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Background: To achieve imaging report standardization and improve the quality and efficiency of the intra-
interdisciplinary clinicalworkflow,we proposed an intelligent imaging layout system (IILS) for a clinical decision
support system-based ubiquitous healthcare service, which is a lung nodule management system using medical
images.
Methods: We created a lung IILS based on deep learning for imaging report standardization and workflow opti-
mization for the identification of nodules. Our IILS utilized a deep learning plus adaptive auto layout tool,
which trained and tested a neural network with imaging data from all the main CT manufacturers from 11,205
patients. Model performance was evaluated by the receiver operating characteristic curve (ROC) and calculating
the corresponding area under the curve (AUC). The clinical application value for our IILS was assessed by a com-
prehensive comparison of multiple aspects.
Findings:Our IILS is clinically applicable due to the consistencywith nodules detected by IILS,with its highest con-
sistency of 0·94 and an AUC of 90·6% for malignant pulmonary nodules versus benign nodules with a sensitivity
of 76·5% and specificity of 89·1%. Applying this IILS to a dataset of chest CT images,we demonstrate performance
comparable to that of human experts in providing a better layout and aiding in diagnosis in 100% valid images
and nodule display. The IILS was superior to the traditional manual system in performance, such as reducing
the number of clicks from 14·45 ± 0·38 to 2, time consumed from 16·87 ± 0·38 s to 6·92 ± 0·10 s, number
of invalid images from 7·06 ± 0·24 to 0, and missing lung nodules from 46·8% to 0%.
Interpretation: This IILS might achieve imaging report standardization, and improve the clinical workflow there-
fore opening a new window for clinical application of artificial intelligence.
Fund: The National Natural Science Foundation of China.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

The implementation of traditional clinical decision support results
comprising images and reports for radiology and respiratory de-
partments faces challenges with reliability and interpretability.

Added value of this study

Through a new entry point, a new work process will be
established, and some relevant operators will be unnecessary
due to the invention of the IILS, which includes two deep learning
models first applied to clinicalmedicine, Faster RCNN and ResNet.
Superior to the traditional manual system, the IILS will be pro-
moted and applied to other imaging methods, such as magnetic
resonance imaging and imaging of other parts of the body. The
IILS will be integrated into radiology workflows by series connec-
tion instead of parallel connection to considerably simplify and op-
timize the clinical workflow and to benefit more doctors and even
patients during regular follow-up.

Implications of all the available evidence

With the advent of the information era, over the next decades,
more goals could be fulfilled by the IILS when supporting regions
with insufficient healthcare resources. Therefore, the IILS opens
a new window for clinical application of artificial intelligence.
1. Introduction

Lung cancer is one of themost common cancers and one of the lead-
ing causes of cancer death [1]. In 2018, approximately 234,030 new
cases and 154,050 deaths of lung cancer occurred [2]. Pulmonary nod-
ules are the most common manifestation of lung cancer [3]. When a
tumor is detected on imaging, it was likely present as microscopic dis-
ease for a longer duration [4]. Therefore, low-dose computed tomogra-
phy (CT) is recommended because it can greatly improve the likelihood
of detecting small nodules; thus, lung cancer will be detected at an ear-
lier stage or a potentially more curable stage [5]. Over the last two to
three decades, the demand for imaging services has increased at an un-
precedented rate, and the amount of imaging has increased dramati-
cally [6]. However, at present, the layout of all medical images is still
conductedmanually or there is no layout before all images are uploaded
to the Picture Archiving and Communication Systems (PACS). The cur-
rently applied methods have caused difficulties for many clinicians.
After entering the 21st century, the common expectation of almost all
radiologists worldwide was that filmless radiology departments in
completely digital regional hospitalswould be established [7]. However,
medical dry laser images are still widely used. For example, based on the
data of AGFA, the world's third largest medical imaging film company,
2·5 billion graphic sheets were sold in 2017 (Supplementary Fig. S1),
which may be related to the global imbalance of medical resources
(Video 1). A typical example of a clinical task is to sort and generate
the layout of many chest CT images that are closely associated with
the diagnosis of lung nodules. In the screening detection and follow-
up period, five problems remain within the current daily workflow.
First, a lack of imaging report standardization for radiologists and clini-
cians: since therewas no standardized, scientifically validated approach
to the evaluation of nodules, trial radiologists developed guidelines for
diagnostic follow-up, but no specific evaluation approach was
mandated [8] (Fig. 1). Second, missing nodules: if dry laser film is
used as an imaging information carrier, the failure to display nodules
on the images corresponding to the description on the report would
be the most common complaint (Fig. 2). Third, a lack of key images:
after the image acquisitions from CT scanners, a huge number of images
are all entered in the PACSwithout any selection.Moreover, many clini-
cians are relatively unfamiliar with imaging knowledge. Even a senior
doctor facing complicated image information that lacks key images
would be required to spend much time and effort in flipping through
the images, not to mention using a smartphone or tablet to check
these images. In addition, many invalid images often appear in a series
of images (Fig. 2). Therefore, the treatment process is extremely ineffi-
cient [9]. Fourth, difficulties in accessing images from other hospitals:
if a patient requests his or her own images, the images are usually
burned on a compact disc (CD) or are transferred by a portable hard
disk drive. However, many modern computers are not equipped with
a CD drive or the universal serial bus (USB) interface of the computer
is forbidden at hospitals. Therefore, imaging has to be completed for pa-
tients in different hospitals. Fifth, a lack of consideration for the needs of
clinicians and patients (Fig. 2): as a radiologist, supporting other doctors
and patient-centeredmetrics are described in paper [10]. In fact, the op-
portunities to help others more easily read and understand imaging re-
sults have not yet been fully exploited. Thus, obtaining a standardized e-
film with key images and a visualized structured report is urgent to
solve these problems (Video 1, see Materials and Methods for more de-
tails). With the advent of the third wave of artificial intelligence (AI)
technology [11], there has been substantial progress in the use of AI in
the medical field [12–14]. Currently, the majority of AI use in radiology
focuses on the diagnosis, prediction and evaluation of treatment out-
comes [15,16] (Video 1). However, the current applications of AI seem
to ignore two facts. First, standardized images with high quality are
the basis for AI development, and second, there are simple and repeti-
tive actions that AI could take over [17].

In this study, we sought to develop an intelligent film layout system
(IILS) based on a fusion of AI technology and an adaptive layout tool to
establish a new work process for daily work and obtain both standard-
ized images and reports for radiologists and clinicians. The primary ap-
plication of our machine learning algorithm was in the detection and
classification of pulmonary nodules, sorting and comparison with path-
ological results, and ultimately providing an impact assessment. At the
same time,we assess the comprehensive strengthof IILS from three per-
spectives, including i) the comparison of the diagnostic efficiency for
nodules between IILS and clinical experts; ii) the degree to which IILS
could optimize clinical workflow; iii) the cross-manufacture applicabil-
ity of IILS. Taken together, we argue that the AI technology could be in-
tegrated into the radiology workflow by series connection instead of
following the traditional workflow based on a simple parallel relation-
ship. The efficiency of the workflow could be improved, resulting in re-
duced medical costs (Fig. 3).

2. Materials and methods

The key resources are shown in Table 4.

2.1. Experimental software and hardware

The models in this article are all trained on the DGX1 platform
(NVIDIA DGX1 system, 8× Tesla V100 GPUs, 128 GB total system GPU
Memory, dual 20-core Intel Xeon E5–2698 CPU v4 2.2 GHz, Santa
Clara, California, USA).

