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Abstract 

Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-hydroxycholesterol 

(25HC), a product of activity of cholesterol-25-hydroxylase (CH25H) upon cholesterol, has recently been 

shown to be broadly antiviral, suggesting therapeutic potential against SARS-CoV-2. However, 25HC can 

also amplify inflammation and tissue injury and be converted by CYP7B1 to 7,25HC, a lipid with 

chemoattractant activity via the G protein-coupled receptor, EBI2/GPR183. Here, using in vitro studies and 

two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols 

on SARS-CoV-2 pneumonia.  We show that while 25HC and enantiomeric-25HC are antiviral in vitro 

against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC 

reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 mouse model in vivo. 25HC treatment also 

did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, 

or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and 

increased plasma pro-inflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor 

NIBR189 displayed a modest increase in lung viral load only at late time points, but no change in weight 

loss. Consistent with these findings, although Ch25h was upregulated in the lungs of SARS-CoV-2-infected 

WT mice, lung viral titers and weight loss in Ch25h–/– and Gpr183–/– mice infected with the beta variant 

were similar to control animals. Taken together, endogenous 25-hydroxycholesterols do not significantly 

regulate early SARS-CoV-2 replication or pathogenesis and supplemental 25HC may have pro-injury rather 

than therapeutic effects in SARS-CoV-2 pneumonia. 

 

Keywords: 25-hydroxycholesterol, cholesterol-25-hydroxylase, acute lung injury, pneumonia, oxysterol, 

Gpr183, EBI2, SARS-CoV-2  
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Introduction 

In 2013, two groups identified 25-hydroxycholesterol (25HC), an oxysterol product of the enzyme 

cholesterol-25-hydroxylase (CH25H), as broadly antiviral (1, 2). All enveloped viruses tested to date, 

among them, influenza A, herpes simplex virus-1, varicella zoster virus, murine gamma herpes virus, HIV, 

vesicular stomatitis virus, hepatitis viruses B and C, and Ebola virus, are inhibited by 25HC, with IC50 in 

the nanomolar to low-micromolar range (3). 25HC blocks viral fusion by modifying host cell membranes 

and potentially by inhibiting the cholesterol-synthetic transcription factor SREBP2 (3). Additional posited 

mechanisms include effects on virus capsid disassembly, genome replication, protein expression, and 

cellular egress (2).   

 

CH25H is expressed by airway epithelium (4) and alveolar macrophages (5, 6) in mice and humans and 

induces robust extracellular release of 25HC after upregulation by virus and interferons (1). Systemic 

treatment with exogenous 25HC to augment this native response effectively treats viral infections, including 

pneumonia, in mice, pigs, and non-human primates (2, 7, 8). Moreover, exogenous 25HC is anti-

inflammatory through inhibiting inflammasomes (9) and accelerates resolution of lung inflammation in 

mice through activation of Liver X Receptor (LXR) (5). Reports such as these have collectively suggested 

potential for 25HC as a therapeutic for viral pneumonia.  However, other reports that 25HC amplifies pro-

inflammatory signaling and that Ch25h–/– mice have attenuated lung pathology during influenza A 

pneumonia (10) have suggested possible untoward effects of 25HC in vivo. Further complicating questions 

of mechanism, 25HC is converted by the enzyme CYP7B1 into 7,25-dihydroxycholesterol (7,25HC), a 

ligand for Epstein Barr Virus-induced gene 2 (EBI2, encoded by Gpr183), a G protein-coupled receptor 

that can promote migration of several immune cell types to the lung (4, 6, 11, 12). 

 

Of interest, it was recently reported that 25HC inhibits SARS-CoV-2 infection in cell lines (13-17).  One 

group also reported that treatment of mice with 25HC reduced lung viral load 3 days post-infection (p.i.) 

with mouse-adapted SARS-CoV-2, but no further outcomes were presented (16), leaving many questions 

unaddressed. Here, we show that while both 25HC and enantiomeric (ent)-25HC inhibit cellular infection 

by endemic human coronavirus (hCoV)-229E they failed to limit SARS-CoV-2 infection. Moreover, during 

in vivo SARS-CoV-2 infections, Ch25h-deficient mice were able to control viral replication and transgenic 

mice expressing human ACE2 under the epithelial K18 promotor (K18-ACE2 mice) treated with 

supplemental 25HC did not exhibit changes in viral titers.  25HC treatment had no effect on airway immune 

response, lung histopathology, morbidity, or mortality but did increase plasma chemokines as well as 

bronchoalveolar lavage fluid (BALF) albumin, a metric of microvascular injury (18). Gpr183-deficient 

mice displayed no significant changes in lung viral loads or weight loss, thus arguing against a role for the 

downstream lipid, 7,25HC. Taken together, our findings suggest that 25HC is not therapeutic during 

SARS-CoV-2 pneumonia and that GPR183 and CH25H are dispensable for early viral control in vivo. 

