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Abstract
The use of counts of unmarked migrating animals to monitor long term population trends

assumes independence of daily counts and a constant rate of detection. However, migra-

tory stopovers often last days or weeks, violating the assumption of count independence.

Further, a systematic change in stopover duration will result in a change in the probability of

detecting individuals once, but also in the probability of detecting individuals on more than

one sampling occasion. We tested how variation in stopover duration influenced accuracy

and precision of population trends by simulating migration count data with known constant

rate of population change and by allowing daily probability of survival (an index of stopover

duration) to remain constant, or to vary randomly, cyclically, or increase linearly over time

by various levels. Using simulated datasets with a systematic increase in stopover duration,

we also tested whether any resulting bias in population trend could be reduced by modeling

the underlying source of variation in detection, or by subsampling data to every three or five

days to reduce the incidence of recounting. Mean bias in population trend did not differ sig-

nificantly from zero when stopover duration remained constant or varied randomly over

time, but bias and the detection of false trends increased significantly with a systematic

increase in stopover duration. Importantly, an increase in stopover duration over time

resulted in a compounding effect on counts due to the increased probability of detection and

of recounting on subsequent sampling occasions. Under this scenario, bias in population

trend could not be modeled using a covariate for stopover duration alone. Rather, to

improve inference drawn about long term population change using counts of unmarked

migrants, analyses must include a covariate for stopover duration, as well as incorporate

sampling modifications (e.g., subsampling) to reduce the probability that individuals will be

detected on more than one occasion.
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Introduction
Daily counts of unmarked animals migrating past or stopped at a specific geographic location
(migration counts) have been used as an index of abundance to monitor long term population
change, particularly for taxa that breed or winter in inaccessible, unpopulated, or otherwise
unmonitored geographic regions (e.g., whales [1], songbirds [2,3], raptors [4], shorebirds [5],
insects [6]). The use of daily migration counts to estimate long-term population trends relies
on several assumptions, including that a new cohort of individuals is detected each day, and
that the proportion of the monitored population detected remains constant over time (assump-
tions of count independence and proportionality, respectively)[1,7]. The assumption of count
independence is likely reasonable for populations counted while actively migrating past a
count site, but is more likely to be violated for populations that are counted while on migratory
stopover, which for songbirds and shorebirds, can last several days or even weeks [8–10].
Regardless, violation of the assumptions of independence and proportionality are often ignored
in analyses of population trends using migration counts [11,12], because, it is argued, if stop-
over duration and its influence on detection vary randomly and not systematically over time,
annual indices of population size should provide an unbiased index of population trend.

Many factors can contribute variability to the proportion of a population detected by migra-
tion counts each day and year. Annual variation in migration route [13,14] will influence the
proportion of the monitored population present to be detected at a site each year. Stopover
behaviour, including daily probabilities of arrival (immigration), departure (emigration) and
“survival” (1—probability of departure), and therefore stopover duration [8,15], can also vary
with climate [9], weather [15,16], physiological condition [17], habitat [18,19], and presence of
predators [10]. Further, individuals present at a site might be unavailable to be perceived by an
observer if they are not visible or vocalizing during the sampling period [20–22]. In his review
of the factors influencing the availability and perceptibility of birds, Johnson [23] suggests sea-
son, weather, observer skill, sampling effort and habitat structure are potentially confounding
variables.

Unexplained variability in the various components of detection can reduce precision of
monitoring programs [20], but a systematic change in detection can violate the assumption of
proportionality and bias trends, leading to false inference from the data [10,22,24]. Counts of
unmarked migrants reflect the proportion of the population detected by the sampling protocol
[7], and detection probability is not directly estimable from the data. As a result, correlates of
detection, including observer skill [25], date or local weather conditions [12,19], are often used
as covariates in trend analyses to account for their potential influence on the proportion of the
migrating population detected during a count. Importantly, a systematic change in stopover
duration [9,10,24] in particular has the potential to influence the proportion of migrants that
are detected not only once, but also the proportion of migrants that are detected on more than
onecount occasion, thus violating both the assumptions of proportionality and count indepen-
dence. A systematic increase in stopover duration of the Eurasian reed warbler (Acrocephalus
scirpaceus), for example, was detected at a ringing station in Germany, and while the cause is
unknown, habitat succession at that site may have played a role [24]. Alternatively, stopover
duration of Western sandpipers (Calidris mauri) at Sydney Island, British Columbia, Canada,
declined consistently from 8.4 days in 1992 to 2.7 days in 2001 in response to increasing preda-
tion risk [10]. Early migrating warblers captured at a migration monitoring site in Nova Scotia,
Canada, also experienced an overall decline in stopover duration between 1996 and 2007,
though inter-annual fluctuations were attributed partially to the influence of climatic cycles on
stopover behaviour [9]. The effectiveness of using a covariate for detection to improve
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inference drawn from trends in counts of unmarked migrants when a temporal change in stop-
over duration has occurred has not been fully explored.

Using simulated migration count data with known constant rate of change, we tested
whether systematic variation in stopover duration influenced the accuracy and precision of
estimated trends in unmarked migration counts. We simulated data with previously observed
low to high daily probabilities of departure [9], and therefore stopover duration, that either
remained constant or varied randomly over a 20 year period. We compared results across sim-
ulated datasets with cyclic variation (e.g. in response to climatic cycles like NOA and ENSO
[9]) or a systematic increase in stopover duration over the same time period. Further, we tested
whether any bias in population trend that resulted from a systematic increase in stopover dura-
tion could be modeled by incorporating a covariate for annual stopover duration (assuming an
independent estimate was available) or by sampling less frequently to reduce the probability of
counting the same individual on more than one sampling occasion.