2.2. Experimental model and subject details

2.2.1. Images from human subjects and acquisition
The studywas approved by the institutional reviewboard of theUni-

versity Medical Center. Institutional Review Board (IRB)/Ethics



Fig. 1.Agfa-Gevaert annual report 2017. Based on the financial statements of AGFA, a listed company in the past 5 years, financial income remained basically stable, and Euro 1053million
sales were obtained in the healthcare segment, including 2·5 billion global medical graphic sheets sold in 2017 (see more details on websites http://www.agfa.com/corporate/investor-
relations/key-figures/ or http://www.agfa.com/movies/annual_report_2017/).
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Committee approvals were obtained. The work was conducted in a
manner compliant with the People's Republic of ChinaHealth Insurance
Portability and Accountability Act (HIPAA) and was adherent to the te-
nets of the Declaration of Helsinki. All chest CT scanning imaging was
performed as part of the patients' routine clinical care. There were no
exclusion criteria based on age or gender. All patient scans were
downloaded in the DICOM image format according to the
Fig. 2. The currentfilm-selectingprocess bymanual and related problems indailywork. For exam
However, the final layouts in a sheet offilm are approximately forty images only. Thus, approxim
could not be 100%matchedwith the layout results, especially when the diameter of the lung no
(layers) × 1·25 mm (thickness) = 7·5 mm is usually ignored when using the manual image l
problems could be found: a lack of imaging report standardization, missing nodules, lack of ke
manufacturer's software and instructions. In the training data set, the
images used in our study were obtained between October 2016 and
May 2018. In the independent testing data set, all the chest CT scanning
images were selected from retrospective cohorts of adult patients from
Nanjing Drum Tower Hospital, Northern Jiangsu People's Hospital,
Ningbo No.2 Hospital, and NanJing GaoChun People's Hospital between
October 2016 and November 2018. Low-dose chest CT examinations
ple, a typical chest CT scan of an adult could acquire approximately three hundred images.
ately 87·7% of the images have been ignored. The impression on the corresponding report
dules is b1 cm. Using GE's CT scanningmethod as an example, lung tissue in the range of 6
ayout in daily work. Therefore, when doctors obtain the final image layouts, the following
y images, and lack of consideration for the needs of clinicians and patients.

http://www.agfa.com/corporate/investor-relations/key-figures/
http://www.agfa.com/corporate/investor-relations/key-figures/
http://www.agfa.com/movies/annual_report_2017/


Fig. 3. The composition of the IILS and how to integrate it into the current imaging process. The new IILS includes the following parts: one is AI lungnodule detection and classification, and
the other is an adaptive layout tool including auto films and visualized structured report generation thatwas invented by our team. To doubly ensure that the quality of the images and the
results could be controlled, we had a radiologistwho is usually responsible for writing the report double check the automatically generated structured report and image layout results. The
entire process of daily work in the imaging department includes the following key steps: i) acquisition: collecting image information from patients from different clinical departments; ii)
layout: inclusion ofmanual layout and imagemanagement for daily work; iii) diagnosis: image diagnosis, prediction and evaluation by radiologists. The application of the new intelligent
system is integrated into radiology workflow by series connection instead of parallel connection. A new radiology work process has been developed.
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were performed with or without contrast material for clinical pur-
poses. All CT images in cohorts were acquired by using 16, 64, 80,
128 or 256-detector row CT scanners (GE LightSpeed VCT 64, GE
Healthcare, Boston, USA; GE Discovery CT 750 HD 64, GE Healthcare,
Boston, USA; Philips Brilliance ICT 256-slice, Philips Medical Systems,
Best, the Netherlands; Somatom Definition, 64-slice, Siemens Medical
Solutions, Forchheim, Germany; Toshiba Aquilion, 16-slice, Toshiba
Medical Systems, Tokyo, Japan; United-Imaging uCT760 80-slice,
United-Imaging Healthcare Company, Shanghai, China) and a low-
dose radiation protocol. Data were acquired by using 16, 64, 80, 128
or 256 × 0·5, 0·625 or 0·75 mm collimation; a rotation time between
0·27 and 1 s; a tube current time product of 30 mAs; and a tube volt-
age between 80 and 140 kVp, dependent on the weight of the patient.
The reconstructed section thickness was between 1 and 1·5 mm, with
a reconstruction increment between 1 and 1·5 mm. A moderate lung
reconstruction kernel was used. The smallest field of view included
the outer rib margins at the widest dimension of the thorax and a
512 × 512 matrix. In this study, we initially obtained 11,205 patients
with 3,527,048 chest CT scanning images from October 2016 to No-
vember 2018 from five main different CT manufacturers. During the
training process, 9240 patients were divided into two cohorts. Train-
ing cohort 1 contained 8120 patients for nodule detection. Training
cohort 2 contained 1120 patients for benign and malignant classifica-
tion. In the testing process, another 1965 patients were assigned to
the independent testing cohort (Fig. 4). We labeled nodules in sets
to train our models. The models were tested with nodules, and 152
nodules were malignant (1880 nodules with diameter ≤ 3 mm, 6461
nodules with diameter 3–6 mm, 2195 nodules with diameter
6–10 mm and 923 nodules with diameter 10 mm ~ 3 cm) in an inde-
pendent testing dataset. Among patients with nodules, the rate of ma-
lignancy in the independent testing dataset was 7·68%.

2.2.2. Expert comparisons and reproducibility
Eight experts participated as observers. Three were members of the

American Thoracic Societywith significant clinical physician experience
in respiratory (Y, Z, H. L, and Q. Z), three radiologists (F. C, K. Z, and N.
Z) were involved in the IILS trial readings, and another three (X. D, W.
Y, and Z. Z) were general radiologists with a specific interest in thoracic
radiology. Experience with interpretation of chest CT images ranged
from3 years to N25 years. To evaluate our convolutional neural network



Fig. 4. Data flow diagram showing our approach to detect nodules and classify benign or malignant cases. A total of 11,205 patients were used in this study. The training process was
divided into two parts with two separate training cohorts. Two models derived from a convolutional neural network (CNN) were accessed for performance evaluation by 5-fold cross-
validation and subsequently merged to form the first layer of the IILS, that is, the screening part used to detect nodules and classify cases. We deployed the final two models to an
independent cohort that contained 1965 cases, including almost all major CT platforms on the market to manifest the credibility of our IILS by consistency analysis under specific
consensus on the number of nodules by the six clinical experts. The pathological gold standards were the determination of nodules as benign or malignant on biopsy or surgical resection.
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in the context of clinical experts, we used the independent testing set of
1965 patients to compare our network decisions with the decisions
made by human experts. The 1965 patients as subjects were randomly
selected for the inter-reader and inter-reader reproducibility study. De-
termination of the number of all lung nodules and judgment of benign
and malignant nodules were checked twice by six experts with a 1-
month time interval to minimize memory bias. All decisions were
made by six experts for inter-reader reproducibility analysis. Weighted
error scoring was used to reflect that a false negative result (failing to
make decisions) is more detrimental than a false positive result. Using
these weighted penalty points, error rates were computed for the
model and for each of the human experts.
2.2.3. Nodule selection and characteristics
Even though the patients also had larger lesions, we included only

nodules smaller than 30 mm, a size that corresponds to a mean diam-
eter of approximately 30 mm, because the definition of lung nodules
is a lesion smaller than 3 cm in diameter. We included nodules
suspected of being metastases as well as nodules that could poten-
tially have benign histologic features. However, miliary tuberculosis,
interstitial lesions, sarcoidosis and severe pneumonia were excluded.
The following parameters were used to assess the effect of nodule
characteristics and image quality on observer agreement: total nodule
size (largest diameter in millimeters), nodule type, benign or malig-
nant, and the density of nodules in the lung parenchyma. The param-
eters nodule size, benign or malignant and type were extracted from
the database. The density of nodules was measured by experts (H. Y
and H. W) who did not participate in the reading process. Two ap-
proximately 1 cm2 regions of interest were placed in two homoge-
neous regions within the nodule, and the standard deviation of
Hounsfield units averaged over the two measurements was the mea-
sure for density.
2.3. Patient classification

