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Abstract

Background: Estrogen has been shown to mediate protection in female hearts against ischemia-reperfusion (I-R)
stress. Composed by a Kir6.2 pore and an SUR2 regulatory subunit, cardiac ATP-sensitive potassium channels (KATP)
remain quiescent under normal physiological conditions but they are activated by stress stimuli to confer protection
to the heart. It remains unclear whether KATP is a regulatory target of estrogen in the female-specific I-R signaling
pathway. In this study, we aimed at delineating the molecular mechanism underlying estrogen modulation on KATP
channel activity during I-R.

Materials and methods: We employed KATP knockout mice in which SUR2 is disrupted (SUR2KO) to characterize
their I-R response using an in vivo occlusion model. To test the protective effects of estrogen, female mice were
ovariectomized and implanted with 17β-estradiol (E2) or placebo pellets (0.1 μg/g/day, 21-day release) before
receiving an I-R treatment. Comparative proteomic analyses were performed to assess pathway-level alterations
between KO-IR and WT-IR hearts.

Results and discussion: Echocardiographic results indicated that KO females were pre-disposed to cardiac dysfunction at
baseline. The mutant mice were more susceptible to I-R stress by having bigger infarcts (46%) than WT controls (31%). The
observation was confirmed using ovariectomized mice implanted with E2 or placebo. However, the estrogen-mediated
protection was diminished in KO hearts. Expression studies showed that the SUR2 protein level, but not RNA level, was
up-regulated in WT-IR mice relative to untreated controls possibly via PTMs. Our antibodies detected different glycosylated
SUR2 receptor species after the PNGase F treatment, suggesting that SUR2 could be modified by N-glycosylation. We
subsequently showed that E2 could further induce the formation of complex-glycosylated SUR2. Additional time-point
experiments revealed that I-R hearts had increased levels of N-glycosylated SUR2; and DPM1, the first committed step
enzyme in the N-glycosylation pathway. Comparative proteomic profiling identified 41 differentially altered protein hits
between KO-IR and WT-IR mice encompassing those related to estrogen biosynthesis.

Conclusions: Our findings suggest that KATP is likely a downstream regulatory target of estrogen and it is indispensable in
female I-R signaling. Increasing SUR2 expression by N-glycosylation mediated by estrogen may be effective to
enhance KATP channel subunit expression in I-R.
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Background
Myocardial infarction (MI) is a life-threatening event
that can cause sudden cardiac arrest in patients; and
those who survive the first MI likely have repeated inci-
dences and develop heart failure [1]. During the on-set
of MI, cardiac cells die within minutes from insufficient
blood supply and oxygen, leading to irreversible injuries to
the myocardium. Existing epidemiological data reveals
that pre-menopausal women have a relatively lower risk of
MI than age-matched men [2,3]. For example, MI inci-
dences occurred in females are only 1/3 of their male
counterparts in the 35–44 and 45–54 years-old groups
[4]. However, this “female advantage” diminishes upon
aging as estrogen level declines, supporting the notion
that estrogen is a key modulator in mediating protec-
tion to a female heart [2,3]. Estrogen exerts its effects
by binding to estrogen receptors (ER), ERα and ERβ, to
regulate the downstream targets [5]. Both ER subtypes
are detected in various cardiac cellular compartments
encompassing nucleus, plasma membrane and mito-
chondria [6,7]. These receptors are likely integral mem-
bers of the female cardioprotective network but they
may govern different signal transduction pathways
[8,9].
ATP-sensitive potassium channels (KATP) are known

to play a pivotal role in conferring protection to the
heart [10]. These channels remain closed under normal
physiological conditions but they open in response to
cellular stress such as ischemia. The opening of KATP
channels is thought to re-polarize cardiac cell mem-
brane and reduce calcium loading to the heart [11].
Sarcolemmal KATP channels primarily contain a Kir6.2
pore [12] and a sulfonylurea receptor 2 (SUR2) regula-
tory subunit [13-15], where SUR2 regulates the pore ac-
tivity and channel kinetics. More recent studies have
shown that KATP density in plasma membrane is sig-
nificantly higher in female than male cardiomyocytes
[16], suggesting that female hearts may possess higher
KATP activity. Administrating KATP blockers to both
genders of mice before an ischemic insult readily
diminishes the female advantage against ischemia-
reperfusion (I-R) stress [17]. In aged female myocytes,
however, KATP channel density dramatically declines
but remains unchanged in aged male cells [18]. These
observations have provided a basis for estrogen modu-
lation on KATP activity but the underlying mechanism
is not fully understood.
In this report, we characterized the I-R response in