Conservation efforts often rely on broad-scale monitoring programs to provide assessments
of population status and trend to guide management efforts (e.g., [26]). In order to use
unmarked migration counts as a reliable index of population trend, it is important to under-
stand how systematic changes in detection, and in this case stopover duration, influence trend
estimates, so that appropriate measures can be taken to model, or provide caution about, these
sources of error. Although our simulation is modelled on the biology of a nocturnally migrating
songbird, the results are applicable to any commonly-detected species counted on migratory
stopover, where counts represent the total number of individuals detected at a count site each
day during a migration season over multiple years, and where individuals are unmarked and
not individually identifiable (e.g. monarch butterflies, Danaus plexippus [6], shorebirds [5]).

Methods

Migration Count Simulation
Counts of unmarked migrating individuals are typically collected daily during a migration over
a series of years. Sampling methods include visual counts of individuals actively migrating past
a count site (e.g., raptors [11], whales [1]), census or transect counts of individuals on migra-
tory stopover (e.g., monarchs [6], bees [27], shorebirds [5]), or as an ‘estimated total’ derived
from a combination of census, visual counts, and daily banding totals from mist-netting, also
on migratory stopover (e.g., songbirds [3,12,28]). We simulated migration count data for
white-throated sparrows (Zonotrichia albicollis) counted on migratory stopover using program
R [29] (See S1 Appendix and S1 Table for simulation and parameterization). White-throated
sparrow counts are representative of any species that is commonly detected by migration
counts, i.e., individuals are detected consistently throughout a migration with a low proportion
of zero-observation days (S2 Table). The simulation model included two sub-models: an
annual (among-year) model to model variability and trend in the size of the migratory count
population across years, and for each year, a seasonal sub-model to model the distribution of
counts among days in a year.

For the annual model, the total number of individuals migrating and available to be counted
in year (i) one, ni = 1, was defined such that simulated data approximated the observed mean
total count (across years) observed for the species in spring at the tip station of the Long Point
Bird Observatory (LPBO), Ontario, Canada, between 1961–2011 (S2 Table). Daily estimated
total data from LPBO were accessed online [30], and were collected at that site with the permis-
sion of the Ontario Ministry of Natural Resources and Forestry (OMNRF), Bird Studies Can-
ada, and Long Point Bird Observatory, with additional permitting provided by Environment
Canada—Canadian Wildlife Service (Permit Number: 10169). All of LPBO field and sampling
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procedures were approved by the OMNRF Animal Care and Use Committee (Protocol Num-
ber: 07–36).

Given the defined size of the count population in the first year, the total number of individu-
als available to be counted in all subsequent years, ni>1, was then a function of ni = 1, a defined
constant rate of change (trend), β, random normal error on the log scale (i.e., stochastic varia-
tion in annual counts), and Poisson error on the response scale (i.e., process variation in annual
counts):

ni ¼ PoisðliÞ ¼ Poisððni�1 � ð1þ bÞÞ þ εiÞ; εi~Nð0; s2Þ:

For the seasonal sub-model, ni was distributed across days, j, in a migration season each
year using a Jolly-Seber (JS) simulation model [31], which required specification of annual
population size (ni), daily probability of arrival into the count site (bij), daily probability of sur-
vival (phiij) and daily probability of capture (pij). Daily probability of arrival bij was modeled by
first simulating a Poisson mean ‘count’ as the product of annual population size (ni) and a sea-
sonal probability of movement, s, with temporal autocorrelation among days:

nij~PoisðlijÞ~Pois ni � sij � exp c� xij �
j� 1

ndaysi � 1

� �
� nprediðj¼ndaysiÞ

� �� �
;

Where c was a constant, ndays was the number of days in the migration season in year i, and
npred was a function of an autocorrelation coefficient, a, and the previous day’s count, i.e.,

nprediðjþ1Þ ¼ a� xij;

xij was derived from the addition of random normal error on npred, i.e.,

xij~Nðnpredij; s
2Þ;

and sij was the product of a normal density and binomial probability of moving, which allowed
probability of arrival at the count site to be highest mid-season during peak migration:

sij~binomðndaysi; PmÞ � ð2� pi� sigmaÞ�0:5 � exp �0:5� ðj� mÞ 2
sigma

� �� �
;

where Pm was the probability of migrating on a given day, and remained constant at 0.85. The
resulting nij were transformed into a daily probability of arrival, bij, by scaling values to add to
one.

In addition to daily probability of arrival, the JS simulation also required specification of
daily probabilities of survival (phij) and capture (pij). Daily probability of survival represented
the binomial probability that birds ‘survived’ and remained at the count site until the following
day, and is therefore directly related to daily probability of departure from the count site (1-
phiij), and to stopover duration [8]. We thus simulated variability in stopover duration among
years by allowing survival to be constant across days in a year (i.e., phiij = phii for all days j) and
to either remain constant (phii = 0, 0.2, 0.5, or 0.7), or to vary 1) randomly, 2) cyclically (5 year
cycle), or 3) linearly among years between 0.4–0.5, 0.35–0.55, 0.3–0.6, 0.25–0.65 or 0.2–0.7
(S1 Fig). The range in probability of survival between 0.2–0.7 simulated here corresponds to
the approximate range in mean departure probability observed for warblers at a migratory
stopover site in Atlantic Canada [9], and a linear increase from 0.2 to 0.7 over a 20 year period
resulted in a range of mean stopover duration from 1.2 to 3.4 days in our simulated datasets
(S2 Fig). A constant survival probability of zero (departure probability = 1) was used as a con-
trol to simulate all birds departing after the current day’s count, which ensured independence
of daily counts. Daily probability of 'capture', or in this case probability of observer detection,
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pij, was assumed constant at 0.30 across days and years. The realized count on a given year and
day (yij) was the product of the sum of newly arriving individuals and individuals that survived
and remained on site following the previous day’s count, and the binomial probability of
observer detection, given presence. For each level stopover duration (as indexed by phii) exam-
ined, we simulated 100 datasets for each of three rates of population change: a decline of 20%
in 20 years (-1.2%year-1), no change (0%year-1), and an increase of 20% in 20 years (+0.96%
year-1).

