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Background: Ovarian cancer is one of the most common malignant tumors in female genital organs, and 
its incidence rate is high. However, the pathogenesis and prognostic markers of ovarian cancer are unclear. 
This study sought to screen potential markers of ovarian cancer and to explore their prognostic value.
Methods: The Cancer Genome Atlas, Gene Expression Omnibus, Gene Ontology and Kyoto Encyclopedia 
of Genes and Genomes databases were used in this study. The least absolute shrinkage and selection operator 
(LASSO), multivariate Cox regression and stepwise regression analysis were chosen to screen genes and 
construct risk model. Gene Set Enrichment Analysis (GSEA) and an immune-infiltration analysis were 
performed.
Results: One hundred thirty two co-expressed genes were found. They involved in metabolism, protein 
phosphorylation, mitochondria, and immune signaling pathways. Twelve genes significantly related to the 
survival of ovarian cancer were identified. Eight risk genes (i.e., CACNB1, FAM120B, HOXB2, MED19, 
PTPN2, SMU1, WAC.AS1, and BCL2L11) were further screened and used to construct the risk model. The 
risk status might be an independent prognostic factor of ovarian cancer, and most of the biological functions 
of genes expressed in high-risk ovarian cancer were related to synapse, adhesion, and immune-related 
functions. The clusters of CD4+ T cells and M2 macrophages were high in high-risk status samples.
Conclusions: In ovarian cancer, the abnormal expression of 8 genes, including CACNB1, FAM120B, 
HOXB2, MED19, PTPN2, SMU1, WAC.AS1, and BCL2L11, is closely related to ovarian cancer progression, 
and these genes can serve as independent prognosis markers of ovarian cancer.
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Introduction

Ovarian cancer is a common cancer in women worldwide. 
The 5-year survival rate of ovarian cancer is less than 45% (1).  
Ovarian cancer is the most common cause of death in 
gynecological malignancies (2). Because of its asymptomatic 

development, the disease is often diagnosed at an advanced, 
incurable stage (3). To treat ovarian cancer effectively, we 
need to analyze the cause of the disease. This will help to 
better predict high-risk groups that may be suitable for 
screening, and identify potential and changing etiologies, 
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thereby providing an opportunity to intervene and thus 
reduce the incidence rate (1). To date, the underlying 
molecular mechanisms of ovarian cancer are unclear, which 
impedes the development of its diagnosis and treatment. 
Thus, finding new biomarkers or biological targets of 
ovarian cancer is an urgent task.

Currently, the mechanisms of ovarian cancer-related 
genes in the development and progression of ovarian 
cancer have not been widely explored. However, previous 
research has shown that many ovarian cancer-related genes 
are involved in the pathogenesis and development of other 
tumors. For example, in erythroblastic oncogene B Receptor 
Tyrosine Kinase 2 positive (ERBB2+) gastric cancer (GC), 
CACNB1 (a drug sensitive biomarker approved by the Food 
and Drug Administration) can be used to target ERBB2. 
All of these genes work through the myelocytomatosis 
oncogene (MYC) signaling pathway. The expression of 
CACNB1 is negatively correlated with Myc activation (4).  
In glioma, homeobox B2 (HOXB2) is an independent 
prognostic marker. HOXB2 is related to the invasion and 
proliferation of glioma cells in vitro, and has a certain 
effect on the invasion of glioma cells (5). We examined 
the regulatory role of the SP1/LINC00339/miR-378a-3p/
MED19 axis in colorectal cancer, and provided new insights 
into the molecular mechanism of colorectal cancer (6). An 
in vivo clustered regularly interspaced short palindromic 
repeats (CRISPR) screening showed that protein tyrosine 
phosphatase, non-receptor type 2 (PTPN2) deletion in 
tumor cells enhances the effect of immunotherapy by 
enhancing the antigen presentation and growth inhibition 
mediated by interferon-γ. PTPN2 can be used as a target 
of tumor immunotherapy (7). Micro-ribonucleic acid-29b 
(miR-29b) can be used as a potential therapeutic molecule 
in prostate cancer. In prostate cancer cell line 3 (PC3) 
cells with miR-29b overexpression, the pro-apoptotic gene 
BCL2L11 (BIM) is significantly overexpressed. Additionally, 
in miR-29b treated xenograft tumors, BIM significantly 
induces apoptosis (8). In glioblastoma, anoctamin 6 (ANO6) 
promotes the proliferation and invasion of glioblastoma 
cells by promoting the nuclear translocation of extracellular 
signal-regulated kinase (ERK) and activating the ERK 
signaling pathway (9). In glioma cells, the downregulation 
of F-box protein 16 (FBXO16) induces β-catenin nuclear 
accumulation, which activates the wingless and int-1 
(WNT) signal, which in turn induces a highly proliferative 
and malignant state for glioma cells (10). In GC cells, 
FK866 selectively kills GC cells with EMT gene expression 
characteristics by inhibiting nicotinamide phosphoribosyl 

transferase in nicotinic acid phosphoribosyl transferase 
(NAPRT) deficient cells. In many EMT subtypes of gastric 
tumors, the loss of NAPRT expression can usually be 
achieved by promoter methylation (11,12).

