidated due to the lack of

specific antibodies against murine S1P3 for immunohistochemistry.

The upregulation of S1P3 receptors on astrocytes was previously

described in a mouse model of the neurodegenerative Sandhoff

disease, a prototypical lysosomal storage disorder [38,39]. It was

demonstrated that both S1P3 and SphK1 deficient mice had a

milder disease course with decreased proliferation of glial cells and

less pronounced astrogliosis, clearly indicating a role of the

SphK1/S1P3 axis in the neurodegenerative process [39]. Howev-

er, it remains to be shown if this is also the case in EAE. An

additional level of complexity in interpreting potential benefit of

FTY720 via S1P3 activation comes from the fact that the fate of

this receptor upon activation is not well understood, as it could

either be internalized and recycled or internalized and degraded.

The fate of the internalized receptor is important within the

context of FTY720, as it may determine whether the drug works as

an agonist or a functional antagonist [40].

In line with the increase of SphK1 and S1P3 expression on

reactive astrocytes in MS lesions, we showed in an in vitro system

using rat primary astrocyte cultures that SphK1 and S1P3 mRNA

and protein levels were upregulated when stimulated by LPS. S1P3

and SphK1 mRNAs were markedly upregulated five hours after

treatment. Interestingly, mRNA levels of S1P1 and SphK2 were

not modulated in rat astrocytes, thus differing from the study by

van Doorn et al. [30] where TNFa increased the mRNA both of

S1P1 and S1P3 in human astrocytes, thereby indicating potential

species differences. Alternatively, this difference could come from a

distinct effect of TNFa in comparison to LPS, but upregulation of

both S1P1 and S1P3 by LPS was described in human gingival

epithelial cells [41]. Astrocyte activation occurs through several

different pathways, thus TLR activation by LPS can certainly

drive different cellular responses other than those elicited other

pro-inflammatory stimuli, such as cytokines. The concomitant

regulation of SphK1 and S1P3 was demonstrated to play a role in

murine cardiac fibrosis [42] and in transdifferentiation of

myoblasts into myofibroblasts [43]. Furthermore, knocking down

SphK1 by siRNA led to reduced S1P3 mRNA expression in MCF-

7 Neo cells [44]. As a result, ERK-1/2 phosphorylation via S1P/

S1P3 was decreased, thereby abrogating establishment of the

migratory phenotype. An increased S1P3 and SphK1 expression

could conversely lead to an enhanced migratory phenotype. All

these data clearly indicate that SphK1 and S1P3 can be

functionally linked, and suggest the involvement of ERK signaling

in cell migration.

Various growth factors or pro-inflammatory stimuli [45]

including LPS [7] have been shown to activate SphK1, but we

show here for the first time that this is also the case in primary

astrocytes, as demonstrated by the increased expression of SphK1

protein at the plasma membrane fraction and further verified by

direct measurement of its activity.

Several laboratories have described signaling of S1P receptors in

astrocytes in vitro showing that S1P receptor stimulation by S1P

Figure 6. S1P and LPS induce astrocyte migration in a scratch
assay. Astrocytes were stimulated with S1P (500 nM), LPS (100 ng/ml)
or combined treatments of S1P+LPS. Cells were allowed to migrate into
the scratch for 48 h. The images show the representative migration of
astrocytes into a scratch in response to the different stimuli 48 h after
treatment (A–D). The surface of area covered by GFAP immunoreactivity
was plotted and each scratch was evaluated with an average of four
photographs, and each treatment group represented five to six
replicates (bar graph). Data are representative of at least three
independent experiments 6 SEM. One-Way ANOVA followed by
Dunnett’s post-test: *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0023905.g006
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results in phosphorylation of ERK-1/2, a pathway often associated

with cell proliferation or migration [44,46–48]. In addition,

Osinde et al. [49] showed that the S1P receptor agonist FTY720P

also induced phosphorylation of ERK-1/2 in astrocytes, which

was assumed to be predominantly mediated via S1P1 activation.

However, in their study, the S1P-mediated ERK-1/2 phosphor-

ylation was not inhibited by a S1P1 specific antagonist, but only by

a S1P1/S1P3 specific antagonist, indicating that S1P-mediated

ERK-1/2 phosphorylation occurred not only via S1P1 but also via

S1P3 receptors.