Simulation parameter values (S1 Appendix, S1 Table) were chosen such that simulated data-
sets approximated the distribution of real migration count data collected for white-throated
sparrow at the tip station of LPBO, Ontario, Canada (1961–2011), in terms of mean and coeffi-
cient of variation (CV) of annual and daily counts, proportion of 0-observation days, and
length of the migration season (S3–S6 Tables). The distribution of real and simulated count
data were compared using quantile-quantile (Q-Q) plots. Correspondence of simulated and
real datasets was assessed by visual inspection of Q-Q plots and by testing the Pearson correla-
tion of Q-Q scores. A correlation coefficient near one suggests quantiles of the two datasets
originate from a similar distribution of counts, even if one dataset has a higher mean count
than the other (S7 Table).

Statistical Analysis
Trend in migration counts was estimated for each simulated dataset in a Bayesian framework
using integrated nested Laplace approximation using the R package R-INLA [32] in R version
3.0.0 [29] (S2 Appendix). Counts on day j, year i(yij) were assumed to result from a negative
binomial distribution, where yij~NegBinom(μij,ϕ), where ϕ is the dispersion parameter. Mean
counts, μij, were then fit using a log-linear regression model with year as a continuous explana-
tory variable to estimate population trend, and first and second order polynomial terms for day
to account for the seasonal pattern of migration:

logðmijÞ ¼ b1 � yeari þ b2 � dayj þ b3 � dayj
2 þ εi þ Zij;

where εi was a random effect for year which assumed independent and identically distributed
errors, i.e., εi~Normal(0,σ2), and ηij a random effect that assumed first order autoregressive
(AR1) temporal correlation of errors among days j in year i [33]. An AR1 model for the ran-
dom year effect resulted in low autocorrelation (Rho) estimates, and was deemed unnecessary
for these simulations. The estimated year coefficient (β1) was back-transformed into a trend or
constant rate of population change (%year-1) using 100×(exp(estimate)-1). Bias in estimated
trend was then the difference between estimated and simulated trends.

For simulations with constant stopover duration, we tested whether bias in estimated trend
varied among simulated factor levels by fitting a linear regression model that assumed bias of
the estimated trend was a function of two factors: 1) direction of simulated trend (declining:
-1.2%year-1; no change: 0%year-1, or increasing: 0.96%year-1) and 2) simulated survival proba-
bility (an index of stopover duration; phii = 0, 0.2, 0.5, or 0.7). For simulations where stopover
duration was allowed to vary, we fit a linear regression model which assumed bias was a func-
tion of the direction of simulated trend, and an interaction between pattern of change in stop-
over duration (random, cyclic, or linear) and magnitude of change in stopover duration (where
phii varied between 0.4–0.5,. . ., or 0.2–0.7). All linear regression models were fit using the lm
function in R [29].

We then tested whether bias in estimated trend imposed by a systematic increase in stop-
over duration could be modeled using a covariate for detection by running a second log-linear
regression model in INLA using simulated daily survival probability (a correlate of stopover
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duration) as an annual covariate:

logðmijÞ ¼ b1 � yeari þ b2 � dayj þ b3 � dayj
2 þ b4 � phii þ εi þ Zij

In our case, we used perfect information on the underlying source of bias (i.e., phii) as a covari-
ate. Using real data, stopover duration (or a correlated covariate), would need to be estimated
through the collection of additional data (see Discussion). However, this exercise served to test
whether, under perfect conditions when stopover duration is known, a covariate is sufficient to
remove any bias in estimated trend that results from a systematic change in stopover duration,
given that such a change will influence both the probability of detecting an individual and the
probability of recounting individuals on one or more sampling occasions. Regressions were
run on datasets simulated to have a systematic increase in stopover duration and a declining
trend in counts (- 1.2%year-1) over the 20-year period. Because any bias in estimated trend
would result at least partially from an increased probability of counting the same individuals
on successive days, we ran the regression on the full simulated dataset, as well as on the same
datasets subset to every third or fifth observation day, to test whether subsampling can reduce
bias in estimated trend by lowering the probability that an individual will be detected on more
than one count occasion. Using the estimated trends, we then tested whether the addition of a
covariate and/or subsampling influenced bias in trend by fitting a linear regression model (lm,
R version 3.0.0 [29]) which assumed that bias was a function of a three-way interaction
between magnitude of change in stopover duration (where phii increased linearly between 0.4–
0.5,. . ., or 0.2–0.7), whether a covariate for detection probability was included or not, and
whether data were subset (no subset, every three days, or every five days).

In addition to bias, we also examined how simulated variation in stopover duration, simu-
lated rate of population change, the use of a covariate for detection and subsampling influenced
accuracy and precision of trend estimates by examining 1) ‘coverage’ of credible intervals, or
the proportion of simulations where the simulated trend fell within the 95% credible interval of
the estimated trend, 2) ‘power’ to detect a ‘significant’ trend, or the proportion of simulations
with good coverage and credible intervals that did not include zero, and 3) rate of ‘error’, or the
proportion of simulations with poor coverage (simulated trend fell outside the credible interval
of the estimated trend) and credible intervals that did not include zero. Rate of error describes
the probability that false inference will be drawn from the data.