Randomization was performed by using pseudorandom numbers
generated from the random function in the Python Standard Library
(Python3.6.13, Python Software Foundation,Wilmington, Del). Patients
in the training process were randomly split into an 80%: 20% ratio in
both the training set and validation set (Fig. 4). The training set was
used to train the algorithm, the validation set was used for model selec-
tion, and the test set was used for assessment of the final chosenmodel.
In deciding the percent split, the goal is to retain enough data for the al-
gorithms to train from but have enough validation and test cases to
maintain a reasonable confidence interval of the accuracy of the
model [18]. The dataset represents the most common patients with
medical solid, calcified or ground-glass nodule(s) presenting and re-
ceiving treatment at all participating clinics.
2.4. Image labeling

Before training, each image went through a tiered grading system
consisting of multiple layers of trained graders of increasing expertise
for verification and correction of image labels. Each image imported
into the database started with a label matching themost recent diagno-
sis of the patient. The first tier of graders comprised residents who had
basic knowledge of the respiratory system and imaging. This first tier of
graders conducted initial quality control and excluded chest CT images
containing severe artifacts or significant image resolution reductions.
The second tier of graders comprised two experts who independently
graded each image that had passed the first tier. The presence or ab-
sence of solid, calcified or ground-glass nodule(s) and other pathologies
visible on chest CT images were recorded. Finally, a third tier of two se-
nior independent respiratory and imaging experts, each with over
15 years of clinical respiratory and imaging experience, verified the
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true labels for each image. A validation subset of all images was graded
separately by two expert graders, with disagreement in clinical labels
arbitrated by a senior expert, to account for human error in grading.

2.5. Auto film layout and structured report

The development of the software system was carried out under the
Linux Ubuntu 18.04 environment (Ubuntu 18.04.1 LTS, Bionic Beaver,
Boston, Massachusetts, USA). Pycharm (Pycharm 2018.1, JetBrains,
Czech Republic) and VS Code (VS Code 1.28, Microsoft, USA) were
used as IDEs for development. Chrome debugger was used for testing
and debugging UI/UX. The implementation details of the software are
confidential, and the following section mainly describes the design
and logic of the implementation.

2.6. Auto film layout

The auto film layout program was designed to make a productive,
quality assured, unattended film printing process (Supplementary
Fig. S1). The program first captures the most important nodule in AI
(can be overwritten by an operator) findings in different forms and
fills the rest of the film with images in both mediastinal and lung win-
dows. The program achieves productivity and quality assurance by en-
abling traceability. Each image on the film can be traced by its slice ID
and redirected to its original location in our image set. This process is
performed by separating the filming output process into the following
sub tasks: 1, verification; and 2, export. In the verification task, our pro-
gramfirst processes themost important nodule, generatesfive enlarged
output images focusing on the nodule along with a highlighted rectan-
gular shape, indicating the position of the nodule in the forms of the
lung window, long diameter measuring, mediastinal window and two
MPR perspectives. The five output images are placed in the first row of
the film, followed by 30 mediastinal window images and the rest in
the lung window. Specifically, the first five grids are the automatic lay-
out of a single nodule with the highest risk of malignant probability,
which is predicted by the AI. The five pictures can also be verified and
overwritten by radiologists. The outputs from the adaptive layout tool
include two e-films and a structured report composed of four sets of im-
ages, Fig. 5: Set 1, Layout of the key nodule using five images. The first
five small cells would be occupied by the nodule with double confirma-
tion by both the AI prediction (the risk of malignancy ≥50%) and a radi-
ologist. Set 2, Layout of the mediastinal window sequence, which is a
regular sequence of chest CT images. Mediastinal window images ac-
count for 30 grids. Set 3, Layout of the lung window sequence, which
is also regular sequence of chest CT images. The remaining 45 grids
are all allocated to lung window images. Set 4, Structured report. The
structured report is added to the image information and relates the de-
scription information of each nodule. As a comparison to traditional re-
ports, the IILS provides the following information: i) basic information
display: patient information, check information, radiologist informa-
tion, etc. ii) findings (double confirmation both from the AI prediction
and a radiologist): standardized description of lung nodule images in-
cluding the nodular location, morphology and density, the number of
layers of image information, long diameter nodules, nodule volume,
Fig. 5. An example of the layout plus the visualized structured report and a comparison with th
new layout films are divided into three parts (the areas of the two long red boxes that represent
films comparedwith invalid images markedwith orange underline in (c). The first part that inc
the largest cross-sectional slice of thenodule under pulmonarywindow conditions (WW:1500;
the nodule under mediastinumwindow conditions (WW: 350,WL: 50), 4) the coronal image r
part is a group of images per layer interval under mediastinum window conditions. The last p
remaining cells. Another convenience is that each image in any cells on the films can be trace
mouse. The visualized structured report related to the films is also automatically generated. S
report given by the IILS will be similar those given by traditional systems. (c): With the tradit
mediastinum tissue images, and the latter part is the lung tissue images. The main problems o
with the orange underline), and a lack of linked function. The related report is filled with text
mean CT value for nodules, andmalignant probability of nodules. In ad-
dition, we have reserved enough space for radiologists to write regular
reports for other lesions. iii) Diagnostic impression: diagnostic advice
written by the radiologists, Fig. 5. The suitability of the range from the
start to the end point of the lung field is the main concern, which
means that whether the five images attached to the first set, that is,
one set to show the five forms of the nodule with the highest AI pre-
dicted score to be malignant, were in line with our predesign will be
highly valued. The second and third sets were designed to display im-
ages belonging tomediastinum or lungwindows to simulate traditional
film layout. The fourth set is to show the image with the largest layer of
pulmonary nodules in the structured report. Each image can be verified
by the operator by tracing its source in the original image set. After ver-
ification, the film can then be exported to a printable format to grant vi-
sualization to both radiologists and patients alongside automatically
generated structure reports. We also reasoned that a good film layout
system mainly includes the following three main contents: 1) any
hinting key images with any credible, objective measurement data;
2) a series of images to display tumor characteristics, including shape,
number, density, size, enhancement, multiangle observation, and
follow-up comparison. 3) There is continuous display of chest longitudi-
nal window and lungwindow images (Fig. 5a–b). Moreover, we show a
picture of the current layout form by hand that is very common in daily
work as a comparison (Fig. 5c).

2.7. Structured report

The Structured Report Generating program was designed to fulfill a
complete work flow in a common CT scan scenario (Supplementary
Fig. S2). As a comparison to the traditional report, our program provides
visualizations of images and findings to both radiologists and patients.
The program proceeds mainly as the following three steps: 1, gathering
resources; 2, rendering images; 3, exporting.Wewill now describe each
step in detail. For gathering resources, we need to load multiple re-
sources into our program, including the DICOM image set, AI predicted
nodules, and patient/hospital information, as well as capturing radiolo-
gist findings and diagnostic impressions. After gathering necessary as-
sets, we proceed to the rendering section. The program will first sort
nodules by its importance (defined by AI but can be overwritten by op-
erator), then render each nodule using rectangular shape on corre-
sponding images. The program also enlarges the image and sets its
center, focusing on the nodule itself. After rendering and transforming,
a special event listener is triggered to notify the program to capture
the rendered data. Finally, theprogramgenerates a predefinedprintable
output.