In this study, The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) databases were used to 
analyze eight ovarian cancer-related genes. The results of 
a bioinformatics analysis revealed that 8 ovarian cancer-
related genes played crucial roles in the tumorigenesis, 
invasion, and metastasis of ovarian cancer. We also 
conducted a univariate analysis, multivariate regression 
analysis, and receiver operating characteristic (ROC) curve 
to explore clinical prognostic value. Gene Set Enrichment 
Analysis (GSEA) were used to analyze the corresponding 
biological functions of high- and low-risk patients, and 
the prognostic values of these markers in ovarian cancer 
were further analyzed. We present the following article in 
accordance with the REMARK reporting checklist (available 
at https://dx.doi.org/10.21037/atm-21-4606).

Methods

Data acquisition

The clinical information and gene expression information 
related to ovarian cancer were downloaded from TCGA. 
All samples were tumor samples. The GEO (GSE63885) 
data set only contained serous ovarian cancer samples. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Data processing

Data normalization processing: Tumor, node, metastasis 
data from TCGA was used. The normalization method was 
employed, and the GEO data were normalized by robust 
multi-array average (RMA) (13). Removal of low expression 
samples: sequencing data will be executed according to 
RPKM ≥1 in at least 1/3 of the samples; the normalized 
expression value of the microarray data in at least 1/3 
samples was ≥ the median value of the overall expression.

Survival analysis

To further screen the genes that were significantly related to 
the survival of ovarian cancer, a univariate Cox proportional 
hazards regression analysis was conducted to analyze TCGA 
and GEO tumor data sets. The threshold value was set as 
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P<0.05. 1,422 and 1,448 genes were screened in each data 
set, respectively. We took 132 genes co-expressed by TCGA 
and GEO tumor data sets and made 300 calculations using 
the least absolute shrinkage and selection operator (LASSO) 
method (14). Ultimately, 12 genes were identified, and the 
P values of the Cox regression analysis results for these 12 
genes from the 2 data sets were compared. These 12 genes 
were found to be significantly correlated with survival.

Construction of the risk model

A multivariable Cox regression analysis was performed to 
analyze the 12 selected genes, and the Akaike information 
criterion (AIC) information statistics were used as the 
criterion for the stepwise regression analysis (15). By 
selecting the smallest AIC information statistic to delete 
genes, 8 genes were ultimately selected to construct the risk 
model and risk formula. The following risk formula was 
used:

CACNB1 × 1.358217198 + FAM120B × 2.7846 + HOXB2 
× 0.8363 − MED19 × 2.36 − PTPN2 × 4.157 −SMU1 × 
3.0197 − WAC.AS1 × 2.5222 + BCL2L11 × 2.37420

[1]

GSEA

Next, the log2 fold changes of the genes detected in the 
ovarian cancer database were analyzed. The genes were 
sorted according to the multiple of log2 fold change (from 
large to small). To test a set of related genes in coordinated 
way, GSEA of KEGG was enforced by “gseKEGG” function 
of “clusterProfiler” R package. The pathway with P adj 
<0.05 and absolute value of Normalized Enrichment Scores 
(NES) ≥1 was considered as the enriched pathway (16). 

Immune-infiltration analysis

To explore the immune microenvironment in tumor sites 
between the high- and low-risk status samples, TCGA data 
sets were analyzed by Timer (Tumor Immune Estimation 
Resource) for tumor-infiltrating immune cell signatures and 
Cibersort (Cell type Identification By Estimating Relative 
Subsets Of RNA Transcripts) for relative fraction of 22 
types of tumor-infiltrating immune cells (17-19).

Statistical analysis

To assess the accuracy of the risk assessment model, a 
receiver operating characteristic (ROC) curve was drawn 

and the area under the curve (AUC) wad calculated. Both 
univariate Cox regression and multivariate Cox regression 
analysis were performed to examine the potential prognostic 
factors, such as age, grade, stage and risk status in TCGA 
and GEO data sets. A P value less than 0.05 was considered 
statistically significant.