Results
When stopover duration was held constant, mean bias in estimated trend did not differ with
direction of simulated trend (negative, no change, positive) or among simulated magnitudes of
change in stopover duration (Table 1, Fig 1a). Coverage of confidence limits was greater than
86%, rate of error was less than 12%, but power was also low, at less than 6% (Fig 2a).

When stopover duration varied randomly, cyclically or increased systematically over time,
mean bias in estimated trend did not differ with simulated direction of trend (Table 2, Fig 1b).
However, compared to when stopover duration varied randomly, trends became increasingly
positively biased as the simulated increase in stopover duration became more extreme, and to a
lesser extent, increasingly negatively biased as the amplitude of cyclical change in stopover
duration increased, due in part to the simulated cycle ending at a lower probability of survival
than it began (S1 Fig; Table 2, Fig 1b). Credible intervals of estimated trends had greater than
85% coverage and probability of error was less than 10% when stopover duration varied ran-
domly or cyclically (Fig 2b). However, coverage declined to less than 40% and error increased
to over 60% as the magnitude of the simulated increase in stopover duration became greater
(Fig 2b). Power to detect a significant trend was typically less than 5%, but for datasets
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simulated to have an increasing trend, an increase in stopover duration resulted in an increase
in power to almost 10% (Fig 2b) due to fewer credible intervals that included zero as estimated
trends became increasingly positively biased.

Compared to datasets analyzed without a covariate or subsampling, bias in estimated trend
imposed by a systematic increase in stopover duration was not influenced by subsampling data
to every third or fifth observation day (Table 3, Fig 3). Trends were less biased with the inclu-
sion of a covariate for detection, but the covariate did not remove the bias completely. Combin-
ing subsampling with a covariate for stopover duration was more successful at minimizing
bias, particularly when data were subset to every fifth observation day (Fig 3). Including both a
covariate and subsampling in the estimation of trends largely compensated for the effect that a
systematic increase in stopover duration had on coverage of credible intervals, power and
error, and for all magnitudes of change in stopover duration, resulted in over 85% coverage,
less than 20% error, but power remained below 5% (Fig 4).

Discussion
Conservation efforts rely on monitoring programs to guide management priorities through
accurate and precise assessments of population status and long-term trend [26]. However, eco-
logical systems are inherently complex and variable, and in the analysis of time series data, the
potential exists for any number of factors to generate a systematic change in the proportion of
a population that is detected [21,22]. If left unaccounted for, a systematic change in detection
can lead to the estimation of false population trends [21,22,24]. Our results support the asser-
tion that a violation of the assumption of proportionality through a systematic increase in
probability of detection, and specifically in stopover duration, will bias trends and lead to a
higher probability of drawing false inference from migration count data. As stopover duration
increased with an associated linear increase in daily survival probability from 0.25 to 0.65 or
from 0.20 to 0.70 in 20 years, probability of error, and therefore probability of drawing false
inference from the data, exceeded 60%. Compared to previously observed rates of change in
departure probability for early migrating warblers (0.2–0.8 in 11 years) [9] and in stopover
duration for shorebirds (8.4–2.7 days in 10 years) [10], the probability of falsely detecting a
trend observed here should be considered conservative. To a lesser extent, cyclical variation in
stopover duration also has the potential to bias estimated trends when the amplitude of fluctua-
tions is large and cycles aren’t completed during the time span analyzed, which in real situa-
tions cannot be known. Random variation in stopover duration did not bias trends, but as
expected, the resulting unexplained variation in migration counts did result in lower power
compared to when stopover duration remained constant.

Table 1. Influence of simulated direction of trend in annual counts and length of stopover duration on bias of estimated trends, when stopover
duration remained constant over time.

Parameter Estimate SE t value P

Intercept 0.00065 0.0011 0.58 0.56

Trend (-1.2%/year) -0.00061 0.0011 -0.55 0.58

Trend (0.96%/year) -0.00006 0.0011 -0.053 0.96

phi (0.2) 0.00012 0.0013 0.10 0.92

phi (0.5) 0.00110 0.0013 0.83 0.41

phi (0.7) 0.00169 0.0013 1.32 0.19

Reference categories for the independent variables in the linear regression model were no trend (Trend = 0%year-1) and no stopovers > 24 hours (phii =

0).

doi:10.1371/journal.pone.0130137.t001
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Fig 1. Bias in estimated population trend when stopover duration was constant or varied temporally.
Bias (%year-1) in estimated trend in migration counts (estimated—simulated trend), when trend was
estimated using datasets simulated to have either an increasing trend (0.96%year-1), no long term trend (0%
year-1) or a declining trend (-1.2%year-1) in the count population, and where stopover duration a) remained
constant across years (indexed by daily survival probability, phii = 0, 0.20, 0.50, or 0.70), or b) varied
randomly, cyclically or increased systematically over time by various magnitudes (where phii varied between
0.40–0.50, 0.35–0.55, 0.30–0.60, 0.25–0.65 or 0.20–0.70). Lines of the boxplots represent the 25th

percentile, median and 75th percentile of bias estimates across 100 simulated datasets. The horizontal
dashed line depicts no bias in trend.