2.8. Quantification and statistical analysis

ROC curves plot the true positive rate (TPR, sensitivity) versus the
false positive rate (1-specificity). ROC curves were generated using
classification probabilities of malignant nodules and the true labels
of each test image and the ROC function of the Python Standard Li-
brary (Python 3.6.13, Python Software Foundation, Wilmington, Del).
The area under the ROC curve is a measure of performance, and the
e traditional layout plus the report. (a) With the new image layout after IILS selection, the
the areaswhere the key images are located). Obviously, there are no invalid images in the
ludes the first five small cells of the beginning on the layout shows in turn: 1) the image of
WL:−500), 2) the imagewith long and short diametermeasurement data, 3) the image of
econstruction of the nodule, 5) the sagittal image reconstruction of the nodule. The second
art is a group of thin layers of lung tissue images approximately six layers apart to fill all
d by its slice id and redirected to its original location in image set by double clicking the
ee Video 2 for more details. (b): If the patient has no pulmonary nodules, the layout and
ional manual layout form, the form is divided into two parts. The front part includes the
f traditional layout format are a lack of key images, various invalid images (some images
and has no structured report generation.
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TPR (sensitivity) at some chosen true negative rate (TNR or specific-
ity) on the ROC curve is the probability that the classifier will rank a
randomly chosen “the highest risk of malignancy” higher than a ran-
domly chosen normal. Accuracy was measured by dividing the num-
ber of correctly labeled images by the total number of test images.
Sensitivity and specificity were determined by dividing the total num-
ber of correctly labeled malignant nodules and the total number of
correctly labeled benign nodules, respectively, by the total number
of test images.

Continuous variables are described as the mean± standard error of
the mean (SEM), and the categorical variables are presented as charac-
teristics such as B/M for benign/malignancy. The clinical characteristics
Fig. 6.Thedemonstrations of theprocess of detecting different sizes of lungnodules byAI and th
of lung nodules with different characteristics and evolution show the importance of follow-up
pleural surface demonstrates some features of benign and stability at baseline; (2): A solid lun
benign and stable characteristics; (3, 4): The evolution of a small subsolid nodule in the right
the green square frame) adjacent to the right major fissure demonstrates acute margins to th
growth (diameter: 20 mm, the green square frame) is noted in the lesion approximately thre
overall experimental design describing the flow of lung CT images through the labeling and
subsequent testing. The training dataset included images that passed sufficient quality sta
compared with that of the traditional system. Finally, the impact of the process caused by the
between the traditional image layout group and the intelligent system
group and normal controls were compared with the Mann-Whitney U
test, Chi-square test, or Fisher's exact test when appropriate. The differ-
entiationswere compared between the traditional layout group and the
intelligent layout group and normal control group using a two-sample
Mann–Whitney U test. Kappa statistics were used to measure the de-
gree of consistency between two appraisers, that is, AI and human ex-
pert. A kappa value of at least 0·75 indicates good agreement based
on the literature [19]. However, we reasoned that larger kappa values,
such as 0·90, are preferred. A two-tailed P value b0·05 was considered
statistically significant. All statistical analyses were executed by R/3.5.0
(https://www.r-project.org/).
eworkflowdiagramof the overall experimental design. (a): The four cases of different sizes
. (1): The upper lobe nodule (diameter: 2 mm, the green square frame) with tags to the
g nodule (diameter: 4 mm, the green square frame) also demonstrates some features of
lung during the follow-up. (3): Inconspicuous small irregular nodule (diameter: 9 mm,
e fissure and does not satisfy criteria for an intrapulmonary lymph node. (4): Significant
e months later due to progressive adenocarcinoma. (b): Workflow diagram showing the
grading process followed by creation of the IILS, which then underwent training and
ndards from the clinical dataset. Subsequently, the output of the IILS was tested and
IILS was also assessed.

https://www.r-project.org/


Fig. 8. Plot showing the performance of classification in benign and malignant nodules on
chest CT images in the training and validation datasets using ResNet. Accuracy is plotted
against the training step, and cross-entropy loss is plotted against the training step
during the length of the training of the multiclass classifier over the course of N250
epochs. The validation set accuracy and loss show good performance. For model
accuracy, the validation set curve converges to 97% (100% for the training process); for
the loss function, the validation set curve approaches 0·11 (0 for the training process).

Fig. 7. Performance for the training process of detecting nodules. (a): The dichotomy loss embodies the ability to judgewhether nodules existed in themass of anchor frames generated by
the detectionmodel. If the overlapping area of the anchor frame and the real nodule boxwas larger than a certain threshold, a nodule in the anchor frame shall be considered. (b): Position
regression loss is harnessed to assess the accuracy of the detection frame position, aiming tomake themodel-based detection frame close to the real nodule frame, with the same premise
as nodule classification loss. (c): The classification loss reflects the ability to determine the nodule category, such as 0–3mmnodules and 3–6mmnodules. The premise is that at least one
nodule existed in the anchor box and failed otherwise. (d): The accuracy of nodule detection refers to the dichotomic ability of accurately distinguishing nodules and backgrounds. (e):
Nodule detection recall rate indicates the number of nodules found in the model compared to the total number, i.e., the recall rate of the model.

Table 1
Patient characteristics, number of CT images (patients) from different manufacturers and
number of nodules.

Parameters Patient (Images) metric

Patient characteristics
Number of patients (Training 1 and
2/Independent Testing Datasets)

9240/1965

Female to male (Training/Independent
Testing Datasets)

1.07:1 (4774:4466)/1.02:1
(993:972)

Age (y) (Training/Independent Testing
Datasets)

56 ± 24/55 ± 16

Different manufacturers Number of patients in
training/testing datasets

GE 1767/399
Philips 2045/386
Siemens 1730/181
Toshiba 1525/290
United Imaging 1119/378
Control Group (No nodules reported) 1054/331 (mixed

manufactures)
Total Number of Chest Images 2,982,742/544,306

Different sizes of nodules Number of nodules
≤ 3 mm 8080/1880
3–6 mm 6127/6461
6–10 mm 3544/2195
10 mm ~ 3 cm 1460/923
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2.9. Contact for reagent and resource sharing

Further information and requests for resources and data
should be directed to and will be fulfilled by the Lead Contact,
Bing Zhang (zhangbing_nanjing@vip.163.com). There are no re-
strictions on the use of the independent testing cohort materials
disclosed.
Fig. 9. Consistency analysis among AI, human experts and the gold standard in detecting lung n
pairwiseMann–WhitneyU tests except for AI. Although all kappa consistency analyses were sta
in the degree of agreement with the gold standard by a kappa coefficient of 0·94. The horizo
significance is labeled as follows: for b0·1, * for b0·05, ** for b0·0.01, *** for b0·005 and NS fo
3. Results

3.1. Patient and image characteristics

Cases with four different nodule sizes along with their characteris-
tics and evolution show the importance of follow-up (Fig. 6a). The char-
acteristics of the patient cohort and nodules used for training, validation
odules. Using the gold standard as a reference, (a) concluded that differences existed in all
tistically significant (p b 0·001), (b-h) demonstrated that AI outperformed human experts
ntal and vertical coordinates for (b-h) indicate the detected nodule number. Statistical
r no significance.

mailto:zhangbing_nanjing@vip.163.com
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and independent testing datasets are summarized in Table 1. Nodule
type was classified to be solid, calcified or ground glass according to
the literature [20]. The overall experimental design of the workflow di-
agram is shown in Fig. 6b.