Results

Functional analysis of co-expressed genes in the 2 data sets

There were 1,422 and 1,448 genes screened in TCGA and 
GEO tumor data sets, respectively, by a univariate Cox 
proportional hazards region analysis. The results showed 
that 132 genes were co-expressed (see Figure 1A). Then 
Gene Ontology (GO) and KEGG functions of these 132 
co-expressed genes were analyzed. A biological process 
(BP) analysis showed that these co-expressed genes were 
mainly involved in metabolism, protein phosphorylation, 
mitochondria, and other functions. The KEGG analysis 
showed that these genes were mainly involved in the 
immune pathway (see Figure 1B,1C).

Screening of genes related to the survival of ovarian cancer

To analyze the relationship between the ovarian cancer-
related genes and the survival of ovarian cancer patients, 132 
co-expressed genes in the 2 data sets were further screened 
by a LASSO analysis. 39 and 24 genes were selected as 
potential survival-related genes in TCGA and GEO data 
sets, respectively (see Figure 2A,2B). Interestingly, we 
found 12 common genes (see Figure 2C), and compared the 
p-values from the Cox regression analysis of these 12 genes 
in the 2 data sets (see Figure 2D). PTPN2 (protein tyrosine 
phosphatase nonreceptor 2), SMU1 (suppressor of Mec-8 
and Unc-52 protein homolog), WAC.AS1 (WAC Antisense 
RNA 1), CACNB1 (beta 1 subunit of voltage-dependent 
calcium channel), FAM120B (Family With Sequence 
Similarity 120B), ANO6 (Anoctamin-6), FBXO16 (F-Box 
Protein 16), MED19 (Mediator Complex Subunit 19), 
NAPRT (Nicotinate Phosphoribosyltransferase), BCL2L11 
(BCL2 Like 11), HOX (homeobox gene), and FBXO27 
(F-Box Protein 27) were found to be significantly correlated 
with the survival of patients with ovarian cancer.

Prognostic value of markers in ovarian cancer

To study the prognosis value of the markers in ovarian 
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cancer, we first performed a multivariate Cox regression 
model analysis on the above-mentioned 12 genes, and then 
used a stepwise regression analysis to screen out 8 risk genes 
(see Table 1). Next, the patients were grouped into the high- 
and low-risk group according to the risk median of the 
TCGA and GEO data sets, and survival curves were drawn 
(see Figure 3). As Figure 3 shows, patients with a low risk 
had a good living condition. Next, a univariate analysis and 
a multivariate regression analysis were conducted to assess 
the age, stage, grade, and risk status in TCGA and GEO 
data sets (see Tables 2-5). The results for both the single-
factor and multi-factor analyses showed that risk status 
was related to ovarian cancer survival. Thus, risk status 
can serve as an independent prognostic factor for ovarian 
cancer. To assess the accuracy of the risk-score model, a 
time-dependent ROC curve based on the risk score of the 8 
genes was drawn and the AUC was calculated (see Figure 4).  
In TCGA data set, we found that the AUCs of 1-, 3-, 
and 5-year ROC curves were 0.681, 0.667, and 0.695, 
respectively. In the GEO data set, we found that the AUCs 

of the 1-, 3-, and 5-year ROC curves of the prognostic 
model were 0.587, 0.625, and 0.66, respectively. In TCGA 
and GEO data sets, the predictive power of the 1-, 3- and 
5-year risk-score models was very high.

GSEA was conducted to explore the signaling pathways

In relation to the biological functions of genes expressed in 
ovarian cancer in high- and low-risk patients, the results of 
the GESA showed that synapses, adhesion junctions, and 
immune-related pathways were upregulated in high-risk 
samples (see Figure 5). Additionally, the first 6 pathways 
(sorted by P value from small to large) were chosen 
to draw the distribution curves of the enriched scores 
(see Figure 6). As Figure 6 shows, the genes involved in 
phosphatidylinositol-3-kinase and protein kinase B (PI3K/
Akt), mitogen-activated protein kinase (MAPK), cyclic 
adenosine monophosphate (cAMP), calcium signaling 
pathway, focal adhesion, and neuroactive ligand-receptor 
interaction pathways tend to gather in the high expression 