All aforementioned studies were performed under basal

conditions, i.e. without activation of astrocytes by pro-inflamma-

tory stimuli. To address the consequences of the upregulation of

S1P3 receptor by LPS, we used the selective S1P3 agonist

Compound 20 [32] to assess the magnitude of downstream

signaling. We demonstrated an increased S1P3-mediated ERK-1/

2 phosphorylation in LPS-treated rat astrocytes when compared to

non-activated cells. This enhanced phosphorylation was observed

only after stimulation of S1P3 and not of S1P1 (data not shown),

indicating that S1P3 signaling is preferentially increased in

astrocytes under pro-inflammatory conditions in vitro. This was

further supported by our data showing that LPS did not lead to an

increased expression of S1P1 receptor mRNA. Phosphorylation of

Figure 7. LPS-induced astrocyte migration is SphK1-dependent, but proliferation-independent. Astrocyte were treated with increasing
concentrations of S1P (10 nM, 100 nM, 1000 nM) (A) or LPS (1 ng/ml, 10 ng/ml, 100 ng/ml) (B), and cell proliferation was measured using a [3H]-
thymidine uptake assay. Data are representative of three independent experiments 6 SEM. One-Way ANOVA followed by Dunnett’s post-test: (A)
*p,0.05 vs. control, ***p,0.001 vs. control. Astrocytes were pre-treated or not with SKI (10 mg/ml, 1 h) and then stimulated with LPS (100 ng/ml) (C)
or stimulated with S1P (500 nM) and LPS (100 ng/ml), respectively, in the presence or absence of 10 mM antimitotic treatment (D). The graphs show
the SKI-mediated inhibition of LPS-induced migration (C) and the influence of antimitiotic treatment on S1P- or LPS-induced migration after 48 h
incubation (D). The surface of area covered by GFAP immunoreactivity is plotted. Each scratch was evaluated with an average of four photographs,
and each treatment group represented five to six replicates. Data are representative of three independent experiments 6 SEM. One-Way ANOVA
followed by Dunnett’s post-test: (C) *p,0.05, **p,0.01; (D) *p,0.05 **p,0.01 vs. respective control.
doi:10.1371/journal.pone.0023905.g007

Figure 8. S1P3 contributes to the S1P-induced CXCL1 release
by primary astrocytes. Astrocytes were pre-treated with or without
LPS (100 ng/ml) for 12 h in serum-free medium and then stimulated or
not with S1P (1 mM), a S1P3 agonist (Compound 20, 10 mM) or a S1P1

agonist (AUY954, 10 mM) for 5 h. The graph shows the effect of LPS pre-
treatment on the release of CXCL1 by S1P, S1P3 or S1P1 agonists. Data
are a pool of two independent experiments each performed in six
replicates 6 SEM. One-Way ANOVA followed by Bonferroni’s multiple
comparison test: **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0023905.g008
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Akt, another well-studied signaling pathway downstream of S1P

receptors, is associated with cell survival. The S1P3 receptor was

shown to mediate cytoprotective effects via Akt upregulation in

human endothelial cells in response to vascular endothelial growth

factor (VEGF) [50]. We show here the direct activation of Akt via

S1P3 activation in response to a S1P3 agonist, but the S1P3-

mediated Akt signaling was not further increased in LPS-activated

astrocytes, suggesting that out of the two investigated pathways,

ERK-1/2 is dominant over the Akt pathway in LPS-activated

astrocytes.

ERK-1/2 is an important player in migration or proliferation.

The SphK1/S1P axis has also been implicated in migratory

behaviour of different cell types, but some studies show that it has

a positive effect on migration [21,44], whereas others show that it

is inhibitory [51]. This may depend in part on which of the S1P

receptor is involved in signaling, as was suggested by a study which

showed that S1P1 was driving migration in endothelial cells,

whereas S1P2 was responsible for inhibition of migration [52].