SUR2 knockout (SUR2KO) female mice using a com-
bined approach of ovariectomized models and compara-
tive proteomics. Our findings identified KATP as a
downstream regulatory target of estrogen and it plays a
critical role in the mechanistic pathway of female stress
signaling.
Results and discussion
SUR2KO female mice display cardiac dysfunction at
baseline
SUR2KO mice were previously generated by inserting a
disruption cassette into exons12-16 of SUR2 [19]. Our
prior study has shown that the SUR2 long forms are
disrupted in KO hearts [20,21]. In this study, cardiac
performance was evaluated in KO and WT female mice
using echocardiography (Figure 1A). Fractional shorten-
ing or ejection fraction was significantly lowered in KO
hearts relative to WT controls (Figure 1B). KO mice also
exhibited markedly enlarged left ventricles (LV) with
slower heart rates. Our results suggested that KO
females were pre-disposed to cardiac dysfunction under
basal conditions.

SUR2KO females have larger infarcts post ischemia-
reperfusion
An in vivo occlusion model [22,23] was employed to
assess I-R response in SUR2KO and WT mice. During
the course of developing our protocols to evaluate the
KO performance, various reperfusion lengths (1.5, 2, 4
or 24 h) were tested. KO female mice, however, experi-
enced an unexpected high mortality rate when >2 h
reperfusion was used. Our optimized protocol thus
included a 30-min ischemia phase followed by 90-min
reperfusion (Figure 2A). Even with the shortened reper-
fusion length, 44% of KO females did not survive the
procedure, indicating that they were more susceptible
to I-R stress. Compared to WT-IR hearts (31%, n = 8),
KO-IR hearts (46%, n = 8) displayed significantly larger
infarcts, indicating that KO females experienced worse
cardiac damage (Figure 2B). This finding differs from
our earlier data in KO males. Those mice were found
to be “constitutively” protected from I-R stress by hav-
ing smaller infarcts than WT controls in two different
I-R model studies [21,24]. The results suggest that
SUR2 long form-based KATP channels are indispens-
able in female protection but they may not be required
in conferring protection to a male heart. The different
I-R responses detected in both genders of SUR2KO
mice revealed that KATP may be an important compo-
nent that contributes to gender-specific difference in
cardioprotection.
To determine whether SUR2 expression was altered in

I-R, RNA or protein was isolated from LV tissues excised
from untreated or I-R hearts isolated from WT female
mice. qRT-PCR study did not detect any significant dif-
ferences in SUR2 transcripts between the two groups of
mice (Figure 2C). However, SUR2 protein level was sig-
nificantly increased 2-fold in the I-R hearts relative to
the untreated controls (Figure 2D). The data indicated
that the increased SUR2 protein level might be due to
post-translational modifications (PTMs).
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Parameter WT KO P-Value

Age (Wk) 10.9±0.6 10.7±0.6 0.8
LVID;d (mm) 3.3±0.1 3.6±0.1 0.02
LVID;s (mm) 1.9±0.2 2.4±0.1 0.01
Fraction Shortening (%) 44.2±2.6 34.1±2.3 0.005
LV Vol;d ( L) 44.8±3.8 56.2±3.0 0.03
LV Vol;s ( L) 11.4±2.3 21.0±2.4 0.01
Ejection Fraction (%) 76.0±2.8 63.4±2.8 0.003
LV Mass (mg) 77.6±4.5 95.0±9.1 0.01
Body Weight (g) 20.5±0.5 22.5±0.4 0.01
LV/Body Weight Ratio (mg/g) 3.8±0.2 4.4±0.1 0.01
Heart Rate (bpm) 543±20 459±18 0.01

Figure 1 Cardiac performance in SUR2KO and WT intact mice under basal conditions. (A) Recorded echocardiographic images. Dashed
line: left ventricular (LV) chamber dimension in diastole; solid line: LV chamber dimension in systole. (B) Summary data on LV function parameters
in SUR2KO (n = 10) and WT (n = 8) mice. P-values are shown in the figure.
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The protective effect of estrogen is diminished in
SUR2KO females
The estrogenic effect was subsequently evaluated in
SUR2KO and WT female mice using ovariectomized
models. Ovariectomized mice that were implanted with
either 17β-estradiol (E2) or placebo pellets were used
(0.1 μg/g/day, 21-day release). To ensure that the E2
delivery was effective, protein expression of both estro-
gen receptors were measured before the end of E2
releasing in both WT-E2 and WT-placebo mice. Protein
levels of ERα and ERβ were significantly higher in WT-
E2 hearts relative to WT-placebo controls (Figure 3A),
suggesting that the delivery was satisfactory. These mice
were then subjected to our I-R protocol to assess infarct
size. Average infarcts (Figure 3B-C and Additional file 1)
from WT-placebo hearts (57%, n = 4) were significantly lar-
ger than WT-E2 hearts (29%, n = 5), consistent with previ-
ous reports on the protective effect of estrogen [2] and our
intact mouse model study (Figure 2B-C). Conversely, no
significant differences in infarct size were found between
KO-placebo (43%, n = 4) and KO-E2 mice (50%, n = 6), in-
dicating that the protective effect of estrogen was abolished.
qRT-PCR data detected no significant differences in SUR2