Figure 1 Functional analysis of co-expressed genes. (A) A univariate Cox proportional hazards region analysis was performed on TCGA and 
GEO tumor data sets; 132 co-expressed genes were identified by setting a threshold value of P<0.05. (B) The BP results showed that these 
genes were mainly involved in metabolism, protein phosphorylation, mitochondria, and other functions. (C) The KEGG analysis showed 
that these genes are involved in immune-related pathways. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; KEGG, 
Kyoto Encyclopedia of Genes and Genomes.
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Figure 2 Screening of survival-related genes. In TCGA (A) and GEO (B) data sets, 132 genes were further screened using the LASSO 
method. Genes with frequency >150 were selected as potential survival-related genes. (C) 12 common genes were screened by the LASSO 
analysis. (D) The Cox regression P values of these 12 genes in the two groups were compared. The y-axis represents the –log10 (P value) 
value, and the dotted line indicates P=0.05. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; LASSO, least absolute 
shrinkage and selection operator.
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region. Thus, the biological functions of genes expressed in 
ovarian cancer from high-risk patients are mostly involved 
in tumor proliferation and tumor immune.

Immunocyte infiltration was analyzed by Timer and 
Cibersort

To assess the proportion of immune cells between ovarian 

cancer from high- and low-risk patients, Timer and 
Cibersort were used to analyze the infiltration of immune 
cells (see Figures 7,8). Combining the results of the Timer 
and Cibersort analysis, it was clear that the high-risk ovarian 
cancer patients tended to have a high abundance of immune 
cells. The expression of B cells was low in high-risk ovarian 
cancer patient, while the expression of CD4+ T cells and 
M2 macrophages was high.

Table 1 8 genes were selected to construct a risk model by a multivariate Cox regression analysis and a stepwise regression analysis

Id Coef HR HR.95L HR.95H P value

CACNB1 1.4 3.9 1.2 13 0.023

FAM120B 2.8 16 2.2 118 0.0060

HOXB2 0.84 2.3 1.0 5.1 0.040

MED19 –2.4 0.094 0.010 0.89 0.034

PTPN2 –4.2 0.016 0.0013 0.19 0.0012

SMU1 –3.0 0.049 0.0032 0.75 0.030

WAC.AS1 –2.5 0.080 0.011 0.58 0.012

BCL2L11 2.4 11 1.1 103 0.040

Figure 3 Patients were divided into the high- and low-risk groups according to the median risk, and survival curves were drawn. (A) A 
survival analysis of the high- and low-risk groups in TCGA data set. (B) A survival analysis of the high- and low-risk groups in the GEO data 
set. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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Discussion

Ovarian cancer is one of the most common malignant 
tumors and has a poor prognosis (20). Studies have shown 
that an increase of tumor infiltrating lymphocytes in 
ovarian cancer is associated with improved survival rates, 
while an increase of immunosuppressive regulatory T 
cells is associated with a poor prognosis (21). In addition, 
the upregulation or downregulation of genes is related 
to the oncogenesis and development of ovarian cancer. 
For example, RAD51C and RAD51D are genes that are 
moderately susceptible to ovarian cancer. They have a 

certain level of risk for invasive epithelial ovarian cancer, 
and may be used for routine clinical gene detection 
together with BRCA1 and BRCA2 (22). circPLEKHM3 
inhibits ovarian cancer by targeting the miR-9/BRCA1/
DNAJB6/KLF4/AKT1axis, and thus might be developed 
into a therapeutic target for ovarian cancer. The new 
strategy of Paclitaxel combined with Akt inhibitor MK-
2206 in the treatment of ovarian cancer warrants further 
study, especially for ovarian cancer patients with a loss of 
circPLEKHM3 expression (23). YTHDF1 can enhance 
the translation of eIF3c in an m6A dependent manner, 
and promote the oncogenesis, invasion, and metastasis of 

Table 5 Survival analysis of grade, stage, and risk status in the GEO data set by a multivariate Cox regression analysis

Clinicopathological characteristics P value HR CI.low CI.up

Grade 0.068 3.18 0.924 11

Stage (3+4) 0.35 2.6 0.35 19

Risk status (low) 0.028 0.56 0.33 0.94

GEO, Gene Expression Omnibus.

Table 2 Survival analysis of age, stage, and risk status in TCGA data set by a univariate Cox regression analysis

Clinicopathological characteristics Beta HR Lower .95 Upper .95 P value

Age (>60) 0.31 1.4 1.1 1.8 0.019

Stage (3+4) 0.76 2.1 0.95 4.8 0.067

Risk_status (low) –0.68 0.5 0.39 0.66 5.30E-07

TCGA, The Cancer Genome Atlas.

Table 3 Survival analysis of age, stage, and risk status in TCGA data set by a multivariate Cox regression analysis

Clinicopathological characteristics P value HR Lower .95 Upper .95

Age (>60) 0.018 1.4 1.0 1.8

Stage (3+4) 0.058 2.2 0.98 5.0

Risk status (low) 5.92E-07 0.50 0.39 0.66

TCGA, The Cancer Genome Atlas.