In order to explore the role of the SphK1/S1P axis in the

migration of astrocytes, we performed a scratch assay, as described

by Mullershausen et al. [21], and found that both LPS and S1P

induced astrocyte migration, but LPS and S1P together did not

exhibit any additive effect. Migration in this assay could occur

through motility of the cells, but also through cell division. S1P has

been described previously as having a mitotic effect on astrocytes

through ERK activation [33], further suggesting a contribution of

proliferation to our migration assay. A direct proliferation assay

assessing 3H-thymidine incorporation confirmed that S1P induced

astrocyte proliferation, whereas LPS did not. The use of an

antimitotic factor in the scratch assay further showed that the LPS-

induced migration differs from the migration induced by

exogenous S1P, the latter being largely mediated through invasion

of the scratch by dividing cells, whereas this was not the case for

LPS. Because LPS-induced migration is prevented by inhibition of

SphK1, endogenous S1P is likely involved in the migration, but

not through proliferation. Long-term treatment with the S1P3

agonist caused cells to detach, thus we were not able to directly

assess the role of this receptor following LPS treatment.

The hypothesis of Long and colleagues [44] which suggests that

increased S1P3 and SphK1 expression can lead to enhanced

migration could thus not be verified for astrocytes, but a link

between both signaling pathways is nevertheless supported by our

observation that LPS-induced migration was dependent on SphK1

activity as demonstrated by the use of a SphK1 inhibitor. It is now

known that SphK1 can translocate to other compartments than

plasma membranes, suggesting that S1P is produced locally in

these compartments to act directly on intracellular targets [53,54],

independently of S1P receptors. Interestingly, a recent paper by

Berdyshew et al. [55] demonstrates that production of intracellular

S1P is essential to induce the motility of lung endothelial cells, even

though in their case it seemed to be through release of S1P and

signaling from outside the cells. We were not able to measure

extracellular levels of S1P in our culture system, thus it has not

been possible to assess whether LPS induced the release of S1P

through the increased activation of SphK1. However, because

exogenous S1P, at a relatively high concentration, was able to

induce proliferation, whereas LPS did not affect proliferation at

all, we would argue that the S1P produced through the LPS-

induced SphK1 activation signals differently than exogenous S1P,

and likely increased cell motility rather than proliferation, since

inhibition of SphK1 resulted in decreased LPS-induced migration

in which proliferation does not play a role.

S1P induces release of growth factors such as FGF-2 or GDNF

in astrocytes [56,57], which could act in a paracrine fashion as

neurotrophic factors. On the other hand, S1P has previously been

implicated in a number of pro-inflammatory processes. For

example, S1P induced an increase in expression levels of TNFa,

IL-1b, and iNOS and release of TNFa and NO by activated

microglia [6]. It was also shown to increase expression of pro-

inflammatory IL-8 and MCP-1 mRNA in human umbilical vein

endothelial cells through S1P1 and S1P3 [34].

In our study we found that MCP-1, RANTES and CXCL1 are

secreted by cultured primary rat astrocytes in response to S1P and

LPS, with CXCL1 showing the strongest induction. All three

factors are known to induce neutrophil and monocyte/macro-

phage recruitment into lesions, but only CXCL1 has been

described as having potential beneficial effects for oligodendro-

cytes. In LPS-activated astrocytes, S1P-induced CXCL1 release

was significantly increased compared to non-activated cells.

Furthermore we showed that a S1P3 agonist, which did not by

itself induce CXCL1 release in non-activated cells, significantly

induced release of this chemokine when cells were pre-activated

with LPS. This direct induction of the chemokine CXCL1 in

response to stimulation of S1P3 in LPS-activated astrocytes is

coherent with our observation showing a concomitant increase of

S1P3-mediated signaling in LPS-stimulated astrocytes. Further-

more, the S1P1 selective agonist AUY954, which did not increase

ERK-1/2 phosphorylation in LPS-stimulated astrocytes, also did

not induce CXCL1 release.

CXCL1 is described as a rat pro-inflammatory chemokine with

structural and functional homology to human interleukin-8 (IL-8)

[58]. It is expressed by inflammatory cells at sites of inflammation

and is involved in neutrophil and granulocyte infiltration into the

brain [59]. However, CXCL1 has also been shown to induce

proliferation of oligodendrocyte precursor cells both in vitro and in

vivo [60,61], and migration of these cells in vivo is arrested in its

presence [62]. Furthermore, mice that inducibly overexpress

CXCL1 under control of the astrocyte-specific gene GFAP

showed neuroprotection and remyelination in EAE [63]. The

same group also showed that CXCL1 was produced in MS tissues

by reactive astrocytes in close proximity to oligodendrocytes,

which express the CXCL1 receptor CXCR2 [64]. CXCL1 release

by activated astrocytes could thus act not only as a pro-

inflammatory chemokine, but could also exert beneficial effects

on remyelination in MS. Our data emphasize the role of S1P3

rather than S1P1 in increased CXCL1 release by activated

astrocytes, which probably involves ERK-1/2 signaling, as

suggested by previous studies that had shown the role of ERK-

1/2 in TLR-4 mediated release of IL-8 and MCP-1 in adipocytes

and in lung epithelial cells [65,66].