transcripts between WT-E2 and WT-placebo hearts post I-R
(Figure 3D). Western blot results showed that WT-E2 mice
had a 6-fold higher SUR2 level than WT-placebo mice
(Figure 3E). The data suggested that the increased SUR2
protein expression might occur at the post-translational level,
which was mediated by estrogen. This observation agreed
with a previous report showing that E2-ERβ action can
induce S-nitrosylation, a PTM mechanism, to up-regulate
levels of a subset of proteins with protective properties [25].

SUR2 is modified by N-glycosylation
It has been shown that the induction window for acute
cardioprotection is too short to permit synthesis of new
protective proteins [26]. The up-regulation of existing
defensive proteins via PTMs, which does not occur at
the transcriptional level, likely accounts for the rapid
protection. Earlier studies on SUR1, an isoform of SUR2,
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Figure 2 Ischemia-reperfusion (I-R) response in SUR2KO and WT mice. (A) Treatment protocol. Grey arrows indicate endpoints when mouse
hearts were harvested. (B) Survival% from KO and WT mice post IR. (C) Average infarct sizes recorded from IR-treated hearts. Infarcts are calculated as a
ratio of infarcted area (INF) over area-at-risk (AAR). n = 5-7. *: p < 0.05 KO vs WT. AAR/LV ratios are shown in the supplement Additional file 1: Figure S1.
(D) Quantitative RT-PCR of SUR2 transcripts in untreated (Con) and I-R hearts of WT mice. The signals were normalized to GAPDH. (E) Representative
Western blots in mouse LV samples. Anti-SUR2 (BNJ2) was used as the primary antibody (1:1000). Secondary antibody was added at 1:10,000. The blots
were stripped and hybridized with GAPDH (1:2000), and the density values were normalized to GAPDH (in arbitrary unit). In D-E, n = 4, *: p < 0.05.
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have shown that N-glycosylation can enhance SUR1
membrane targeting, expression level and channel com-
plex stability [27,28]. To test whether SUR2 is modified
by N-glycosylation, plasma membrane proteins were
isolated from WT LV tissues; and de-glycosylated using
peptide N-glycosidase F (PNGase F). We previously
developed two SUR2-specific antibodies (Figure 4A); one
was raised against an extracellular domain (T1) while
the other was raised against an intracellular domain
(BNJ-2). T1, but not BNJ-2, identified a putative N-
glycosylation pattern in SUR2 in an earlier study [20].
BNJ-2 was then used as a negative control in this experi-
ment. Both antibodies were employed to detect the SUR2
receptor species before and after the PNGase F treatment.
When T1 was used to probe the samples, two bands at
150-kDa (complex-glycosylated) and 140-kDa (core-glyco-
sylated) were detected in the untreated sample (Figure 4B).
However, these two bands were reduced to a single 137-kDa
non-glycosylated SUR2 in the PNGase F-treated sample,
consistent with a prior report on the SUR1 de-glycosylation
study [29]. The BNJ-2 antibody could not distinguish the
different glycosylated SUR2 products as expected. Our data
provided initial evidence that SUR2 is a glycoprotein. It is
known that SUR1 has two alternative N-glycosylation sites
[27-29]. An in silico analysis on SUR2 identified more than
two putative N-glycosylation sites (N-X-S/T), which remain
to be characterized.
To understand whether SUR2 N-glycosylation level

was altered in I-R, two additional protocols, a 90-min re-
perfusion (R) alone or a 30-min ischemia (I) alone, were
included to dissect the timing and degree of PTM in
treated hearts (Figure 4C). In this set of experiment, the
R group was used as a reference control. When T1 was
used to cross-react with the LV samples, both 150-kDa
and 140-kDa SUR2 bands were detected (Figure 4D).
The I-R or I group had a 2-fold or 1.5-fold significant
increase (combined signals from both bands) in SUR2
expression relative to the R group.
Certain mannose-specific lectins, such as concanavalin