 

Materials and Methods 

 

Reagents 

25HC was from Sigma Aldrich (St. Louis, MO) and ent-25HC was custom-synthesized by Avanti Polar 

Lipids (Birmingham, AL). The GPR183-specific antagonist NIBR189 was from Tocris (Bio-Techne Corp, 

Minneapolis, MN). 

 

Mice 

Male and female B6.Cg-Tg(K18-ACE2)2Prlmn/J (#034860, Jackson Laboratory), C57BL/6 (B6; Jackson 

Laboratory), Ch25h–/– (#016263, Jackson Laboratory) (5), and Gpr183–/– ((19), kindly provided by Vanja 

Lazarevic) mice, ~22-26g in weight, were used. The light/dark cycle was set at 12/12 hours, and mice were 

fed Purina Lab Diet #5002 and provided water ad libitum. Animal care and housing met AAALAC 
International guidelines, the Guide for Care and Use of Laboratory Animals (National Research Council), 
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and requirements as stated by the U.S. Department of Agriculture through the Animal Welfare Act.  All 

experiments were performed in compliance with an animal study proposal approved by the NIAID Animal 

Care and Use Committee or the NIEHS Animal Care and Use Committee. 

 

In vivo murine SARS-COV2 viral infections and treatments 

In some studies, K18-hACE2 mice were treated i.p. with 50 mg/kg 25HC or vehicle (hydroxypropylbeta-

cyclodextrin [Cyclo Therapeutics, Inc.]) at -4h in relation to viral infection, and every 24h thereafter until 

sacrifice. In other studies, K18-hACE2 mice were i.p. injected with 0.1mg/kg or 0.5 mg/kg NIBR189 on 

days -1, +1, and +3 p.i.  K18-hACE2 mice were infected i.n. with 35 µL of neat USA-WA1/2020 SARS-

CoV-2 (BEI), with target dose of 1+E03 TCID50/mouse. SARS-CoV-2 USA-WA-1 (WA1/2020), GenBank 

MN985325.1 was propagated on VEROE6 TMPRSS2 cells (20). The virus sequence was confirmed by 

Illumina sequencing and did not differ from the parental virus, except for S6L in E, T7I in M, and S194T 

in N (virus used in 25HC treatment experiments) and for the following SNPs compared to reference 

sequence: C23525T, C26261T, C26542T, and T28853A (virus used in NIBR189 experiments). All 

experiments with SARS-CoV-2 were performed at BSL-3. B6, Ch25h–/–, and Gpr183–/– mice were infected 

i.n. with with 3.5x104 TCID50 SARS-CoV-2 hCoV-19/South Africa/KRISP-K005325/2020 beta variant of 

concern (Pango lineage B.1.351, GISAID reference: EPI_ISL_860618, BEI resources) in 35µl. Exposure 

doses were confirmed by TCID50 (median tissue culture infectious dose) assay of remaining stock in 

VeroE6 cells (CRL-1586; American Type Culture Collection). Prior to inoculation, mice were anesthetized 

with ketamine (80-100 mg/kg) and xylazine (5-10 mg/kg) or isoflurane.   

 

Symptom scoring 

Mice were weighed and scored daily for symptoms. A value of 1 was assigned for any of the following 

signs and individual values summed to yield a composite score: rough coat, hunched posture, lethargy, 

prostrate status, labored breathing, decreased breathing, respiratory distress, increased breathing, eye 

discharge. 

 

Animal harvests 

In some studies, at time of sacrifice, mice underwent plasma collection and bronchoalveolar lavage (BAL) 

with 1x PBS (5).  The cell count was quantified by Guava® easyCyteTM flow cytometer and differentials 

determined manually after Wright Giemsa staining of cytospin. In survival studies, euthanasia was 

performed for: (i) respiratory distress; (ii) prostration; (iii) unresponsive status to touch or external stimuli; 

(iv) ≥30% body weight loss; or (v) ≥25% body weight loss plus lethargy, decreased activity, or ataxia. 

 

Cytokine and albumin analysis 

Cell-free BAL fluid (500x g, 5 min) or plasma was analyzed using ELISA kits for CCL2, CXCL1, CXCL10, 

IL-6, CCL5, and TNF (Thermo Fisher Scientific) and albumin (Abcam), per manufacturer’s instructions. 