3.2. Model design and performance evaluation

The core design of the IILS system was the deep learning model,
which was divided into two parts, Faster RCNN and ResNet. Faster
RCNN is primarily responsible for the detection and localization of pul-
monary nodules. Faster RCNN also aids in classifying pulmonary nod-
ules into the following classes: 0–3 mm, 3–6 mm, 6–10 mm,
10–30 mm pulmonary nodules, solid nodules, ground-glass nodules
(GGNs) and calcified nodules. The second part is ResNet, and its main
responsibility is to classify benign and malignant pulmonary nodules.
In part one, regarding feature map extraction, we used layer conv4_x
in ResNet-50 as the CNN output in the base of Faster RCNN. In our
case, layer conv4_x in ResNet-50 exhibited the best performance in de-
tection. In the region proposal network (RPN), we used binary cross en-
tropy as the classification loss function and selected the smooth L1 loss
function as the regression loss function. The training process of the
modelwas perfect, and all the curves reached convergence. The training
process of RPN is reflected in Fig. 7a-b, and all curves converged to zero.
This finding also indicates that our model can distinguish the fore-
ground and background well and provide a precise bounding box of
the foreground. The curve also converged to zero (Fig. 7c). The conver-
gence of this curve means that the model can distinguish seven classes
of pulmonary nodules very well. The curves converge to 1 in Figure7-d-
e, reflecting that our detection model could distinguish nodules and
background with high precision and accurately identify nodules. In
part two, we classified benign and malignant nodules by ResNet. The
Fig. 10. Performance of AI in the consistency of lung nodule diagnosis when applied to imaging e
significant difference was observed regardless of the type of manufacturer (p N 0·05). (b-f) dem
with the gold standard (kappa coefficient range from 0·87–0·99, p b 0·001). The horizontal a
network layer became deeper but not because the model became
more accurate. In contrast, our model was inaccurate, and a series of
problems occurred. Thus, to obtain a more accurate model and avoid
problems such as gradient dispersion, we chose ResNet. In the IILS sys-
tem, ResNet acted as a good classifier to finish the job. The convergence
of the curves represents the success of our classification job; for model
accuracy, both training and validation curves approached 100% (100%
for the training process and 97% for the validating process). In the loss
function part, the curves also show that the model performed very
well in classifying benign and malignant nodules. The training process
converged to 0·11 for the validating process (Fig. 8).

3.3. The comparison of the diagnostic efficiency for nodules between IILS
and human experts

We evaluated our model in detecting and classifying the most com-
mon pulmonary nodules. This model detected and classified images
with nodules of different grades of benign and malignant tumors as a
“primary layout nodule”. These conditionswould demand relatively ur-
gent referral to related respiratory physicians or thoracic surgeons for
definitive treatment. The system categorized images with benign lung
nodules or false positive nodules, which have a low probability of be-
coming a malignant tumor, as “only shown in the visualized structured
report”. Microscopic nodules that are very common in clinical work are
not indicated for malignant tumors; therefore, referral to a related ex-
pert for treatment is less urgent.

Here, we sought to decipher the advantages of AI in detecting lung
nodules compared to human experts. In this study,we resorted to a sim-
ple and intuitive way, that is, evaluating the degree of agreement be-
tween the detected nodules and those screened by the gold standard.
We conducted consistency analysis, using the pathological gold
quipment from five differentmanufacturers. Using the gold standard as a reference, (a) no
onstrated that in all kinds of manufacturers, AI represented highly significant consistency

nd vertical coordinates for (b-f) indicate the detected nodule number.
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standard as a reference, by the kappa consistency coefficient and two-
sample Mann–Whitney U tests separately. Strikingly, a difference
existed in all pairwise comparisons except for AI (p = 0·138 for AI, p
b 0·001 for other comparisons, see Fig. 9a and Supplementary
Table S1). Compared with human experts, AI can also be significantly
consistent with lung nodules detected by the gold standard, whereas
AI stood out due to its highest consistency coefficient (kappa = 0·94
for AI, p b 0·001 for all comparisons, see Fig. 9b-h and Supplementary
Table S1).We further compared the consistency of the detected nodules
in different size ranges in more detail and demonstrated that regardless
of the nodule size range, AI showed a muchmore favorable consistency
with the gold standard that exceeded human experts. Specifically,
kappa = 0·93 for 0–3 mm nodule detection, kappa = 0·97 for
3–6 mm nodule detection, kappa = 1 for 6–10 mm and 10–30 mm
(all p b 0·001). AI was only significantly different (p = 0·013) from
the gold standard in the diagnosis of nodules of 0–3 mm, whereas the
human experts showed significant differences in all sizes of nodules, de-
tecting these nodules to varying degrees (Supplementary Fig. S3–6).
Fig. 11. Evaluation of performance for AI in recognizing benign or malignant lesions. (a) The c
nodules versus benign nodules. The comparison between the predictive performance of mod
the curve with corresponding false positive rate (TPR, sensitivity) and true positive rate (FPR,
benign based on a cutoff score of our original model. (c-d) Ordered accuracy and error bar to a
3.4. The cross-manufacture applicability of IILS

Now that AI has been confirmed to be superior to human experts in
detecting nodules regardless of size, it is necessary to judge the applica-
bility of AI from another angle. Essentially, diagnosis by AI depends on
the images produced by the existing manufacturers; thus, evaluating
the influence of image output from different manufacturers on nodules
detected byAI is reasonable. For the sake of exploring the adaptability of
AI to different imagingmanufacturers under the condition in which the
gold standard was referenced, we further assessed the consistency of AI
with the gold standard in diagnosing nodules in various size ranges on
different manufacturers by pairwise Mann–Whitney U tests and kappa
consistency analysis. Overall, AI was well configured on five manufac-
turers with no difference compared to the gold standard (p = 0·576
for GE, p = 0·472 for Philips, p = 0·988 for Siemens, p = 0·376 for
Toshiba and p = 0·343 for United Imaging (UI)). In addition, high con-
sistencywas achievedwhen referring to the gold standardwith a kappa
coefficient ranging from 0·87 to 0·99 (all p b 0·001, Fig. 10). In regard
orresponding area under the ROC curve for the graphs is 90·6% for malignant pulmonary
el and human expert on another independent cohort of 284 patients was shown around
1-specificity). (b) Contingency table for predicted labels and true labels of malignant and
ssess the performance of AI when diagnosing the lesion status of lung nodules.



Table 2
Five-point scales for evaluation of consistency and accuracy of layout.

Scales Scoresa Description

Range of lung
field1

1/0 Consistency and accuracy of the starting and ending
position of the lung field

The first set2 1/0 Consistency and accuracy of showing the most suspicious
malignant nodule in five morphological forms (no nodule
no count)

The second
set3

1/0 Consistency and accuracy of showing the images of
mediastinum

The third set4 1/0 Consistency and accuracy of showing the images of lung
The fourth
set5

1/0 Consistency and accuracy of showing lung nodules in the
structured report

a Record 1 point if it meets the requirements for layout, otherwise record 0 points with
the same weight for all five scales.

1 Range of lung field: range from the beginning to the end of lung fields.
2 The first set: for the one nodule most suspicious detected and predicted by the IILS.
3 The second set: for displaying mediastinal tissue.
4 The third set: for displaying lung.
5 The fourth set: For displaying images in the structured report.
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to a specific size range, interestingly, a significant false positive rate was
observed when detecting 0–3 mm lung nodules with only UI (p =
0·006) (Supplementary Fig. S7). Consistency remained high regardless
of the kind of nodule detected across different manufacturers. Specifi-
cally, the kappa coefficient ranged from 0·86 to 0·99 for 0–3 mm
Fig. 12.Quantification of IILS deployment infivemanufacturers. (a) Histogram showing scores i
and normal control groups among allmanufacturers. Total score,whichwas summedby each sc
nodules, 0·95 to 1 for 3–6 mm nodules, and 0·99–1 for 6–10 mm and
10–30mmnodules (all p b 0·001, Supplementary Fig. S7–10). Thisfind-
ing indicates that overall, AI performs well with each manufacturer
(Supplementary Table S2).