Table 4 Survival analysis of grade, stage, and risk status in the GEO data set by a univariate Cox regression analysis

Clinicopathological characteristics Beta HR CI.low CI.up P value

Grade 0.86 2.4 1.1 5.3 0.036

Stage (3+4) 1.4 3.9 0.54 28 0.18

Risk status (low) –0.71 0.49 0.29 0.82 0.0069

GEO, Gene Expression Omnibus.
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Figure 4 ROC curve analysis of risk score in predicting the prognosis of lung cancer. TCGA (A) and GEO (B) data sets were used for risk 
score based on 8 genes, and a time-dependent ROC analysis was performed. ROC curves of 1, 3, and 5 years. ROC, receiver operating 
characteristic; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.

Figure 5 A GSEA was conducted to analyze the biological functions of genes expressed in high- and low-risk patients. The enriched 
pathways were screened and sorted from small to large according to the P value. The top 15 pathways are shown in a histogram. POS means 
that genes in this pathway tend to be upregulated in high-risk samples. NES, Normalized Enrichment Scores; GSEA, Gene Set Enrichment 
Analysis.
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Figure 6 Distribution curves of enriched scores. The first 6 (sorted by P value from small to large) were selected to make the distribution 
curves of the enriched scores. 

Figure 7 The proportion of immune cell infiltration in high- and low-risk status samples analyzed by Timer. The horizontal axis represents 
high- and low-risk status. The vertical axis represents the log2 cell fraction score value. The higher the value, the higher the abundance of 
cells.
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ovarian cancer. The upregulation of YTHDF1 is related 
to the poor prognosis of ovarian cancer patients (24). 
However, due to the variety of pathological types of ovarian 
cancer, the pathogenesis and etiology remain unclear. There 
is no ideal tumor marker with high specificity and sensitivity 
for the early clinical diagnosis of ovarian cancer (25).

In this study, we investigated the relationship between 
8 ovarian cancer-related genes and the oncogenesis and 
development of ovarian cancer. The results showed that the 
8 ovarian cancer-related genes are closely associated with 
the malignant degree and prognosis of ovarian cancer. Our 
study further examined the mechanism of ovarian cancer 

development. To investigate the relationship between the 
ovarian cancer-related genes and the survival rate of ovarian 
cancer patients, 12 genes associated with ovarian cancer 
survival were identified. Based on these 12 genes, a follow-
up study was conducted. First, we selected 8 risk genes 
to construct the risk model by conducting a multivariate 
Cox regression analysis and a stepwise regression analysis. 
The results showed that risk status may be an independent 
prognostic factor. In addition, ROC curves were used to 
analyze the accuracy of the risk score for the prognosis of 
ovarian cancer. The AUCs were calculated, and we found 
that the predictive value was still very high. We believe that 

Figure 8 The proportion of immune cell infiltration in high- and low-risk status samples analyzed by Cibersort. The horizontal axis 
represents high- and low-risk status. The vertical axis represents the log2 cell fraction score value. The higher the value, the greater the 
abundance of cells.
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CACNB1, FAM120B, HOXB2, MED19, PTPN2, SMU1, 
WAC.AS1, and BCL2L11 can serve as independent markers 
for ovarian cancer. Finally, GSEA and immune invasion 
were chosen to analyze the biological functions and explore 
these biological functions’ significance in patients with 
ovarian cancer.

CACNB1 is a calcium channel protein. In colon cancer, 
CACNB1 can be used to divide patients with colon 
cancer into high- and low-risk groups. Its high expression 
indicates a poor prognosis for colon cancer (26). HOXB2 
is the top gene regulated by expression quantitative 
trait loci, which has many polymorphisms related to its 
messenger ribonucleic acid (mRNA) expression level in 
lung tissue. The HOXB gene mutation may increase a 
patient’s susceptibility to ovarian cancer by regulating the 
expression of HOXB in the lung (27). In bladder cancer, 
the overexpression of HOXB2 in RT112 cells induces 
the growth and adhesion of bladder cancer cells (28). In 
colorectal cancer, the overexpression of miR-4324 inhibits 
the proliferation, migration, and invasion of colorectal 
cancer cells. Conversely, the overexpression of HOXB2 
promotes the malignant behavior of colorectal cancer 
cells. miR-4324 regulates the proliferation, migration, and 
invasion of colorectal cancer cells by targeting HOXB2 (29). 
In addition, in patients with Wilms’ tumors, high levels of 
HOXB2 and FOXC1 indicate a higher risk of advanced 
stage and lymph node metastasis, and a worse prognosis (30).