 

RNA isolation and qPCR 

RNA was isolated by RNeasy 96 QIAcube HT kit with a DNAse step. Complementary DNAs (cDNA) were 

generated using standard methods.  Real-time PCR was performed in triplicate with Taqman PCR Mix 

(Applied Biosystems) in the HT7900 ABI sequence Detection System (Applied Biosystems). Predesigned 

primers were purchased from Applied Biosystems (Ch25h (Mm00515486_s1), Gapdh (Mm99999915_g1) 

as a housekeeping gene for normalization). For quantitation of viral load, the N1 nucleocapsid gene was 

quantified, using serial dilutions of reference standard input RNA to achieve a linear relationship between 

threshold cycle and target RNA quantity. Forward primer: 5’-GAC CCC AAA ATC AGC GAA AT-3’. 

Reverse primer: 5’-TCT GGT TAC TGC CAG TTG AAT CTG-3’. Probe: 5’-FAM-ACC CCG CAT TAC 

GTT TGG TGG ACC-NFQ-MGB-3’ (Thermo Fisher Scientific). 
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TCID50 assay from mouse lung 

Lungs were harvested into tubes containing 600µL-1mL sterile PBS and 1mm silicon beads before being 

homogenized using a Precelleys Tissue Homogenizer (Bertin Instruments). 10-fold serial dilutions of lung 

homogenate in DMEM containing 2% FCS were plated in triplicate or quadruplicate on VeroE6 cells (CRL-

1586; American Type Culture Collection) in 96-well cluster plates seeded with 2.5x104 cells per well the 

previous day. Plates were stained with Crystal Violet solution (Sigma) after 96-168h to assess cytopathic 

effect (CPE). Viral titers were determined using the Reed-Muench or Spearman Kärber method. 

 

Histopathologic analysis  

Tissues were fixed in 10% neutral-buffered formalin for a minimum of 48h and transferred into 70% ethanol 

for a minimum of 72h to inactivate virus, processed for paraffin, embedded, sectioned (5 μm), and stained 

with H&E.  Slides were scanned using an Aperio ScanScope XT Scanner (Aperio Technologies, Inc., Vista, 

CA). Lung histopathology was scored in a blinded fashion by a board-certified veterinary pathologist, using 

an equally weighted composite score for: cellular inflammation, septal thickening, type II alveolar epithelial 

cell hyperplasia, airway epithelial hyperplasia/hypertrophy, necrosis, and hemorrhage (all scored 0 [none] 

– 4 [severe]). 

 

hCoV-229E plaque reduction assay 

MRC-5 monolayers in 6-well plates (1×106 cells/well) were pretreated overnight with medium containing 

vehicle, 2 µM 25HC, or 2 µM ent-25HC. Monolayers were then inoculated for 1h with 100 µL of medium 

containing ~100 PFU of hCoV-229E. The infected monolayers were left for 6-8 days in a 35°C incubator 

under 0.8% methylcellulose (Millipore Sigma) overlay (in EMEM medium with 10% FBS, 10 mM HEPES, 

2 mM L-Glutamine, 100 units penicillin, 0.1 mg streptomycin) containing vehicle control, 2 µM 25HC or 

2 µM of ent-25HC, respectively, until plaques became visible. The cell monolayers were then stained with 

2% crystal violet in 10% formalin in PBS for at least 2h. The stained monolayers were washed and air-

dried, and clear plaques were counted manually under the light microscope.  

 

SARS-CoV-2 plaque reduction assay 

VeroE6 expressing TMPRSS2 cells (20) in DMEM 10% FBS were plated at 400,000 cells/well in 12-well 

dishes and incubated overnight at 37°C, 5% CO2. Compounds in DMSO were diluted in DMEM with 2% 

FBS with a fixed concentration of 0.05% DMSO. Remdesivir (Adipogen Life Sciences, San Diego, CA) 

was used as a positive control. Two-fold dilutions of antibody were made and tested. Cells were washed 

twice in DMEM+2%FBS, then pre-treated with compounds for 2h prior to infection at no DMSO, 0.05% 

DMSO, 2.5, 5, or 10µM of compound at 37°C, 5% CO2. Forty plaque forming units of virus in 200uL of 

DMEM+2% FBS was mixed with 100uL of media with no DMSO, 0.05% DMSO, 2.5, 5, or 10µM of 

compound.  The virus+ compound mixtures were briefly vortexed and incubated at 37°C for 30 minutes. 