3.5. Validation of the outperformance for IILS against human experts in di-
agnosis by an independent cohort

The data from another independent cohort of 284 patients with
pathological results were imported to compare malignant pulmonary
nodules with benign nodules using the same datasets to determine
the accuracy of the model's performance. We reasoned that our orig-
inal predictive model is completely clinically applicable since its area
under the ROC is up to 90·6% for malignant pulmonary nodules versus
benign nodules (Fig. 11a). Under a score cutoff of 0·5, 124 cases were
predicted to be true positive and 1479 to be true negative. Approxi-
mately 38 cases were labeled as false positive, and 181 were false neg-
ative. Thus, a sensitivity of 76·5% and specificity of 89·1% were
achieved (Fig. 11b). The comparison between the predictive perfor-
mance of model and human expert on another 284 patient cohort
with pathological gold standard is shown around the curve, which
concluded that AI (0·21 for FPR and 0·90 for TPR) outperformed the
other six experts in both sensitivity and specificity. In addition, com-
pared with human experts, AI showed the highest accuracy; 248
n each scale across 5manufacturers, and (b) each scalewas compared between the patient
ale, was compared in the sameway as in (c-d). Statistical significance is labeled * for b0·05.
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cases were predicted correctly (87·3%, number of patients who were
predicted to be true positive or true negative divided by 284), and
the corresponding error was the lowest, with 36 mislabeled cases
(12·7%, number of patients who were predicted to be false positive
or false negative divided by 284) (Fig. 11c-d).
3.6. Design and evaluation of automatic adaptive layout tool

After our discussions with six experts (three radiologists and three
clinicians), according to the requirements of the 2018 NCCN guideline
[21], a final consensus was reached regarding a good image layout
form. To simulate the results of daily work after chest CT scanning in
the medical imaging department, we designed an automatic adaptive
layout tool that produces the “Auto Film Layout and Lung Nodule
Structured Report” to connect to the outputs of the CNN network. Au-
tomatic adaptive layout tools can export film layouts of key lung nod-
ule images (the nodule with an increased risk of malignancy) and
generate a structured report. Both film layouts are used in the fixed for-
mat (5 × 8 grids on one film). The chest CT images of 180 patients were
mixed and continuously input to the IILS to simulate the condition in
which images from different manufacturers enter a workstation in
daily work. The characteristics of the adaptive layout tool and whether
it could be successfully layout were evaluated. The total number of im-
ages for these 180 patients was 60,660, including 12,240 mediastinal
window images and 48,420 lung window images. A 5-point scale
method was used to eventually judge the layout of e-films, as shown
in Table 2.
Fig. 13. Comparison of the mouse clicks and time consumed between the IILS and tradition
traditional workstation in (a). (b) Click time was compared between IILS and mixed workst
patient and normal cases within the IILS and traditional workstation separately in (c). Sa
significance is labeled *** for b0·005 and NS for no significant difference.
3.7. High quality of IILS by a five-point scales assessment

We harnessed five-point scales to evaluate the quality of our IILS
(Table 2). Only a few scores could not hit the fourth scale across all
kinds of manufacturers (Fig. 12a). No misses were found with normal
layout cases, whereas misses on several cases in the fourth area were
observed in patients compared to those in normal controls (p = 0·04)
(Fig. 12b). We also compared the total score derived from adding each
scale score, and overall, Siemens worked best when deployed with the
IILS (Fig. 12c). The total score indicated that the IILSmight bemore suit-
able for nodule-free people than for patients with nodules (p = 0·04)
(Fig. 12d).

3.8. Advantages over traditional workstations: less time-consuming, no in-
valid images and zero omission for IILS

Considering that clicking time is necessary, the average number of
clicks of layouts from five main manufacturer devices was 14·45 ±
0·34 (Supplementary Table S3). Specifically, the average number of
clicks was 14·37 ± 0·89 for GE, 14·70 ± 0·86 for Philips, 14·57 ±
0·87 for Siemens, 15·77 ± 0·95 for Toshiba and 13·67 ± 0·79 for UI,
whereas 2 clickswere observed in the IILS (p b 0·001) (Fig. 13a, Supple-
mentary Table S4). More clicks were required when using traditional
workstations than IILS for both patients (p b 2·2e-16) and nodule-free
normal people (p = 1·1e-12). There was no significant difference in
laying out images for patients or normal people between IILS or tradi-
tional manufacturers (p N 0·05) (Fig. 13b-c). With layout images from
250 patients (50 patients for each five manufacturer) by different
al manual layout. Error bars for comparing mouse click time between the IILS and each
ations within patient and normal cases separately and was in turn compared between
me comparison was applied to the time consumed and is shown in (d-f). Statistical



Fig. 14. Comparison of the production of invalid images from different layout systems and statistics on the missing lung nodules in clinical imaging reports of missed diagnoses. (a):
Comparison of the results derived from the IILS and three traditional layout workstations. No invalid images in AI compared to 8·10 ± 0·42, 6·92 ± 0·39 and 6·15 ± 0·41 invalid
images for GE, Philips and United Imaging separately per patient. IILS is marked in yellow, and other workstations are marked in blue with the mean ± SEM. (b): Statistical results
after detection and classification by the IILS from randomly selected control group data that were derived from the images of patients who were considered by radiologists to have no
pulmonary nodules in their clinical imaging reports. The IILS would not miss any nodules during the entire workflow where the performance was far superior to the traditional
method, which approximately missed the lung nodules (false negatives, FNs). However, compared to human experts, the IILS could cause some false positives (FPs).
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manufacturer workstations, the amount of time required for 50 patients
for each manufacturer was 8 min (GE), 7·42 min (Philips), 8·87 min
(Siemens), 8·17 min (Toshiba) and 8·63 min (UI). The average layout
time by using the traditional CTworkstation is 16·87 s/patient (Supple-
mentary Table S3). In contrast, the IILS requires approximately 6·92 s/
patient (Fig. 13d, Supplementary Table S5). Significantly less time was
consumed using IILS than using other manufacturer workstations for
patients (p b 2·2e-16) and nodule-free (p= 1·6e-11). As we expected,
the IILS is more efficient than traditional workstations in both patients
and normal cases. Interestingly, the IILS spends less time on nodule-
free cases, while traditional workstations take longer (Fig. 13e-f).
Fig. 15. Two types of measurements of lung nodules are shown during repeated testing. The ri
Straight lines, such as the yellow lines for the IILS, indicate that the IILSwas always repeatable, an
direction. That is, greater amplitude resulted in worse reproducibility. (a-d) for size and (e-f) f
In addition, the differences between two layout forms could be
regarded as the secondmajor category and be described from 8 aspects.
First, we compared the invalid images derived from two different layout
systems. Second, we randomly collected fifty layout results from three
manufacturer workstations, with a total of 150 results. With the
traditional layout performed manually, the number of invalid images
per patients was 8·10 ± 0·42, 6·92 ± 0·39 and 6·15 ± 0·41 for GE,
Philips and UI, respectively, compared to 0 per patient for the IILS
(p b 2·2e-16 for all) (Fig. 14a). We assessed whether the lung fields in
each grid of thefilm fit each size appropriately. All of the experts subjec-
tively concluded that significant differences existed (Supplementary
bbon map was used to describe the stability of repeated measurements or reproducibility.
d thefluctuations of theblue or red lines, Expert1 or 2, quantify the stability in the opposite
or density.
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Table S3). We further investigate whether two layout measures and
workflows could cause omissions in lung nodule detection. Two radiol-
ogists were required to indicate the locations of nodules derived from
two chest CT films and reports on different platforms. The radiologists
also recorded the diameter of missing nodules. We found a total of
318 mismatched nodules according to the report description and
missed nodules in 46·8% of patients, which is approximately 0·97/pa-
tient. Additionally, a diagnosis of GGN was missed in 63 out of 327 pa-
tients (19%). As expected, IILS missed zero nodules compared with an
expert; however, IILS might generate more false positives than human
experts (Fig. 14b, Supplementary Table S3).