MED19 is a member of the mediator complex, which 
forms a bridge between the activator of transcription and 
RNA polymerase II (31). In breast cancer, MED19 was 
significantly increased, and was significantly correlated with 
larger tumors, higher malignancy, and a poor prognosis. 
MED19 promotes the proliferation, epithelial-mesenchymal 
transition, invasion, and migration of breast cancer cells (32). 
In cervical cancer, miR-4778-3p reduces the viability and 
the ability of proliferation and migration of cervical cancer 
cells, and may regulate the radio sensitivity of cervical 
cancer by targeting NR2C2 and MED19 (33). In GC, the 
downregulation of MED19 significantly reduces the ability 
of cell proliferation and colony formation, inducing cell 
cycle arrest in the G1 phase. In conclusion, MED19 has the 
function of promoting cell growth and may be an effective 
target for the treatment of malignant GC (31,34). In 
bladder cancer, the expression of MED19 is upregulated in 
tissues, and lentivirus-mediated MED19 inhibition via short 
hairpin RNA may be an effective method for the treatment 
of bladder cancer (35).

The variation of the PTPN2 gene locus is associated 

with inflammatory diseases, such as inflammatory bowel 
disease, rheumatoid arthritis and type 1 diabetes (36). 
An increased number of cytotoxic Tim-3+CD8+ T cells 
effectively improve anti-tumor immunity; thus, PTPN2 is 
an attractive target of tumor immunotherapy (37). In breast 
cancer, PTPN2 is not expressed in half of breast cancer 
patients. These findings show that PTPN2 plays a crucial 
role in the different subtypes of breast cancer, and affects 
the prognosis and treatment response of breast cancer (38). 
In addition, in thyroid cancer, the inflammatory response or 
oxidative stress induces the upregulation of PTPN2, leading 
to the progression of thyroid cancer (39).

BCL2L11 belongs to the BCL-2 family, and is the 
central regulatory factor of the endogenous apoptosis 
cascade response, which mediates apoptosis. In GC, miR-
24 regulates the expression of BCL2L11 by directly 
binding to the 3’untranslated region (3’UTR) of mRNA, 
thereby inhibiting apoptosis and promoting cell growth 
and migration (40). In ovarian cancer, the overexpression of 
HAND2-AS1 or BCL2L11 or the downregulation of miR-
340-5p decreases the invasion and migration of ovarian 
cancer cells, decreases cell proliferation, and increases 
apoptosis (41). In childhood acute lymphoblastic leukemia, 
BCL2L11 gene polymorphism encoding proapoptotic 
Bim protein affects the overall survival of childhood acute 
lymphoblastic leukemia patients treated with corticosteroids 
in a dose-dependent manner (42).
In this study, we analyzed the relationship between the 
expression of 8 ovarian cancer-related genes and the 
tumorigenesis, development and prognosis of ovarian 
cancer. The abnormal expression of CACNB1, FAM120B, 
HOXB2, MED19, PTPN2, SMU1, WAC.AS1, and BCL2L11 
was significantly associated with the progression of ovarian 
cancer. These 8 genes can serve as independent markers 
to evaluate the prognosis of ovarian cancer, and indicate 
that there is severe inflammatory infiltration in the tumors 
of high-risk patients. This study not only extends our 
knowledge of the pathogenesis and prognostic indicators 
of ovarian cancer, but also provides potential targets for 
targeted therapy in ovarian cancer. However, the study still 
has some limitations, that is, these conclusions have not 
been further verified by experiments, which must be paid 
attention to in our later research.

Acknowledgments

Funding: The present study was supported by the Fund of 
Doctoral Start-up of Nantong University (grant No. 15B27).



Cai et al. Biomarkers in ovarian carcinoma

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(18):1472 | https://dx.doi.org/10.21037/atm-21-4606

Page 12 of 13

Footnote

Reporting Checklist: The authors have completed the 
REMARK reporting checklist. Available at https://dx.doi.
org/10.21037/atm-21-4606

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://dx.doi.
org/10.21037/atm-21-4606). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian 
cancer. Best Pract Res Clin Obstet Gynaecol 2017;41:3-14.

2. Lheureux S, Gourley C, Vergote I, et al. Epithelial ovarian 
cancer. Lancet 2019;393:1240-53.

3. Kujawa KA, Lisowska KM. Ovarian cancer--from 
biology to clinic. Postepy Hig Med Dosw (Online) 
2015;69:1275-90.

4. Xiang Z, Huang X, Wang J, et al. Cross-Database Analysis 
Reveals Sensitive Biomarkers for Combined Therapy for 
ERBB2+ Gastric Cancer. Front Pharmacol 2018;9:861.