A (ConA), can recognize N-linked glycans and bind to
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Figure 3 Estrogenic effects in ovariectomized mouse models. (A) Representative Western blots of ER expression post I-R. (B) Average infarct
sizes (INF/AAR) recorded from ovariectomized mice implanted with E2 or placebo pellets. n = 4-6. *: p < 0.05 placebo vs E2; #: p < 0.05 KO vs WT.
AAR/LV ratios are shown in the supplement Additional file 1: Figure S1. (C) Quantitative RT-PCR of SUR2 transcripts in ovariectomized WT mice
implanted with E2 or placebo pellets. The signals were normalized to GAPDH. (D) Representative Western blots in ovariectomized mice implanted
with E2 or placebo pellets post I-R. Anti-SUR2 (BNJ-2) was used as the primary antibody (1:1000). Secondary antibody was added at 1:10,000. The
blot was stripped and hybridized with GAPDH (1:2000), and the density values were normalized to GAPDH.
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glycoproteins such as SUR1 [29]. We further tested
whether SUR2 could interact with ConA in the three
groups of hearts. Each sample was immunoprecipitated
with T1 followed by immunoblotting using anti-ConA
(Figure 5A). A ConA band in the size of 52-kDa was de-
tected in all samples. A ConA monomer has a molecular
weight of 26-kDa. The detected 52-kDa band may sug-
gest that a dimeric form of ConA was associated with
SUR2. We found that the I-R group had a 2.2-fold
higher ConA level than R or I group. The results showed
that SUR2 N-glycosylation level was increased in I-R
hearts. A previous report has shown that the time
required for transit/N-glycosylation of a (SUR1/Kir6.2)4
complex takes 2.2 h [30], which is very closed to the
length of our I-R protocol. Our data (Figures 4D and 5A)
therefore support the notion that N-glycosylation is likely
the PTM that modifies SUR2 protein level in I-R hearts.
The increased SUR2 level in the I group (Figure 4D),
however, implies that other PTMs for SUR2 modifica-
tions may co-exist. A recent comparative glycoproteomic
analysis in I-R or SHAM-treated male rat hearts (treated
with PNGase F) reported that SUR2 glycosylation level
was comparable in both groups [31]. This observation and
our current study suggest that the up-regulation of SUR2
N-glycosylation may be female-specific.
Dolichol monophosphate mannose synthase (DPM1)

catalyzes the first committed-step reaction in the N-
glycosylation pathway [32]. DPM1 is responsible to
transfer mannose from GDP-mannose to dolichol mono-
phosphate to form dolichol monophosphate mannose as
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Figure 4 SUR2 is a complex-glycosylated protein. (A) SUR2 topology and epitope positions for T1 and BNJ2. (B) De-glycosylation of SUR2
protein by PNGase F. T1 (1:2000) or BNJ-2 (1:1000) was used as the primary antibody. BNJ-2 was used as a negative control for T1 and a loading
control. Secondary antibody was added at 1:10,000. (C) Treatment protocols for R, I and I-R. Grey arrows indicate endpoints when mouse hearts
were harvested. (D) Representative Western blots using R-, I- or IR- treated WT LV samples. T1 was used as the primary antibody (1:2000). Secondary
antibody was added at 1:10,000. n = 4. *, p < 0.05. The blot was stripped and re-probed with GAPDH (1:2000), and the density values were normalized
to GAPDH.
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the mannosyl donor during N-glycosylation. Expression
level of DPM1 was previously reported to be markedly
enhanced by estrogen in mouse uteri [33]. In this experi-
ment, we compared DPM1 levels in I-, R- and IR-
treated mice. DPM1 level was increased by 4.5- or 3-fold
in the I-R or I group relative to the R group (Figure 5B),
indicating that the general capacity of N-glycosylation
was also up-regulated in ischemic female hearts.

SUR2 N-glycosylation is mediated by estrogen
Estrogen has been shown to increase membrane density
of KATP channels in cultured H9c2 cells [34]. We tested
whether E2 could further induce the glycosylated SUR2
receptor species using a heterologous expression system.
A full-length SUR2 cDNA was introduced into a COS1
cell line that has a stably expressed Kir6.2 pore [20].
24 h post transfection, cells were incubated with 100 nM
E2 or DMSO (vehicle) for 24 h. When T1 was used to
probe the samples, the core-glycosylated 140-kDa SUR2
was the major species in the DMSO-treated control cells.
In the E2-treated cells, however, the complex-glycosylated
150-kDa SUR2 was the major species (Figure 5C). The
data suggested that estrogen could further induce the
complex-glycosylated SUR2. This species likely confers
the glybenclamide-sensitive KATP currents in our earlier
studies [19,20].