doi:10.1371/journal.pone.0130137.g001
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In order to improve inference of population trends derived from counts of unmarked
migrants, monitoring programs often use data on correlates of detection, including weather
[12,19] and observer [25], as covariates in trend analyses. However, when the assumption of
count independence is violated by a systematic increase in the length of migratory stopover,
our results suggest that a reliance on covariates to model detection probability is not sufficient
to improve inference of population trends. This is true even though the covariate we tested rep-
resented the known underlying factor influencing detection probability, without estimation
error. As stopover duration increased over time, individuals became more likely to stay on site
and be detected on an increasing number of sampling occasions. Lacking the ability to exclude
recaptures, as is typically done using counts of marked birds on migratory stopover [19,34], the
resulting inflation or compounding effect on daily counts over time was not accounted for by a
covariate for detection probability alone. Rather, our results suggest that in order to minimize
the probability of drawing false inference from unmarked migration count data, analyses of
population trends must model the underlying change in stopover duration, as well as incorpo-
rate modifications to the sampling protocol to either exclude ‘recaptures’ (e.g. only count birds

Fig 2. Coverage of credible intervals, power and rate of error of estimated population trends. Proportion of 100 simulated datasets with good coverage
of credible intervals (simulated trend fell within credible intervals of estimated trend), power to correctly detect a ‘significant’ trend (good coverage; credible
intervals did not include zero), and rate of error, or rate of falsely detecting a trend (poor coverage; credible intervals did not include zero). Results are shown
for datasets simulated to have a declining trend (-1.2%year-1), no trend (0%year-1), or increasing trend (0.96%year-1) in the count population, and where
stopover duration a) remained constant across years (indexed by daily survival probability, phii = 0, 0.20, 0.50 or 0.70), or b) varied randomly, cyclically or
increased systematically among years by various magnitudes (where phii varied between 0.40–0.50 and up to 0.20–0.70).

doi:10.1371/journal.pone.0130137.g002
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newly arriving at a site) or minimize the probability that individuals will be counted on more
than one sampling occasion. These modifications would also be required if stopover duration
were declining instead: in this case, individuals would become less likely to be detected on one
or more sampling occasions over time, such that counts would become less inflated by recount-
ing, and estimated population trends more negative than actual. Alternatively, while rarely
detected species would be subject to similar biases, the sporadic presence of only one or a few
individuals at a site at a time may make the exclusion of probable or known recaptures from
daily totals possible, and would essentially limit observations to first captures as with marked
migration counts [34]. In this case, a systematic change in any factor influencing detection
could still bias trends [10,19,24] and should be modeled, but subsampling would no longer be
required to limit recounting.

Ideally, monitoring programs would be designed to allow for the direct estimation of detec-
tion and recapture. Temporally or spatially replicated counts of territorial animals (i.e., under
the assumption of population closure) collected annually, for example, can be used to estimate
population trend while explicitly modeling components of detection [21,22,35]. This would
likely be considered the ideal sampling protocol to monitor population abundance and distri-
bution ofcommonly detected species with accessible breeding grounds [35,36]. However,
migration monitoring typically targets species that are either secretive breeders not commonly
detected by breeding surveys (e.g., raptors [11]), or species that breed in inaccessible, remote
locations, where breeding surveys can be logistically or financially unrealistic [1,12]. This is the
case for many long-distance landbird migrants that breed in the northern and boreal forests of
Canada. A large proportion of the breeding population of many of these species lies north of
human populated regions [37], and therefore beyond the range of other large-scale monitoring

Table 2. Influence of simulated direction of trend in annual counts andmagnitude and pattern of change in stopover duration (indexed by daily
survival probability phii) on bias of estimated trends.

Parameter Estimate SE t value P

Intercept 0.0007 0.0011 0.60 0.551

Trend(-1.2%/year) -0.0002 0.0007 -0.31 0.759

Trend(0.96%/year) 0.0005 0.0007 0.81 0.417

Cyclic -0.0041 0.0015 -2.83 0.005

Linear 0.0161 0.0015 11.03 <0.0001

Phi(0.35–0.55) 0.0016 0.0015 1.11 0.269

Phi(0.30–0.60) 0.0018 0.0015 1.21 0.228

Phi(0.25–0.65) -0.0006 0.0015 -0.43 0.669

Phi(0.20–0.70) -0.0019 0.0015 -1.31 0.192

Cyclic:Phi(0.35–0.55) -0.0038 0.0021 -1.84 0.065

Linear:Phi(0.35–0.55) 0.0147 0.0021 7.12 <0.0001

Cyclic:Phi(0.30–0.60) -0.0054 0.0021 -2.57 0.010

Linear:Phi(0.30–0.60) 0.0298 0.0021 14.43 <0.0001

Cyclic:Phi(0.25–0.65) -0.0070 0.0021 -3.37 0.001

Linear:Phi(0.25–0.65) 0.0506 0.0021 24.48 <0.0001

Cyclic:Phi(0.20–0.70) -0.0082 0.0021 -3.97 <0.0001

Linear:Phi(0.20–0.70) 0.0737 0.0021 35.54 <0.0001

Reference categories for the independent variables in the linear regression model were no trend (Trend = 0%year-1), random variation in stopover

duration, and a range in phii values between 0.40–0.50.

doi:10.1371/journal.pone.0130137.t002
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programs (e.g., Breeding Bird Survey [38]). Migration monitoring has been identified as an
important source of data for these northern-breeding populations [26].