In summary, our study demonstrates that SphK1 and S1P3

expression, signaling and biological responses are increased in

LPS-activated astrocytes. Reactive astrocytes in MS lesions also

showed increased expression of SphK1 and S1P3, suggesting that

this signaling axis may play a role in mediating and amplifying

inflammatory responses in various CNS disorders in an autocrine/

paracrine fashion. Conversely, it may also lead to beneficial effects

on remyelination through release of CXCL1. How S1P3 signaling

in astrocytes induced by FTY720 could influence the disease

course in MS patients remains to be elucidated but inhibition of

SphK1/S1P3 signaling on astrocytes via inhibition of SphK1

activity could result in reduced neuroinflammation.

Materials and Methods

S1P3 expression in MS and control CNS tissues
Samples from cases clinically diagnosed as MS and confirmed

by neuropathological examination were provided by the NeuroR-

Upregulation of SphK1/S1P3 in Activated Astrocytes

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23905



esource tissue bank (UCL Institute of Neurology, London, U.K.).

Informed written consent from donors and/or their next of kin

was obtained for the donation of MS and normal control CNS

tissues to the NeuroResource tissue bank for research studies. The

NeuroResource tissue bank documentation for tissue donor

information and the consent forms for tissue donation were

approved by the Central London Research Ethics Committee 1,

London, U.K.. Permission was given by the NeuroResource MTA

Review Committee based at the UCL Institute of Neurology for

samples from the tissue bank to be used in this specific study. An

application for ethical permission to carry out this study on human

CNS tissues was approved by L’Association des Médecins du

canton de Genève et Société Médicale: Commission d’éthique

pour la Recherche Clinique en Ambulatoire, a Research Ethics

Committee based in Switzerland.

Cryostat sections (10 mm) were cut from 8 blocks of snap-frozen

MS lesions with adjacent tissue from the cerebrum of 7 MS

patients (average age 51 y (range 29–69 y); clinical disease

duration 21 y (range 8–34 y); interval between death and tissue

snap-freezing 15 h (range 8–24 h)). Sections were also cut from 5

blocks dissected from the cerebrum of 4 age-matched control cases

without CNS disease (average age 57 y (range 47–68 y); interval

between death and snap-freezing 19 h (range 11–23 h)). The tissue

blocks were dissected from periventricular or subcortical white

matter in frontal, parietal or occipital lobes and cerebellum. Anti-

myelin basic protein (MBP) (1:100; Cat. No. MAB382, Chemicon,

Temicula, CA) immunostaining of all MS lesions was performed to

assess demyelination (not shown). Oil red O and haematoxylin

histological screening (not shown) further demonstrated that 5

lesions were actively demyelinating, 1 was chronic-active and 2

were chronic-inactive.

For immunostaining sections were fixed (ice-cold acetone,

10 min), rinsed in phosphate-buffered saline (PBS) and blocked

in 10% normal goat serum and 1% bovine serum albumin (BSA;

low endotoxin, fatty acid free; Sigma, MO, USA) and incubated

(1 h, RT) with either a polyclonal anti-S1P3 antibody (1:100; Cat.

No. AB9289, Millipore, Temecula, CA) [30] or a polyclonal anti-

SphK1 antibody (1:50; Cat. No. AP7237c, Abgent Europe;

Oxfordshire, UK) [44]. Sections were then incubated with

biotinylated anti-rabbit antibody (1:500; 1 h, RT) and then for

1 h with A+B from a Vectastain ABC Kit (all from Vector

Laboratories Inc., California). Immunoreactivity was visualized by

NovaRed peroxidase substrate (Vector Laboratories), followed by

dehydration and cover-slipping with EukittTM (Kindler GmbH &

Co, Freiburg, Germany). To identify cell types expressing S1P3

and SphK1 double-immunostainings were performed by incubat-

ing sections with mouse anti-GFAP (1:200; Chemicon, Temicula,

CA) or mouse anti-CD68 (1:250; Dako, Glostrup, Denmark) with

either anti-S1P3 or anti-SphK1 (1 h, RT) followed by goat anti-

rabbit coupled to Alexa 488 (1:200) for anti-S1P3 or SphK1 and

goat anti-mouse coupled to Alexa 555 (1:200; Invitrogen, Basel,

Switzerland) for anti-GFAP or anti-CD68. Sections were mounted

in FluorSaveTM (Calbiochem, San Diego, CA) and examined on a

Leica SP2 confocal microscope.