3.9. A complete reproducibility of IILS against an instability of human
measurements

We compared the results from several aspects in regard to how to
display the nodules appropriately (Video 2, Supplementary Table S3).
Since the gold standard is lacking, we evaluated which standard is
more stable or reproducible. In this regard, a total of eight lung nodules
were selected, namely, two nodules in four different sections (size:
≤ 3mm; 3–6mm; 6–10mm; 10mm~ 3 cm). Subsequently, two radiol-
ogists were required to repeatedly measure the size (Fig. 15a-d) and
density (Fig. 15e-f) of these eight nodules ten times in different periods
through workstations; the IILS did the same. The IILS measurements
were 100% reproducible and represented perfect consistency in multi-
ple measurements, whereas measurements assessed by experts exhib-
ited varying degrees of fluctuations (Supplementary Table S3). It is
imperative to embed the positive predictive value of lung nodules and
the ability of tracing and redirecting to its original location in an image
set by double clicking the mouse on the target image in any cells on
the e-films (for more details, see Supplementary Table S3, Method and
Video 2).

3.10. Human-machine coupled operation requires an adaptation process

We simulated the normal working scenario of radiologists where
two radiologists were asked to make judgments on as many of the
284 patients as possible within two hours, using a traditional diagnosis
or a re-diagnosis based on AI judgment after an interval of one month.
Significant improvements were found in consumed time, efficiency
and absolute mismatched nodules after applying AI judgment as prior
information (p b 0·05). Specifically, based on the existing judgment of
AI, two experts not only reduced the diagnosis time for the same
image but also improved the diagnostic efficiency per unit time (de-
tected number of nodules/consumed time). The detection error (abso-
lute number of nodules detected by the gold standard minus human
diagnosis) was also significantly decreased (Fig. 16a-f). The detection
sensitivity for both experts was improved after using AI, but the speci-
ficity for expert 2 was reduced from 99·2% to 60% (Fig. 16g).

3.11. The satisfaction of both experts and patients demonstrates friendliness
of IILS

Six experts who blinded to the origin of the results evaluated the re-
sults from traditional systems and the IILS. We established a 5-point
scoring mechanism for evaluating the layout e-films and reports (or vi-
sualized structured reports) produced by two different layout systems
(Table 3). Experts gave a significantly better evaluation for IILS with
all 5 points than traditional method with approximately 3 or 4 points
(p = 7·674e-23). In contrast, patients scored with more extreme
Fig. 16. Evaluate the impact of AI diagnosis on human expert judgment. Two radiologists (Exper
AI diagnosis within a month. Impact was considered in the following aspects: consumed time,
three aspects for expert1 in (a-c) and for expert2 in (d-f). Sensitivity and specificity for each ex
standard. H) Subjective evaluations made by six experts and six patients on the e-films and rep
with the mean ± SEM.
points, indicating that the friendliness of the report is very important
(p = 8·164e-25) (Fig. 16h).

3.12. The performance of IILS evaluated on LUNA16 and LIDC/IDRI
benchmark

Theperformance of IILSwas evaluated on two benchmark databases,
that is, LUNA16 and LIDC/IDRI. A total of 888 CT scans of Luna16
(https://luna16.grand-challenge.org/) were tested first and the final
score is 0.696 (ranked 18), which is defined as the average sensitivity
at 7 predefined false positive rates: 1/8, 1/4, 1/2, 1, 2, 4, and 8 false pos-
itives per scan (see more details concerning about the FROC and CAD
analysis in Supplementary Fig. S11 and Supplementary Table S7). We
further tested our IILS on LIDC/IDRI database (https://wiki.
cancerimagingarchive.net/display/Public/LIDC-IDRI) with 1018 CT
scans, which contains more slice thickness and is more similar to real
clinical environment. For nodules larger than 3 mm, the recall rate of
the model is 88.75%, and the false positive rate is 5.22 false positives
per scan.

4. Discussion

In this study, by creating and deploying a deep neural network algo-
rithm, our model of the IILS demonstrated competitive performance of
chest CT image analysis with a limited need for human behavior. More-
over, the efficacy of the machine learning technique for image analysis
likely extends beyond the realm of chest CT images—in principle, the
techniques by learning through AI and layout could potentially be
employed in awide range ofmedical images acrossmultiple disciplines.

A major feature of IILS is almost real-time lung nodule detection.
This real-time performance is all due to the Faster RCNN model in the
system [22]. The performance of IILS depends highly on the accuracy
of detecting and classifying nodules through the trained model. A high
agreement with the gold standard was reached. However, there was a
significant difference in detecting small nodules by applying AI to UI,
which might be caused by small sample size (number of nodules, n =
1119) for UI enrolled in the model training. The IILS was confirmed to
be superior to six experts in terms of the number of detected nodules
and the judgment of benign or malignant status. According to the cur-
rent constructed model, the area under the curve of the obtained ROC
curve was up to 90.6% which was reasoned to be clinically applicable.
After rigorous statistical testing, the IILS was confirmed to be superior
than six human experts in terms of the number of detected nodules
and the judgment of benign or malignant status. There is a Supplemen-
tary Table S6 shows some of the relevant work and the results of this
comparison. By contrast, the experimental data and the results of the
CNN architecture have made some progress, enabling us to be full of
hope that the model performance of the IILS is stable, reliable and
efficient.

The IILS is designed to be used in the process of daily practical work
to accurately detect and classify nodules and to standardize chest CT im-
ages and reports. The advantage of this layout is simplification of pro-
cess where doctors carefully flipped through images to find lung
nodules with key images. To optimize the IILS, we evaluated its perfor-
mance in layout parts. The overwhelming 100% success rate is depen-
dent on the AI output with multi-planar reconstruction program
design and is automatically completed. Themulti-planar reconstruction
is essential for clinicians to observe pulmonary nodules from multiple
perspectives, make final diagnosis, evaluate and follow up pulmonary
nodules.
t1was senior and the otherwas junior)were invited to read images before using AI or after
efficiency and absolute mismatched nodules. Boxplots show significant differences for all
pert shown in (g) were calculated bymalignancy status compared to the pathological gold
orts produced by the traditional workstations and the IILS. Scores are shown in error bars

https://luna16.grand-challenge.org/
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI


Table 4
Key resources for independent testing dataset and models.

Reagent of resource Source Identifier

Deposited Data
Images for Training N/A Patent

Pending
Images for
Independent Testing

https://pan.baidu.
com/s/1OAEMcnlO8uTBK_2cFJ2QqA

N/A

Software and
Algorithms

Deep Neural
Network

MXNet https://mxnet.apache.org/ N/A
Algorithms N/A Patent

Pending

Table 3
Five-point scales for rating of the combination of different types of image layouts.