The use of daily capture-recapture sampling protocols to monitor migrating populations
allows recaptures to be excluded [34] and variability in stopover parameters (e.g., trappability,
departure probability, stopover duration) to be modeled and accounted for when estimating
population trends [24]. Currently, a majority of member sites of the Canadian Migration Mon-
itoring Network (CMMN), which focuses primarily on monitoring populations of long-
distance landbird migrants, do collect banding data in addition to daily estimated totals of
unmarked migrants [3]. For species that are detected in sufficient numbers, the use of banding
data to estimate population trends in a mark-recapture framework that accounts for variation
in detection probability [24] should be considered a preferred alternative over estimating
trends using counts of unmarked animals. However, a majority of species that pass through

Table 3. Influence of including a covariate for detection and subsampling on bias of estimated trends, when stopover duration (indexed by daily
survival probability phii) increased systematically over time.

Parameter Estimate SE t value P

Intercept 0.0188 0.0018 10.57 <0.0001

Phi (0.35–0.55) 0.0122 0.0026 4.79 <0.0001

Phi (0.30–0.60) 0.0289 0.0025 11.46 <0.0001

Phi (0.25–0.65) 0.0460 0.0025 18.25 <0.0001

Phi (0.20–0.70) 0.0718 0.0025 28.22 <0.0001

Subset (3 Day) 0.0000 0.0025 -0.01 0.993

Subset (5 Day) 0.0012 0.0025 0.49 0.622

Covariate (Yes) -0.0033 0.0025 -1.31 0.191

Phi (0.35–0.55):Subset (3 Day) 0.0007 0.0036 0.21 0.836

Phi (0.30–0.60):Subset (3 Day) 0.0006 0.0036 0.17 0.868

Phi (0.25–0.65):Subset (3 Day) 0.0009 0.0036 0.25 0.805

Phi (0.20–0.70):Subset (3 Day) 0.0013 0.0036 0.36 0.721

Phi (0.35–0.55):Subset (5 Day) 0.0006 0.0036 0.16 0.876

Phi (0.30–0.60):Subset (5 Day) 0.0012 0.0036 0.33 0.744

Phi (0.25–0.65):Subset (5 Day) 0.0024 0.0036 0.67 0.506

Phi (0.20–0.70):Subset (5 Day) 0.0061 0.0036 1.71 0.087

Phi (0.35–0.55):Covariate (Yes) -0.0034 0.0036 -0.95 0.342

Phi (0.30–0.60):Covariate (Yes) -0.0076 0.0036 -2.13 0.033

Phi (0.25–0.65):Covariate (Yes) -0.0108 0.0036 -3.04 0.002

Phi (0.20–0.70):Covariate (Yes) -0.0138 0.0036 -3.85 0.0001

Subset (3 Day):Covariate (Yes) -0.0057 0.0036 -1.61 0.108

Subset (5 Day):Covariate (Yes) -0.0124 0.0036 -3.47 0.001

Phi (0.35–0.55):Subset (3 Day):Covariate (Yes) -0.0059 0.0050 -1.18 0.240

Phi (0.30–0.60):Subset (3 Day):Covariate (Yes) -0.0121 0.0050 -2.40 0.016

Phi (0.25–0.65):Subset (3 Day):Covariate (Yes) -0.0183 0.0050 -3.65 0.0002

Phi (0.20–0.70):Subset (3 Day):Covariate (Yes) -0.0256 0.0050 -5.08 <0.0001

Phi (0.35–0.55):Subset (5 Day):Covariate (Yes) -0.0102 0.0050 -2.01 0.044

Phi (0.30–0.60):Subset (5 Day):Covariate (Yes) -0.0237 0.0050 -4.70 <0.0001

Phi (0.25–0.65):Subset (5 Day):Covariate (Yes) -0.0346 0.0050 -6.88 <0.0001

Phi (0.20–0.70):Subset (5 Day):Covariate (Yes) -0.0489 0.0050 -9.68 <0.0001

Reference categories for the independent variables in the linear regression model were an increase in phii between 0.40–0.50, no subset, and no

covariate.

doi:10.1371/journal.pone.0130137.t003
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migration count sites aren’t captured in sufficient numbers to be analyzed in a mark-recapture
framework [9,24]. Indeed, this is a primary reason why Hussell and Ralph [28,39] recommend
combining multiple count methods into a daily estimated total for migratory landbird moni-
toring. The use of two or more count methods to derive a daily estimated total allows a greater
number of species to be detected in numbers sufficient for analysis, and allows counts to be
estimated during poor weather conditions when nets used for banding are typically closed
[28,39].

In order to improve estimates of population trend using counts of unmarked migrants, we
recommend the collection of independent data on the various components of detection, to be
included as covariates in population trend analyses, or as components of the underlying models
themselves. For example, incorporating radar and acoustic monitoring data into estimates of
daily migration volume [40,41] could be profitable. In addition, stopover parameters (including
stopover duration) could be estimated for a given species or species group using local band
recoveries [9,24], large-scale automated telemetry arrays [42], or other mark-recapture tech-
niques. Further, probability of observer detection could be modeled either through the collec-
tion of independent data on sampling effort or observer skill [25], or through the use of double

Fig 3. Effect of a covariate for detection and subsampling on bias of population trends. Bias (%year-1)
in estimated trend in migration counts (estimated—simulated trend), when trend was estimated with and
without a covariate for detection, and with and without subsampling to every third or fifth observation day. All
datasets were simulated to have a declining population trend of 1.2%year-1 and a systematic increase in
stopover duration (indexed by a linear increase in daily survival probability between 0.40–0.50, 0.35–0.55,
0.30–0.60, 0.25–0.65 or 0.20–0.70) over a 20-year time series. Lines of the boxplots represent the 25th

percentile, median and 75th percentile of bias estimates across 100 simulated datasets. The horizontal
dashed line depicts no bias in estimated trend.

doi:10.1371/journal.pone.0130137.g003
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observer or other repeated sampling approaches [5,23,43]. Where independent data on detec-
tion are not available, correlates of detection (e.g., weather, date) should be used as covariates
in trend analyses [12,19].