Cells were washed twice with DMEM+2% FBS, the second wash was removed and 100uL of the virus+ 

compound mixture was added to duplicate wells, incubated at 37°C, 5% CO2 for 1hr.  Cells were overlayed 

with 0.6% methylcellulose and incubated for 72h at 37°C, 5% CO2. At 72h post-infection, the overlay was 

removed and the samples were fixed with crystal violet+ neutral buffered formalin (0.1% crystal violet, 

20% ethanol v/v+10% NBF v/v) for 30min at room temperature.  Plaques were enumerated and compared 

to no DMSO sample.   

 

SARS CoV-2 yield reduction assay 

VeroE6 cells expressing TMPRSS2 (20) were plated in DMEM 10% FBS at 200,000 cells/well in 12-well 

dishes and incubated overnight at 37°C, 5% CO2.  Cells were washed twice in DMEM+2%FBS, pre-treated 

with compounds for 24h prior to infection at no DMSO, 0.05% DMSO, 2.5, 5, or 10µM of compound at 

37°C, 5% CO2 in DMEM+2% FBS.  Cells were washed twice in DMEM+2%FBS, infected at an MOI=0.1 

for 1hr at 37C, 5% CO2. Cells were then washed twice in DMEM+2%FBS, then media with no DMSO, 
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0.05% DMSO, 2.5, 5, or 10µM of compound at 37°C, 5% CO2 was added to the wells.  Media was collected 

at 24h post-infection and assayed by plaque assay.  For plaque assays, 400,000 cells per well were plated 

in 12-well dishes and incubated overnight at 37°C, 5% CO2 and washed twice in DMEM+2%FBS prior to 

the plaque assay.  Samples were serially 10-fold diluted in DMEM+2% FBS and added to the cells followed 

by incubation for 1 hr.  At the end of were washed twice in DMEM+2%FBS. At the end of 1h, cells were 

overlayed with 0.6% methylcellulose and incubated for 72h at 37°C, 5% CO2. At 72h post-infection, the 

overlay was removed and the samples were fixed with crystal violet+ neutral buffered formalin (0.1% 

crystal violet, 20% ethanol v/v+10% NBF v/v) for 30min at room temperature.  Plaques were enumerated 

and compared to no DMSO sample.   

 

Viral plaque image analysis  

For analysis of plaque size, brightfield images were captured on a Zeiss AxioObserver Z1 microscope (Carl 

Zeiss Inc, Oberkochen, Germany) using a Fluar 5X objective with a halogen light source. Transmitted light 

was collected with a Zeiss AxioCam IC color camera with an exposure of 2.04ms. A full tiled image of 

each well of a 6 well multiwell plate was acquired and stitched using the Zeiss Zen Blue software.  These 
stitched images were then imported into FIJI (ImageJ version 1.53c) where a macro was created to automate 

analysis.  The custom macro extracted the green component of the RGB image, applied a Gaussian filter, 

set a threshold to identify the plaques, and then used Analyze Particles to count and measure the size of 

each plaque.  

 

Statistical analysis 

Analysis was performed using GraphPad Prism software. Data are represented as mean ± SEM. Two-tailed 

Student’s t test was applied for comparisons of 2 groups and ANOVA for comparisons of more than 2 

groups. Survival was evaluated by log-rank test. For all tests, P< 0.05 was considered significant. 

 

 

Results 

 

25HC inhibits human endemic coronavirus infection but not SARS-CoV-2 in vitro 

25HC is broadly antiviral against enveloped viruses, reportedly inhibiting virus fusion by altering 

cholesterol content of the host cell membrane (3). 25HC may sterically redistribute free cholesterol by 

incorporation into host membranes, although it has also been posited to reduce membrane free cholesterol 

through direct activation of the enzyme acyl-coenzyme A:cholesterol acyltransferase (17). Specific protein-

binding interactions are typically not preserved in enantiomeric (ent) versions of lipids (1).  We started with 

testing 25HC for efficacy against a common cold coronavirus. To distinguish the mode of mechanism, we 

pretreated MRC-5 cells with 25HC, ent-25HC, or vehicle and then infected them with the endemic human 

coronavirus (hCoV)-229E.  As shown in Figure 1A, 25HC and ent-25HC both significantly reduced viral 

plaque number, with 25HC exhibiting a much more robust effect. 25HC and ent-25HC also reduced plaque 

size, suggestive of post-entry effects on replication (1), with 25HC again displaying a more marked effect 

(Figure 1B). Taken together, these findings suggest that 25HC antagonizes hCoV-229E through both 

protein binding-dependent and -independent mechanisms. 