Index Scorea Description

1 1/0 Poor opacification or missing, non-diagnostic examination
2 1/0 Suboptimal opacification, low confidence in making the diagnosis
3 1/0 Limited opacification but sufficient for diagnosis
4 1/0 Good opacification to the axial and multi-planar image
5 1/0 Excellent opacification to the axial and multi-planar image

a Record 1 point if it meets the requirements for layout, otherwise record 0 points with
the same weight for all five indexes.
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There are fourteen differences between IILS and the traditional
layout system (Supplementary Table S3). Among them, the content
was divided into three parts. The first part was focused on benefiting
operators. IILS might have opportunities to reduce costs, including
increasing the efficiency of utilization of CT, substituting lower cost re-
sources and even replacing some operations. The second part includes
the contents from the fourth to the eleventh points. These differences
are mainly concentrated on the differences in the final outputs, two
e-films plus one corresponding report produced by the two different
systems. Although the e-film layouts produced by the IILS were
evolved from two parts in the traditional way into three parts in
which the first five small grids were used to display only one
nodule with the highest risk of malignancy in different presentation
forms that would aid in diagnosis, valid images were obtained
more often by IILS than traditional way, which improves the
effectiveness.

In addition, an interesting phenomenon occurred. To validate the
performance of our adaptive tool, we randomly selected 327 cases
from the control group who reportedly had no lung nodules in the
results of clinical medical reports. However, in the process of retesting,
we found that a total of 318 nodules were actually missed in 153
cases (46·8%). Missed nodules were mainly concentrated in the range
of 3–6mminstead of b3mm, and themain type ofmissingnodule is cal-
cified nodules rather thanGGNs. The likely reason for this issue is that in
the traditional native language, calcified nodules might be replaced by
“old lesions”, whereas there are no synonyms for “ground-glass nod-
ules”. In addition, many old lesions at 3–6 mm may cause the above
phenomenon. However, GGNs are the type of nodule that requires to
follow-up [21].

Multidimensional nodules are displayed in the sixth point; a nod-
ule can be observed and estimated from the difference in nodule di-
ameter between baseline and follow-up CT and the time interval
between these two scans in uniform three-dimensional tumor growth
[23–25]. However, it is impossible to perform three-dimensional re-
construction of key pulmonary nodules due to the heavy manual
labor. Therefore, we added an auto multidimensional observation
method to minimize the rate of misdiagnosis. The eighth point com-
prised nodule size measurements. Assessment of nodule size is com-
monly performed by manual diameter measurements in images. For
guidelines, manual nodule measurements should be based on the av-
erage of long- and short-axis diameters, which should be obtained on
the same transverse, coronal, or sagittal reconstructed images [21].
Previous studies have indicated good agreement between manual
nodule measurements on CT and tomosynthesis [26]. In these studies,
the limiting factors include the performance of these measurements
on a nonanatomical background, restricting the clinical validity of
the results, or on real nodules in clinical images where the true nodule
size was unknown, making it difficult to establish any systematic er-
rors in the measurements. Physicians should be aware that size and
changes in size over time remain the most important factors deter-
mining nodule management. An opacity b3 mm should be referred
to as a micro-nodule, which may be well or poorly defined [27].Our
results showed that the measurement stability from AI-based pulmo-
nary nodule management was significantly greater than that from
manual nodules.

The third part included the contents from the twelfth to the four-
teenth points, which are a comparison of the impact on all doctors
and patients involved between IILS and traditionalworkstations. Our re-
sults show that all doctors and patients are satisfied with the output
from IILS. However, in regard to experience-oriented reading habits,
the effectiveness of AI in human experts still differs. In our study, a se-
nior radiologist (expert 1) seems to have less confidence in the AI pre-
diction for lung nodules and carefully followed the reading habits to
browse images even though the IILS made its decision. A significant dif-
ference could be observed before and after applying AI in terms of effi-
ciency, consumed time and absolutemismatched nodules. Interestingly,
no obvious improvement in sensitivity or specificity was detected. In
contrast, the junior radiologist (expert 2) seems to trust AI to a large ex-
tent. We speculated that the human-machine coupled operation might
still require an adaptation process.

Although the results are promising, our studyhas several limitations.
In this pilot study, images from patients with deformed thoracic fea-
tures, such as patients with scoliosis, patients with primary or second-
ary thoracic deformities, and patients undergoing thoracic surgery,
were not included in the training and test set. Therefore, further clinical
collection and testing will be needed to assess clinical accuracy for var-
ious forms of the thorax. Due to the relatively low incidence of thoracic
deformity, the effectwould not affect our overall conclusion. The clinical
pilot study was performed over the course of two years, and the IILS
functioned properly for six months. However, further evaluation of the
new system is needed to assess long-term accuracy and stability
needs. Additionally, IILS is limited to solving only the problem of CT im-
ages of adult lung nodules and not infant cases due to rarely occurring
pulmonary nodules in infants and the number of adaptive films. More
testing is also needed in a variety of environmental conditions, for ex-
ample, testing in extremely cold, hot, dry and humid environments. Im-
ages with some noise also need to be tested to assess the robustness of
the system. In fact, patients with incomplete images were enrolled in
the system, ultimately leading to termination and launching the
image. Thus, in the processing of special images, such as incomplete im-
ages, blank images or incorrect images, the current system still has room
for improvement by introducing algorithms such as integrity scanning
and grayscale confirmation. Additionally, at present, the IILS can be per-
formed on the chest only. Future work could include applying a device
to images of other parts of the body. However, in conclusion, IILS per-
forms better than traditional systems and offers a more affordable and
appropriately designed alternative to currently available techniques to
optimize the CT layout of lung nodules, saving costs and increasing effi-
ciency. Due to the auto AI-based standardized e-film and visualized
structured report generation, one of the new standardizations might
be established in the daily workflow and a new radiology work process
would be established, and some relevant operators would be unneces-
sary (Fig. 17).

To provide a benchmark that could be referenced, we evaluated the
performance of our IILS on two benchmark databases. As expected, a
relative high level of false positives, especially for LUNA16, was

https://pan.baidu.com/s/1OAEMcnlO8uTBK_2cFJ2QqA
https://pan.baidu.com/s/1OAEMcnlO8uTBK_2cFJ2QqA
https://mxnet.apache.org/


Fig. 17. Schematic diagramof the overall process of a patient visiting his doctors at a hospital. The biggest two differences between the two images (a-b) are focused on the internal process
of the imaging department (gray dotted square) and the communication between the radiology department and respiratory department (red dotted line). In the patient's operation
process, there is no difference between the traditional system and new system, which still contains registration, diagnosis, CT scans, and second diagnosis with a CT report. However,
the IILS reduced the CT process by using the human-machine coupled operation instead of the roles of radiographers, efficiently and accurately providing film reports to both
radiologists and physicians.
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calculated because the nodules with small size were counted as false
positives in the prediction.We believe that the design formost diagnos-
tic model is typically cohort-specific, as all training images we adopted
are from the Chinese cohort and annotated with detailed records for
various size of lung nodules, whereas LUNA16 database collected
datasets that were only from the American cohort without any marked
record for b3mmnodules. Although the LIDC/IDRI database contains CT
scans with more slice thickness and is more similar to the real clinical
environment, the results could not actually reflect the performance of
the IILS, because LIDC/IDR1 data training was not used for training,
and the real clinical scene that we are in line with the Chinese doctors'
reading habits is also very different from the LIDC/IDRI data distribution.
We carefully reckoned that such a testing environmentmay not be con-
sistent with our cohort setting.

Collectively, the IILS offers a simple and accurate method to detect,
classify and layout CT images of lung nodules to improve diagnosis on
the Chinese population. Therefore, the IILS opens a new window for
clinical application of AI and may be an effective way to improve the
quality imbalance of medical care worldwide.
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