When individuals are known to stop at a count site for extended periods of time and recap-
tures cannot be excluded from daily counts, the incidence of multiple-counting should be
addressed through subsampling or other modifications to the sampling protocol. Hussell and
Ralph [28,39] suggest recording and subtracting the number of probable or known stopovers
from daily counts of migrating landbirds, which can be calculated directly from band recover-
ies (where available) or estimated based on observer knowledge of the count site and individu-
als present. At sites where stopover duration is typically short and independent data on
stopover parameters are collected, the omission of days with a low estimated probability of
departure should be tested for its effectiveness in reducing both the incidence of multiple
counting and bias of estimated population trends. Compared to subsampling, the latter method
has the potential to minimize a reduction in sample size and therefore power. Count sites

Fig 4. Effect of a covariate for detection and subsampling on coverage, power and rate of error of
estimated trends. Proportion of 100 20-year white-throated sparrow simulated datasets with 1) good
coverage of credible intervals (simulated trend fell within credible intervals of estimated trend), 2) power to
correctly detect a ‘significant’ trend (good coverage; credible intervals did not include zero), and 3) error, or
false detection of a trend (poor coverage; credible intervals did not include zero). Results are shown for
datasets that were not subsampled or subsampled to every third or fifth observation day, and when a
covariate for detection was or was not included in analysis. Datasets were simulated to have a declining trend
of 1.2%year-1 and a systematic increase in stopover duration (indexed by a linear increase in daily survival
probability between 0.40–0.50, 0.35–0.55, 0.30–0.60, 0.25–0.65 or 0.20–0.70).

doi:10.1371/journal.pone.0130137.g004
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should also be placed in locations with a high turnover of migrants, such as exposed coastal
sites that funnel migrants but are considered poor quality stopover habitat, to reduce the prob-
ability that extended migratory stopovers will occur [28,39]. Alternatively, modifications to
analytical methods can also address a change in stopover duration. Population trends for
migrating shorebirds, for example, are often calculated using an estimate of annual abundance
derived from the total number of individuals observed (or estimated) from daily counts, cor-
rected by average length of stay [5,44]. This method assumes an annual estimate of stopover
duration is available, and that all individuals present are observed [44]. Thus, as opposed to an
index of abundance, this method provides an estimate of the total number of individuals using
a site each year, and is highly sensitive to estimated length of stay [44].

Compared to the typical definition of power, which is the probability of detecting a trend
that differs significantly from zero, the estimate of power we report is more conservative
because it includes only simulations where the known trend also falls within the credible inter-
vals of the estimated trend (i.e., it excludes the false detection of a significant trend, which can't
be known using real data). Overall, statistical power of our analyses was low, at approximately
10% or less to detect a 20% change in the count population over 20 years. Typical of migration
counts, white-throated sparrow counts collected at Long Point, and simulated here, were highly
variable both within and among years (S2 and S3–S6 Tables). A similar analysis of population
trends using counts of western sandpiperson migratory stopover in British Columbia, Canada,
resulted in power to detect a minimum rate of change of 3.2%year-1, or approximately 55% in
20 years [5], which is over double the rate of population change in our simulated data. A power
of 80% to detect a 50% decline in 20 years with a significance of 0.1 was suggested as a goal for
landbird population monitoring [45]. The low rate of population change simulated here high-
lights the impact that a systematic change in detection can have on the interpretation of time
series data when populations are stable or changing at a low rate relative to the change in detec-
tion. The relative impact of a given change in detection on inference drawn about population
trends will decline as rate of actual population change increases. Future work should assess the
minimum rate of population change required to achieve a pre-determined level of power given
the magnitude of change in detection and count variability simulated here or observed else-
where [9,24], and should include scenarios where stopover duration declines over time, which
might occur with degradation of stopover site quality [10].

While a decline in stopover duration was not examined here, it is expected to result in more
negative population trends than actual, i.e., estimated trends would be less extreme than actual
for populations that are increasing, and more extreme than actual for populations that are
declining, resulting in a lower probability of detecting a positive trend, and an increased proba-
bility of detecting a (inflated) declining trend. The sensitivity of various rates of population
change to the different magnitudes of systematic change in detection should also be explored.
In general, power can be improved and probability of error will decline with the use of covari-
ates to account for variability in counts, by increasing the length of the time series, and by com-
bining data across migration count sites that are assumed to monitor the same population. The
latter would allow site-specific variation in counts, including variation in detection, to be esti-
mated independently from underlying population change. Because different sampling proto-
cols will be subject to different sources of detection bias [23], the use of standardized sampling
protocols across sites is recommended. In addition, the assumption of proportionality is more
likely to be violated as the length of a time series increases, which further emphasizes the
importance of accounting for annual and daily variability in detection through the use of covar-
iates or other method.

All sampling methods are susceptible to various potentially interacting sources of detection
bias [19,23,24]. While standardization of sampling protocols is important to minimize the
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probability that a systematic change in detection will occur, not all sources of variability in
detection can be controlled or effectively measured. The recommendation for stable habitat
structure at a migration count site [28], for example, is rarely achieved [19,34,46], and can have
important implications on bird behaviour and detection probability [19,46]. Mark-recapture
sampling protocols provide an ideal means to monitor migrating populations while accounting
for variation in detection probability [24], but unless analyzed in a guild context, sample-size
requirements exclude rare species that are often the primary focus of conservation efforts. Fur-
ther, even though migration counts provide only an index of population abundance that is con-
founded by detection probability, correspondence between bird population trends derived
from migration counts and the North American Breeding Bird Survey supports their use
[3,11,12]. Thus, while we recommend the collection of additional data to model detection
probability, the absence of relevant covariates for detection should not preclude the use of
migration counts for population trend analyses. Rather, in the absence of additional informa-
tion on detection, population trends estimated using migration counts should simply state
clearly and openly whether and how variation in factors known to influence stopover behav-
iour and detection might influence inference drawn about long-term population change.