 

We next tested 25HC and ent-25HC for antagonism against SARS-CoV-2 in VeroE6 cells stably transfected 

with TMPRSS2.  Contrary to the case with hCoV-229E, neither 25HC nor ent-25HC exhibited a significant 

effect on SARS-CoV-2 replication at concentrations up to 10 M, as indicated by both plaque reduction 

assay and yield reduction assay (Figures 1C-D, E1).  

 

Neither native CH25H nor exogenous 25HC alters viral replication in lungs of SARS-CoV-2- infected 

mice 
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We next tested the role of CH25H and 25HC in pulmonary host defense against SARS-CoV2 in vivo.  We 

found that Ch25h was robustly upregulated in the lungs of K18-hACE2 transgenic mice (21) at 48h and 

72h p.i. with SARS-CoV-2 (Figure 2A).  Despite this, Ch25h–/– mice infected with the beta variant of 

SARS-CoV-2 (B.1.351) had equivalent viral load in the lungs and equivalent weight loss compared to WT 

mice 3 days p.i. (Figure 2B-C). To test whether supplemental 25HC might nonetheless have antiviral effect 

in vivo during SARS-CoV-2 pneumonia,  we treated K18-hACE2 transgenic mice i.p. with 50 mg/kg/d 

25HC (or vehicle), a 25HC dosing regimen that has been reported to be antiviral against HIV and Zika virus 

in mice (2, 7) and to accelerate resolution of lung inflammation in mice (5). However, exogenous 25HC, 

compared to vehicle (Figure 3A), did not significantly alter viral load in the lung, as assessed either by 

qPCR (Figure 3B) or plaque assay (Figure 3C), nor did it modify clinical symptom scores or weight loss 

(Figure E2). 

 

25HC does not modify the pulmonary immune response to SARS-CoV-2 

SARS-CoV-2, like other respiratory viruses, induces a time-dependent cellular immune response in the 

lungs (21).  It is thought that acute lung injury, morbidity, and mortality during SARS-CoV-2 pneumonia 

stem largely from an overexuberant inflammatory response (21). Given this, we next profiled the pulmonary 

immune response of infected mice to investigate possible effects of 25HC. Total airway cell count in the 

BAL, as well as BALF concentrations of multiple pro-inflammatory cytokines and chemokines were all 

unchanged by 25HC treatment at 48-72h p.i. (Figure 4A-B). By contrast, several chemokines were elevated 

in the plasma of 25HC-treated mice 120h p.i. (Figure 4C), a time point by which significant morbidity has 

commenced in this model ((21) and Figure S2). Taken together, these findings indicate that treatment with 

25HC neither alters viral clearance nor the immune/inflammatory response to SARS-CoV-2 in the mouse 

lung, but may be associated with elevated systemic levels of pro-inflammatory chemokines at later time 

points. 

 

25HC does not attenuate SARS-CoV-2-induced lung pathology and increases microvascular leak 

SARS-CoV-2 induces severe acute lung injury that can lead to respiratory failure and death (21).  

Pulmonary vascular damage is a prominent feature of the pathogenesis and is thought to arise from direct 

viral infection or stimulation of endothelium (22). We found that, by 72-120h p.i., the lungs of K18-hACE2 

transgenic infected mice exhibited severe neutrophilic and mononuclear cell infiltration that was associated 

with septal thickening, type II alveolar epithelial cell hyperplasia, airway epithelial cell hyperplasia, as well 

as focal necrosis and hemorrhage (Figure 5A). Comparable lung histopathology was observed in the lungs 

of vehicle- and 25HC-treated mice (Figure 5A-B).  Of interest, 25HC-treated mice had elevated BALF 

concentrations of albumin (Figure 5C), an established metric of pulmonary microvascular injury (18).  

Regardless, 25HC had no effect on mortality (Figure 5D).  Collectively, these findings suggest that 

supplemental 25HC does not overtly modify cellular histopathology in the lungs and has no effect on 

survival but may aggravate damage to the alveolocapillary barrier during SARS-CoV-2 pneumonia.  