Animal studies
All the animal work was carried out after being approved by

the internal Merck Serono Ethical Committee and the cantonal

veterinarian office (license numbers 1040/3123/0-R and 1040/

3123/0-2R), as well as by the federal veterinarian office,

according to the Swiss Law and on Animal Protection (2008,

2009) and the Swiss ordinance on Animal Experimentation

(2010).

Rat astrocyte cultures
Glial cells were isolated from newborn OFA (Oncins France

Strain A) rat cortices essentially as described previously [67].

Briefly, brains were collected in dissection medium (HBSS,

penicillin/streptomycin, HEPES 10 mM, sodium bicarbonate

0.75% (all from GIBCO/Invtirogen). Cortices were cut into small

pieces and dissociated in 10 ml dissection medium containing

0.01% trypsin and 10 mg/ml DNAse I (Sigma; 10 min, 37uC).

Following centrifugation (1006 g, 5 min), the pellet was gently

dissociated and filtered through a 70 mm mesh, centrifuged and

resuspended in culture medium (Dulbecco’s modified Eagle’s

medium (DMEM, Invitrogen), 10% fetal bovine serum, penicillin/

streptomycin) and grown on poly-D-Lysine T75 flasks in a 10%

CO2 37uC incubator for 10 days with a medium change every 3–4

days. At confluence cells were submitted to two consecutive

shaking steps to remove microglia and oligodendrocyte progenitor

cells. The remaining astrocytes were washed with PBS and

detached with PBS-EDTA incubation followed by trypsin-EDTA

treatment, and plated according to experimental requirements.

Determination of mRNA levels by real-time PCR (qPCR)
For RNA isolation 36105 cells were grown in culture medium

for 2 days in six-well plates and then treated with 100 ng/ml LPS

(from Escherichia coli 0111:B4; Sigma) for 5 h. Total RNA was

isolated using a RNeasy microkit (Qiagen, Valencia, CA) and

reverse-transcribed using a iScriptTM cDNA Synthesis Kit (Bio-

Rad, Hercules, CA). Quantitative real time PCR was performed

using a SYBR green PCR kit (Roche, Basel, Switzerland) and

PCR products were detected using an ABI PRISM 7900 sequence

detection system (Applied Biosystems, Foster City, CA). Primers

used to amplify S1P1, S1P3, SphK1 and SphK2 were from Qiagen

(S1P1: QT00441007; S1P3: QT00440909; SphK1: QT00182035;

SphK2: QT01783145) and expression of these transcripts was

quantified against the housekeeping gene glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), which was amplified using

the primers 59-GGAGACAACTGGTCCTCCAGTG-39 and 59-

ACCTGCCAAGTATGATGACATCA-39. GAPDH expression

was used as a housekeeping gene as it was not modulated by the

treatment with LPS (data not shown). Expression levels of target

genes were analyzed using the SDS 2.2.2 software system (Applied

Biosystems, Foster City, CA).

Western blot analyses
To evaluate phosphorylated ERK-1/2 and phosphorylated Akt,

36105 cells in 6-well poly-D-lysine plates were grown for two days

in culture medium. They were then pretreated for 12 h with LPS

(100 ng/ml) in serum-free medium, followed by 20 min stimula-

tion with the S1P1 selective agonist AUY954 [68] or 10 mM of the

S1P3 selective agonist Compound 20 described by Schurer et al.

(2008) [32]. Compound 20 is a dicyclohexylamide and a

nanomolar selective S1P3 agonist with an EC50 value of

0.35 mM, and is inactive against S1P1, S1P2, S1P4 and S1P5.

Both compounds were synthesized as previously described [32,68].