5. Pan X, Liu W, Chai Y, et al. Genetic and Clinical 
Characterization of HOXB2 in Glioma. Onco Targets 
Ther 2020;13:10465-73.

6. Ye H, Li W, Wu K, et al. The SP1-Induced Long 
Noncoding RNA, LINC00339, Promotes Tumorigenesis 
in Colorectal Cancer via the miR-378a-3p/MED19 Axis. 
Onco Targets Ther 2020;13:11711-24.

7. Manguso RT, Pope HW, Zimmer MD, et al. In 

vivo CRISPR screening identifies Ptpn2 as a cancer 
immunotherapy target. Nature 2017;547:413-8.

8. Sur S, Steele R, Shi X, et al. miRNA-29b Inhibits Prostate 
Tumor Growth and Induces Apoptosis by Increasing Bim 
Expression. Cells 2019;8:1455.

9. Xuan ZB, Wang YJ, Xie J. ANO6 promotes cell 
proliferation and invasion in glioma through regulating 
the ERK signaling pathway. Onco Targets Ther 
2019;12:6721-31.

10. Khan M, Muzumdar D, Shiras A. Attenuation of Tumor 
Suppressive Function of FBXO16 Ubiquitin Ligase 
Activates Wnt Signaling In Glioblastoma. Neoplasia 
2019;21:106-16.

11. Lee J, Kim H, Lee JE, et al. Selective Cytotoxicity of the 
NAMPT Inhibitor FK866 Toward Gastric Cancer Cells 
With Markers of the Epithelial-Mesenchymal Transition, 
Due to Loss of NAPRT. Gastroenterology 2018;155:799-
814.e13.

12. Nehme A, Najafabadi HS, Riazalhosseini Y. A multi-
layer post-transcriptional gene regulatory program fuels 
cancer angiogenesis and metastasis. Biotarget 2019. doi: 
10.21037/biotarget.2019.07.02.

13. Gupta MK, Behera SK, Dehury B, et al. Identification 
and characterization of differentially expressed genes from 
human microglial cell samples infected with Japanese 
encephalitis virus. J Vector Borne Dis 2017;54:131-8.

14. Zhu L, Guo W. Combined DNA Methylation and 
Transcriptomic Assessments to Determine a Prognostic 
Model for PD-1-Negative Hepatocellular Carcinoma. 
Front Cell Dev Biol 2021;9:708819.

15. Zhang Z, Liu ZP. Robust biomarker discovery for 
hepatocellular carcinoma from high-throughput data by 
multiple feature selection methods. BMC Med Genomics 
2021;14:112.

16. Subramanian A, Tamayo P, Mootha VK, et al. Gene set 
enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc Natl 
Acad Sci U S A 2005;102:15545-50.

17. Guo Y, Luo W, Huang S, et al. DTYMK Expression 
Predicts Prognosis and Chemotherapeutic Response and 
Correlates with Immune Infiltration in Hepatocellular 
Carcinoma. J Hepatocell Carcinoma 2021;8:871-85.

18. Newman AM, Liu CL, Green MR, et al. Robust 
enumeration of cell subsets from tissue expression profiles. 
Nat Methods 2015;12:453-7.

19. Li T, Fan J, Wang B, et al. TIMER: A Web Server for 
Comprehensive Analysis of Tumor-Infiltrating Immune 
Cells. Cancer Res 2017;77:e108-10.

https://dx.doi.org/10.21037/atm-21-4606
https://dx.doi.org/10.21037/atm-21-4606
https://dx.doi.org/10.21037/atm-21-4606
https://dx.doi.org/10.21037/atm-21-4606
https://creativecommons.org/licenses/by-nc-nd/4.0/


Annals of Translational Medicine, Vol 9, No 18 September 2021 Page 13 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(18):1472 | https://dx.doi.org/10.21037/atm-21-4606

20. Wang JY, Lu AQ, Chen LJ. LncRNAs in ovarian cancer. 
Clin Chim Acta 2019;490:17-27.

21. Santoiemma PP, Powell DJ Jr. Tumor infiltrating 
lymphocytes in ovarian cancer. Cancer Biol Ther 
2015;16:807-20.

22. Song H, Dicks E, Ramus SJ, et al. Contribution of 
Germline Mutations in the RAD51B, RAD51C, and 
RAD51D Genes to Ovarian Cancer in the Population. J 
Clin Oncol 2015;33:2901-7.