 

Neither deletion nor pharmacological inhibition of Gpr183/EBI2 alter host defense after SARS-CoV-

2 infection 

After biosynthesis by CH25H, 25HC is converted by the enzyme CYP7B1 into 7α,25HC, an oxysterol 

ligand for Epstein-Barr virus-induced G protein-coupled receptor (GPR)2 (i.e., EBI2, encoded by Gpr183) 

(23).  EBI2 is expressed by multiple leukocyte types and is thought to induce migration of Gpr183-

expressing immune cells to the lung in response to 7α,25HC induced by allergens, cigarette smoke, and M. 

tuberculosis (4, 6, 11, 12).  7α,25HC levels are deficient in Ch25h–/– mice (24).  Given that in vivo studies 

of CH25H and 25HC may be confounded by downstream processing of 25HC into 7α,25HC (24, 25), we 

next investigated EBI2 in two models of SARS-CoV-2 pneumonia. First, Gpr183-null mice and WT 

controls were infected with SARS-CoV-2 B.1.351 (beta variant).  Equivalent lung viral loads were found 

in both genotypes on day 3 p.i. (Figure 6A).  Second, K18-hACE2 transgenic mice were treated with the 

EBI2 antagonist NIBR189 or vehicle and infected with SARS-CoV-2-WA1/2020.  Treatment with 0.1 
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mg/kg NIBR189, a dose previously reported to be well tolerated for repeated treatments and pulmonary 

mode of action (26), did not change viral titers 3 days p.i. and was associated with only a modest increase 

in lung viral loads on day 5 p.i., but there were no accompanying changes in body weight (Figure 6B). 

Similar results were obtained using a 5-fold higher dose of inhibitor (not depicted). Taken together, these 

findings suggest that 7α,25HC or EBI2-mediated immune functions do not have a significant impact on 

host defense during SARS-CoV-2 pneumonia in mice.      

 

Discussion 

 

During the past several years, 25HC has been shown to inhibit infection by several viruses through multiple 

mechanisms and thus has been proposed as a therapeutic candidate (3, 8, 27, 28).  25HC reportedly blocks 

viral fusion by reducing free cholesterol in host cell membranes (15, 17), a mechanism that may either 

involve direct membrane intercalation of 25HC or activation by 25HC of the cholesterol-esterifying 

enzyme, acyl-coenzyme A (CoA):cholesterol acyltransferase (ACAT) (17).  Additional antiviral 

mechanisms that have been proposed include inhibition of post-entry gene expression (1, 14), activation of 

the nuclear receptor LXR (29), inhibition of the replication organelle through interactions with oxysterol 

binding protein 1 (OSBP1) (30), and activation of the integrated stress response (31).  While some of these 

mechanisms are proposed to involve direct binding interactions of 25HC with proteins (ACAT, OSBP1, 

LXR), other antiviral effects have been proposed to arise independently of 25HC-protein interactions (3). 

Our finding that 25HC had for more potent activity than ent-25HC against hCoV-229E suggests, consistent 

with a prior report (1), that 25HC is enantioselective, likely triggering protein-dependent effects at low 

concentrations which may be complemented by additional protein-independent mechanisms at higher 

concentrations. 

 

Contrary to a few recent reports (14-17), we found no antiviral efficacy for 25HC against SARS-CoV-2 in 
vitro.  This is despite our inclusion of 25HC concentrations higher than the EC50 for SARS-CoV-2 reported 

in these other publications (3.675 M (16), 4.2 M (14)), concentrations that are unlikely to be easily 

achievable in vivo.  While we can only speculate on the reason for our different result, we presume that it 

reflects methodological differences, among them, choice of cell line (Calu-3, Caco-2 (17); HEK293-hACE2 

(15)), virus strain (14, 15)), and timing of 25HC treatment (14)). Although not all reports have specified 

the vehicle used, we found no antiviral effect of 25HC for SARS-CoV-2 in either DMSO or ethanol (not 

depicted). 

 

In vivo, we also did not detect any effect of supplemental 25HC or CH25H deletion on multiple disease 

measures during SARS-CoV-2 pneumonia.  Recently, it was reported that 25HC, delivered intragastrically 

at 100 mg/kg/d starting 1 day prior to infection, reduced lung viral load of the mouse-adapted SARS-CoV-

2 strain MASCp6 in Balb/C mice (16).  Technical differences, including 25HC dose, 25HC route, virus 

strain, and mouse strain may possibly account for the divergence in our findings.  Our dosing regimen (50 

mg/kg/d i.p. in -cyclodextrin vehicle) was previously reported to reduce HIV viral load in humanized mice 

(2) and to reduce Zika virus load and mortality in Balb/C mice (7).  We have also previously shown that 

this 25HC regimen induces LXR target genes in mouse lung and is therapeutic against lung inflammation 

by enhancing efferocytic function of alveolar macrophages (5). This latter finding suggests that 

systemically dosed 25HC penetrates the airspace in biologically active form.  Further supporting this, it 

was recently reported that systemic treatment with 25HC improved survival and reduced viral load, 

inflammation, and injury in the lungs of pigs during pneumonia with the coronavirus porcine reproductive 

and respiratory syndrome virus (8).   