Supporting Information
S1 Appendix. R Code for migration count simulation.
(PDF)

S2 Appendix. R Code to run negative binomial models using INLA.
(PDF)

S1 Fig. Simulated levels and pattern of change in daily probability of survival. Levels of con-
stant, random, systematic or cyclic variation in daily survival probability (phi), an index of
stopover duration, tested for their influence on accuracy and precision of population trends
derived from unmarked migration counts. Values shown for random variation in phi depict
one draw from a random uniform distribution. For random, systematic and cyclic variation,
phi varied between 0.2–0.7, 0.25–0.65, 0.3–0.6, 0.35–0.55, and 0.4–0.5.
(PDF)

S2 Fig. Simulated increase in daily survival probability (1- probability of departure), and
associated increase in stopover duration and detections per individual.Mean (SD) of stop-
over duration and number of sampling occasions during which an individual was detected
across 100 datasets simulated to have a linear increase in daily survival probability from 0.2 to
0.7 over a 20-year period, constant probability of observer detection (0.3), and no underlying
trend in population size (0%year-1).
(PDF)

S1 Table. Migration count simulation parameterization. Values of simulation model param-
eters that varied among simulated factor levels, where: ‘trend’ specifies the rate of population
trend simulated; ‘phi.type’ specifies whether daily probability of survival, and therefore stop-
over duration, was simulated to be constant, vary randomly or cyclically, or to increase linearly
over time; ‘phi.in’ specifies the rate or range in daily survival probability simulated; ‘phi.in.1’
and ‘phi.in.2’ are the minimum and maximum values of daily survival, respectively; and ‘cycle.
amp’ specifies the amplitude of cyclical change required to simulate the desired range in sur-
vival/stopover duration. See S1 Appendix for migration count simulation code in R.
(PDF)
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S2 Table. Summary of real white-throated sparrow (Zonotrichia albicollis) migration count
data.Mean, median, coefficient of variation (CV), minimum and maximum of migration
counts collected daily at the tip station of the Long Point Bird Observatory, Ontario, Canada,
during spring migration from 1961–2011.
(PDF)

S3 Table. Summary of annual abundance for simulated migration count data.Mean,
median and coefficient of variation (CV) of annual counts among 100 simulated datasets for
each set of factor levels. Datasets were simulated to have either a declining population trend
(-1.2%/year; “Decline”), no population change (0%/year; “NoChange”) or an increasing popu-
lation trend (0.96%/year; “Increase”). Survival probability remained constant or varied ran-
domly, cyclically or increased linearly over time.
(PDF)

S4 Table. Summary of daily abundance for simulated migration count data.Mean, median
and coefficient of variation (CV) of daily migration counts among 100 simulated datasets for
each set of factor levels. Datasets were simulated to have either a declining population trend
(-1.2%/year; “Decline”), no population change (0%/year; “NoChange”) or an increasing popu-
lation trend (0.96%/year; “Increase”). Survival probability remained constant or varied ran-
domly, cyclically or increased linearly over time.
(PDF)

S5 Table. Summary of zero-observation days for simulated migration count data.Mean,
median and coefficient of variation (CV) of the number of 0-observation days among 100 sim-
ulated datasets for each set of factor levels. Datasets were simulated to have either a declining
population trend (-1.2%/year; “Decline”), no population change (0%/year; “NoChange”) or an
increasing population trend (0.96%/year; “Increase”). Survival probability remained constant
or varied randomly, cyclically or increased linearly over time.
(PDF)

S6 Table. Summary of migration window length for simulated migration count data.
Mean, median and coefficient of variation (CV) of the number of observation days each season
among 100 simulated datasets for each set of factor levels. Datasets were simulated to have
either a declining population trend (-1.2%/year; “Decline”), no population change (0%/year;
“NoChange”) or an increasing population trend (0.96%/year; “Increase”). Survival probability
remained constant or varied randomly, cyclically or increased linearly over time.
(PDF)

S7 Table. Correlation of quantile-quantile plot scores comparing real and simulated migra-
tion count data.Mean (SD) of Pearson correlation coefficients of quantile-quantile (QQ)
scores among 100 simulated migration count datasets with real white-throated sparrow (Zono-
trichia albicollis) migration count data collected during spring migration at the tip station of
the Long Point Bird Observatory in Ontario, Canada (1961–2011). A correlation coefficient of
1 suggests quantiles of each dataset originate from a similar distribution of counts. Four types
of daily survival were tested: 1) constant (i.e., daily probability of survival was 0, 0.20, 0.50, or
0.70 across all years); or survival varied among years between 0.20–0.70, 0.25–0.65, 0.30–0.60,
0.35–0.55 and 0.40–0.50 either 2) randomly, 3) with linear/directional change, or 4) cyclically.
A daily probability of survival of zero suggests all birds departed the count site within 24 hours
(i.e., birds did not stop over at a site for extended periods with potential to be recaptured on
subsequent counts). The lower correlation coefficients observed for simulations with constant
phi is likely the result of lower mean daily and annual counts, a higher proportion of
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0-observation days, and higher variability among daily counts compared to real data and to
simulations with random, linear and cyclic variation in phi.
(PDF)
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