23. Zhang L, Zhou Q, Qiu Q, et al. CircPLEKHM3 acts 
as a tumor suppressor through regulation of the miR-9/
BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. 
Mol Cancer 2019;18:144.

24. Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 
promotes ovarian cancer progression via augmenting 
EIF3C translation. Nucleic Acids Res 2020;48:3816-31.

25. Dong X, Men X, Zhang W, et al. Advances in tumor 
markers of ovarian cancer for early diagnosis. Indian J 
Cancer 2014;51 Suppl 3:e72-6.

26. Gao P, He M, Zhang C, et al. Integrated analysis of gene 
expression signatures associated with colon cancer from 
three datasets. Gene 2018;654:95-102.

27. Clemenceau A, Boucherat O, Landry-Truchon K, 
et al. Lung cancer susceptibility genetic variants 
modulate HOXB2 expression in the lung. Int J Dev Biol 
2018;62:857-64.

28. Liu J, Li S, Cheng X, et al. HOXB2 is a Putative Tumour 
Promotor in Human Bladder Cancer. Anticancer Res 
2019;39:6915-21.

29. Li H, Zhu G, Xing Y, et al. miR-4324 functions as a tumor 
suppressor in colorectal cancer by targeting HOXB2. J Int 
Med Res 2020;48:300060519883731.

30. Jing P, Zou J, Zhang L, et al. HOXB2 and FOXC1 
synergistically drive the progression of Wilms tumor. Exp 
Mol Pathol 2020;115:104469.

31. Ding XF, Huang GM, Shi Y, et al. Med19 promotes 
gastric cancer progression and cellular growth. Gene 
2012;504:262-7.

32. Zhang X, Gao D, Fang K, et al. Med19 is targeted by miR-
101-3p/miR-422a and promotes breast cancer progression 
by regulating the EGFR/MEK/ERK signaling pathway. 

Cancer Lett 2019;444:105-15.
33. Zhang Y, Li P, Hu J, et al. Role and mechanism of miR-

4778-3p and its targets NR2C2 and Med19 in cervical 
cancer radioresistance. Biochem Biophys Res Commun 
2019;508:210-6.

34. Zhang Z, Zhang W. Fragmentation patterns of circulating 
cell-free DNA demonstrate biomarker potential for human 
cancers. Biotarget 2019;3:16.

35. Zhang H, Jiang H, Wang W, et al. Expression of Med19 
in bladder cancer tissues and its role on bladder cancer cell 
growth. Urol Oncol 2012;30:920-7.

36. Spalinger MR, Manzini R, Hering L, et al. PTPN2 
Regulates Inflammasome Activation and Controls Onset 
of Intestinal Inflammation and Colon Cancer. Cell Rep 
2018;22:1835-48.

37. LaFleur MW, Nguyen TH, Coxe MA, et al. PTPN2 
regulates the generation of exhausted CD8+ T cell 
subpopulations and restrains tumor immunity. Nat 
Immunol 2019;20:1335-47.

38. Veenstra C, Karlsson E, Mirwani SM, et al. The effects 
of PTPN2 loss on cell signalling and clinical outcome in 
relation to breast cancer subtype. J Cancer Res Clin Oncol 
2019;145:1845-56.

39. Zhang Z, Xu T, Qin W, et al. Upregulated PTPN2 
induced by inflammatory response or oxidative stress 
stimulates the progression of thyroid cancer. Biochem 
Biophys Res Commun 2020;522:21-5.

40. Zhang H, Duan J, Qu Y, et al. Onco-miR-24 regulates cell 
growth and apoptosis by targeting BCL2L11 in gastric 
cancer. Protein Cell 2016;7:141-51.

41. Chen J, Lin Y, Jia Y, et al. LncRNA HAND2-AS1 exerts 
anti-oncogenic effects on ovarian cancer via restoration 
of BCL2L11 as a sponge of microRNA-340-5p. J Cell 
Physiol 2019;234:23421-36.

42. Plesa M, Gagné V, Glisovic S, et al. Influence of 
BCL2L11 polymorphism on osteonecrosis during 
treatment of childhood acute lymphoblastic leukemia. 
Pharmacogenomics J 2019;19:33-41.

(English Language Editor: L. Huleatt)

Cite this article as: Cai J, Qiu J, Wang H, Sun J, Ji Y. 
Identification of potential biomarkers in ovarian carcinoma 
and an evaluation of their prognostic value. Ann Transl Med 
2021;9(18):1472. doi: 10.21037/atm-21-4606