 

25HC is further oxidized by CYP7B1 on carbon-7, yielding the bioactive oxysterol 7,25HC. 7,25HC is 

reportedly depleted in Ch25h-null mice (24) and generated in response to exogenous 25HC substrate (2), 
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and may regulate trafficking of immune cells to the lung in some settings (4, 6, 11, 12, 32).  Given this, we 

tested mice null for the 7,25HC receptor, EBI2 (encoded by Gpr183), in the SARS-CoV-2 pneumonia 

model in order to exclude possible confounding effects by this downstream lipid in our studies.  We did not 

find any change in lung viral load in Gpr183–/– mice nor alterations in body weight loss in EBI2 inhibitor-

treated mice out to day 5 p.i., suggesting that, at least at these early time points, 7,25HC does not play a 

significant role in anti-SARS-CoV-2 host defense. Importantly, mice deficient in EBI2 mount defective T-

cell-dependent plasma cell and germinal center responses (24, 33, 34) and thus the small increase in viral 

titers on d5 may be related to defects in anti-viral T and B cell responses with EBI2 inhibition. 

 

The increase in 25HC-treated animals of BALF albumin, an established metric of pulmonary microvascular 

lung injury (18), suggests a 25HC effect upon the pulmonary endothelial barrier, a putative cellular target 

of SARS-CoV-2 (22).  25HC is reportedly cytotoxic to endothelial cells (35-38), perhaps explaining our 

finding. The elevated plasma cytokines we observed in 25HC-treated mice may also derive from endothelial 

cells, given prior reports that 25HC augments cytokine expression by endothelial cells (39).  Future studies 

will be necessary to examine the effect of 25HC on pulmonary vascular biology in greater detail.  One 

group recently reported that direct intratracheal instillation of 25HC reduces LPS-induced lung 

inflammation (40).  While this route might be expected to improve delivery to the alveolar epithelium and 

to reduce exposure of the endothelium as compared to i.p. injection, intratracheal aspiration is well-known 

to yield highly patchy, heterogenous deposition in the lung (41).  Aerosol delivery reportedly provides 

superior alveolar delivery (41), but methods for aerosolization of 25HC have not been reported, to our 

knowledge.  

 

Although our findings suggest that caution is warranted in extrapolating from studies of 25HC in other 

viruses to SARS-CoV-2, we propose that further exploration is still warranted of strategies that deliver 

25HC more selectively to the primary cellular target of infection, respiratory epithelial cells. Along these 

lines, formulation of 25HC with cationic lipid as nanovesicles was recently reported to significantly 

improve lung-selective targeting of systemically dosed 25HC (42).  Additional emerging strategies, such 

as conjugation of 25HC to viral fusion inhibitory peptides (13), also warrant future investigation in SARS-

CoV-2 pneumonia.  Given that CH25H and 25HC are reportedly increased in chronic obstructive 

pulmonary disease patients (4, 43) and in obese subjects (44), future studies to define the impact of native 

oxysterols on COVID-19 risk in lung disease (45) and in obesity (46) will also be of interest.  
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Figure Legends 

 

Figure 1.  25HC antagonizes coronavirus infection in vitro. (A-B) MRC-5 cells were treated with 2 M 

25HC, 2 M enantiomeric (ent)-25HC, or vehicle overnight, infected with hCoV-229E, and then evaluated 

for plaque number (A) and plaque size (B). (C) TMPRSS2-expressing VeroE6 cells were treated overnight 

with the indicated concentrations of oxysterols or vehicle, infected with SARS-CoV-2, and then evaluated 

for plaque number. (D) As a positive control to confirm assay performance, remdesivir (RDV) at a range 

of concentrations was tested for viral plaque reduction under the same conditions as in panel C. Data are 

mean +/- s.e.m. and are representative of 2-3 independent experiments. ***, P<0.001; ****, P<0.0001 

 

Figure 2.  Ch25h is induced by SARS-CoV-2 in mouse lung but does not regulate viral clearance. (A) 

K18-hACE2 mice were left non-treated (NT) or infected with SARS-CoV-2 USA-WA1/2020. As per 

scheme on left, Ch25h expression was quantified in lung homogenates by qPCR at the indicated time points 

p.i. (N=5-10/condition). (B) As per scheme on left, WT or Ch25h–/– mice were infected i.n. with SARS-

CoV2 B.1.351 and lung viral load quantified by TCID50 assay on day 3 p.i. (N=15/genotype, 3 independent 

experiments). (C) Weight loss at day 3 p.i. was indexed to baseline weight (N=5/genotype).  Data are mean 

+/- s.e.m. and are representative of 2-3 independent experiments. *, P<0.05; ***, P<0.001. 