Subsequently cells were lysed in 50 mM Tris/HCl buffer pH 8.0

containing 150 mM NaCl, 0.02% sodium azide, 0.1% SDS, 1%

IGEPAL Ca-630, 0.5% sodium deoxycholate, 40 mM b-glycero-

phosphate, 1% NaF, 0.1% sodium orthovanadate and protease

inhibitor mixture tablet (Roche). After a brief sonication protein

concentration was determined using a BCA kit (Pierce, Rockford,

IL) and 20 mg of protein in sample buffer containing DTT (Sigma)

was loaded on a SDS polyacrylamide gel (Invitrogen, NuPAGE

Novex Bis-Tris gels, 4–12%) for electrophoresis, and transferred to

a nitrocellulose membrane. Membranes were blocked using 5%

BSA/0.05% Tween-20H/PBS for incubation with polyclonal
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antibodies against phosphorylated ERK-1/2 (1:1000) and phos-

phorylated Akt (1:500; Cell Signaling Technology, Boston, MA),

or 5% non-fat dry milk/0.05% Tween-20H/PBS for a monoclonal

antibody against b-actin (1:5000; Millipore), for 1 h and then

probed with these antibodies overnight at 4uC. Immunoreactive

bands were detected with appropriate horseradish peroxidase-

conjugated secondary antibodies and an ECL detection kit (GE

Healthcare, Little Chalfont, U.K.).

An anti-SphK1 polyclonal antibody (Cell Signaling Technology,

Cat. No.:3297s; 1:700) [69] and a polyclonal anti-S1P3 antibody

(1:200; Cat. No.: 10006373, Cayman Chemicals, Tallinn, Estonia)

[70] were used to immunodetect SphK1 and S1P3 in membrane

fractions. Equal loading of protein was controlled by expression of

b-actin after membrane stripping.

Membrane fractionation
Cells were plated on 10 cm poly-D-lysine coated Petri dishes in

culture medium (26106 cells/dish) until they reached 90% confluence.

Serum was replaced 12 h before stimulation with LPS (100 ng/ml) for

the indicated time points. The reaction was terminated by washing the

cells twice in ice-cold PBS. Then the cells were scraped into ice-cold

PBS, centrifuged (5 min, 10006g), the supernatant was removed and

cells were triturated with a 25G needle in TBS (50 mM Tris-HCl,

pH 7.4, 150 mM NaCl) and the lysate was centrifuged (30 min,

184,0006 g). The supernatant was removed and membrane proteins

were solubilised by trituration with a 25G needle in TBS/1% Triton

X-100 containing EDTA-free protease inhibitor (Roche). The lysate

was incubated on ice for 15 min with repeated vortexing. Insoluble

debris was removed by centrifugation (10 min, 20,0006 g, 4uC) and

supernatant protein concentrations were determined by BCA (Pierce).

Samples (20 mg) containing DTT and running buffer were heated

(60uC, 3 min) and loaded on a 10% SDS-page gel for electrophoresis

and Western blot analysis.

SphK1 activity assay by thin layer chromatography
SphK1 activity was measured according to Olivera [71] with a

few modifications. Briefly, cells were plated on 10 cm poly-D-

lysine coated Petri dishes in culture medium (26106 cells/dish)

until they reached 90% confluence. Serum was replaced 12 h

before stimulation and the cells than pre-incubated or not for

2 hours with 10 mg/ml of the SphK inhibitor (SKI; (2-(p-

Hydroxyanilino)-4-(p-chlorophenyl)) thiazole HCl (Merck Biosci-

ence, Darmstadt, Germany), followed by stimulation with 500 ng/

ml LPS for 45 min. The reaction was then stopped on ice and the

cells were scraped from the dishes using 20 mM Tris-HCl, buffer

pH 7.4, containing 10% glycerol, 1 mM 2-mercapoethanol,

1 mM EDTA, 1 mM sodium orthovanadate, 40 mM b-glycero-

phosphate, 0.5 mM 4-deoxypyridoxine, 15 mM NaF, 0.1%

Triton X-100 and EDTA-free protease inhibitor mixture (Roche).