 

Figure 3.  25HC treatment does not modify viral clearance during SARS-CoV-2 pneumonia. (A) K18-

hACE2 mice were injected i.p. with 50 mg/kg/d 25HC (or vehicle) starting at -4h preceding i.n. inoculation 

with SARS-CoV-2, after which lungs were harvested at the indicated times p.i. and evaluated for viral load 

by qPCR (B) or plaque assay (C). N=9-10/condition. Data are mean +/- s.e.m. 

 

Figure 4.  25HC treatment does not modify the inflammatory response during SARS-CoV-2 

pneumonia. K18-hACE2 mice were either left non-treated (NT) or injected i.p. with 50 mg/kg/d 25HC (or 

vehicle) starting at -4h preceding i.n. inoculation with SARS-CoV-2. (A) Bronchoalveolar lavage (BAL) 

cells were quantified 48h post-infection (N=10/treatment). (B) Cytokines and chemokines were quantified 

in BAL fluid (BALF) at 48h and 72h post-infection (N=5-10/condition). (C) Plasma cytokines and 

chemokines were quantified at 120h post-infection (N=5/treatment). Data are mean +/- s.e.m. *, P<0.05; , 

P=0.08. ns=nonsignificant. 

 

Figure 5.  25HC treatment does not modify lung histopathology or mortality during SARS-CoV-2 

pneumonia. K18-hACE2 mice were injected i.p. with 50 mg/kg/d 25HC (or vehicle) starting at -4h 

preceding i.n. inoculation with SARS-CoV-2. Lungs were harvested on day 5 p.i., fixed, stained with 

hematoxylin & eosin, and scored for histopathology. (A) Representative images and (B) composite 

pathology scores are shown (N=9/condition). (C) BALF albumin, an indicator of microvascular injury, was 

measured at the indicated times p.i. (N=5-10/condition). (D) Survival was monitored (N=25/treatment). 

Data are mean +/- s.e.m. and are representative of 2-3 independent experiments.  n.s.= nonsignificant. 

 

Figure 6. No effect of Gpr183 deletion or EBI2 inhibition on SARS-CoV-2 clearance or morbidity.  

(A) As per scheme on left, Gpr183–/– and WT (B6) mice were infected i.n. with a target dose of 3.5x104 

SARS-CoV-2 B.1.351. Viral load in lung was quantified on day 3 p.i. (N=18/genotype, 3 independent 

experiments (right). (B) As per scheme on left, K18-hACE2 transgenic mice were either left uninfected or 

treated i.p. with 0.1 mg/kg EBI2 (encoded by Gpr183) inhibitor NIBR189 (or vehicle control) and infected 

i.n. with a target dose of 1x103 SARS-CoV2 USA-WA1/2020. Lung viral load (middle panel) and weight 

change (right panel) were quantified (N=7-20/condition, 2 independent experiments per time point). Data 

are mean +/- s.e.m. *, P<0.05; **, P<0.01; ***, P<0.001. n.s. = nonsignificant. 

 

Figure E1.  25-hydroxycholesterols do not antagonize SARS-CoV-2 as assessed by yield reduction 

assay.  TMPRSS2-expressing VeroE6 cells were treated with vehicle or oxysterols for 24h as indicated, 
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infected with SARS-CoV-2 USA-WA-1 for 1h, re-incubated in oxysterol, and then media harvested 24h 

later and evaluated by plaque assay. Data are mean +/- s.e.m. and are representative of 2-3 independent 

experiments.   

 

Figure E2.  25HC treatment does not impact morbidity during murine SARS-CoV-2 pneumonia.  

K18-hACE2 mice were injected i.p. with 50 mg/kg/d 25HC (or vehicle) starting at -4h preceding i.n. 

inoculation with SARS-CoV-2. (A) Aggregate symptom score and (B) body weight was monitored over 10 

days p.i.  N=25/treatment. p=n.s. for analyses in both A and B. 
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Figure 4
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Figure 5
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Figure 6
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Figure E1
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Figure E2
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