After brief sonication and determination of protein concentration,

100 mg of protein was incubated in 200 ml final volume of reaction

mixture containing 50 mM sphingosine (Avanti Polar Lipids,

Alabaster, AL) in 5% Triton X-100, [c-32P]ATP (Perkin-Elmer

Life and Analytical Sciences; 10 mCi, 20 mM in 200 mM MgCl2)

and SphK1 activity assay buffer for 37uC. The reaction was

terminated by addition of 20 ml 1 M HCl followed by 400 ml of

chloroform:methanol:HCl (100:200:1, v/v/v) and allowed to stand

at room temperature for 10 min, then 125 ml chloroform and

125 ml 2 N KCl were added. Samples were centrifuged (4006 g,

5–10 min) and the organic phase was dried under a nitrogen

stream. The pellet was dissolved in 50 ml of chloroform:metha-

nol:HCl (100:100:1, v/v/v) and spotted onto a silicon TLC plate

which was placed in a TLC developing tank (1-butanol:methano-

l:acetic acid:water (80:20:10:20, v/v)). S1P radioactive spots were

exposed to X-ray film, developed with a PhosphoimagerTM and

analyzed using Quantity OneH software.

Proliferation Assay
To study the proliferation of astrocytes in response to S1P or

LPS, 5000 cells/well were plated in 96-well poly-D-lysine plates

over night in culture medium. At this density, cells are not

confluent. The next day, they were washed in serum-free medium

and then incubated with increasing concentrations of S1P (10,

100, 1000 nM) or LPS (1, 10, 100 ng/ml) in fresh serum-free

medium for 24 h. During the last 18 h [3H]-thymidine (1 mCi/ml)

was added to the wells. The cells were then harvested using a

Filtermate Harvester (Packard) and [3H]-thymidine uptake was

counted using a Microbeta Trilux counter (Perkin Elmer).

Scratch migration assay
Astrocytes were plated onto 24-well poly-D-lysine plates

(36105cells/well) and incubated overnight in 10% CO2 at 37uC.

The following day one scratch per well was made using a 1 ml pipette

tip, and cells were washed twice in PBS to remove debris. Cells were

treated with the different stimuli in DMEM 1.5% horse serum and

allowed to migrate into the scratch for 48 h. Treatments were

repeated 24 h later without changing the medium. For inhibition

studies, cells were pre-incubated with 10 mg/ml SKI (Merck

Bioscience, Darmstadt, Germany) for 1 h before performing

scratches. After the scratch, the cells were then treated with a single

dose of LPS and allowed to migrate for 48 h. To investigate the

influence of proliferation on astrocyte migration the antimitotic agent

Cytosine b-D-arabinofuranoside hydrochloride (10 mM; Cat. No. C-

6645; Sigma) was applied together with LPS (100 ng/ml) or S1P

(500 nM). After 48 h, the cells were fixed with 4% paraformalde-

hyde, washed and permeabilized with 20% methanol and then with

0.5% Tween 20H. Following washing they were incubated with

rabbit anti-GFAP antibody (1:200; Cat. No. Z0334, DAKO) for 1

day at 4uC and then incubated with a goat anti-rabbit Alexa 555

1:250 (Invitrogen) and Hoechst 1:10,000 (Sigma) in PBS for 1 h. Cells

were washed and four photographs per scratch were taken with a

fluorescence microscope in a blinded fashion. The percentage of cells

which migrated into a scratch was determined by analyzing the

percentage of area positive for GFAP using ImageJ software.

CXCL1 protein determination
CXCL1 protein, also called GRO (Growth regulated oncogene)

or CINC-1 (Cytokine induced neutrophil chemoattractant-1),

secreted by astrocytes was measured using a rat CXCL1 ELISA kit

(GRO/CINC-1C ELISA Kit, R&D Systems) following manufac-

turer’s instructions. Astrocytes were plated onto 96-well poly-D-

lysine plates (26104 cells/well) for one day then the culture

medium was replaced by serum-free medium containing LPS

(100 ng/ml) for 12 h. The next day cells were treated with a S1P3

selective agonist (Compound 20, 10 mM), S1P (1 mM; Avanti Polar

Lipids) or the S1P1 selective agonist AUY954 (10 mM) for 5 h, and

culture medium was collected and analyzed by ELISA.

Data plotting and statistical analyses
All data were plotted using GraphPad Prism version 5.02

(GraphPad Software, San Diego California USA). One-way

ANOVA was applied to evaluate statistical significances. Post-

tests and significances are described in the Figure Legends.
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