SUR2KO Proteomic Changes Post I-R
KATP channels are recognized as metabolic sensors of
the cell and they are indispensable in stress-induced
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adaptive response [35]. An earlier proteomic analysis in
Kir6.2 knockout mice revealed a much stressed proteome
under normal conditions [36]. These mice display larger
infarcts and worse cardiac injury post I-R [37]. We
expected that SUR2KO mice would be more complex
because of the possible compensatory mechanisms con-
ferred by multiple splice variants [38]. To explore
pathway-level differences in KO-IR and WT-IR hearts, a
comparative sub-proteomic profiling analysis was carried
out. A spectral counting method was used to detect semi-
quantitative changes between the two groups of mice. Puri-
fied samples prepared from three independently handled
mice per group were subjected to mass spectrometry ana-
lysis. In the total 6 samples, we detected an average of 494
hits per sample. Subsequent annotation studies found that
41 proteins were differentially expressed in KO-IR and
WT-IR hearts (Table 1). The DAVID functional annotation
tool [39,40] was used to perform both Gene Ontology (GO)
classifications and pathway enrichment analyses on the iden-
tified hits (Figures 6, 7 and Additional file 2). In the GO study,
we identified 54 biological process categories (Figure 6A),
24 cellular component categories (Figure 6B) and 18 mo-
lecular function categories (Figure 7A). In the KEGG
pathway enrichment study [41,42], we identified 6 major
pathways that were altered in the KO mice (Figure 7B).
Our physiological data (Figures 2 and 3) showed that

SUR2KO female mice resembled those aged WT females
in prior reports [2-4], which display a compromised
estrogenic effect and cardioprotection. In our proteomic
study, levels of estradiol 17β-dehydrogenase 8 (Hsd17β8)
and 10 (Hsd17β10) were found to be significantly
decreased by 2-folds in KO-IR mice. Hsd17β-based
enzymes belong to the short-chain dehydrogenase/re-
ductase superfamily. They are mainly involved in the
biosynthesis of estrogens, androgens and fatty acids [43].
Hsd17β8 catalyzes the inter-conversion between E2 (es-
tradiol) and E1 (estrone). E2 is the predominant form
of circulating estrogen before menopause while E1 is
the major estrogen type present in the postmenopausal
stage [44]. Hsd17β8 primarily acts as an oxidative
enzyme to inactivate E2. However, it has some reductase
activity and can produce E2 from E1. Thus, Hsd17β8 is an
important Hsd17β member that controls concentration of
estrogen in the cell. It seems that KO-IR female mice are
“locked” into a relatively high E1 state, mimic the postmen-
opausal women group. The high E1 level may auto-
suppress the activity of Hsd17β8, which prevents further in-
activation of E2 or over-accumulation of E1. Our results
therefore provided first line of evidence that disrupting
KATP channels affects estrogen biosynthesis in mice. The
loss of KATP as a downstream target for E2 modulation
likely affects other related molecular signaling pathways
(Additional file 2). On the other hand, Hsd17β10 mainly
functions in the mitochondria to catalyze beta-oxidation
at position 17 of estrogen or androgen. An earlier study
has reported that Hsd17β10 deficiency caused by genetic



Table 1 Protein hits that are differentially expressed in SUR2KO-IR and WT-IR hearts

Identified hits Gene name P-Value Fold of change (KO/WT)

Mitochondrial peptide methionine sulfoxide reductase Msra 0.0624981 0.19

1,4-alpha-glucan-branching enzyme Gbe1 0.0221348 0.3

40S ribosomal protein S3 Rps3 0.0570084 0.32

Estradiol 17-beta-dehydrogenase 10 Hsd17b10 0.007576 0.48

Estradiol 17-beta-dehydrogenase 8 Hsd17b8 0.0257942 0.52

Dynamin-like 120 kDa protein Opa1 0.0133927 0.59

Mitochondrial 2-oxoglutarate/malate carrier protein Slc25a11 0.0229143 0.63

ATP synthase subunit gamma, mitochondrial Atp5c1 0.0742584 0.66

ATP synthase subunit alpha, mitochondrial Atp5a1 0.0866386 0.77

Cytochrome c oxidase subunit 5A, mitochondrial Cox5a 0.0371111 0.79

Prohibitin-2 Phb2 0.0500592 1.3

Propionyl-CoA carboxylase beta chain, mitochondrial Pccb 0.0813775 1.3

Heat shock protein HSP 90-beta HSP90AB1 0.0215257 1.3

Cytochrome b-c1 complex subunit 1, mitochondrial Uqcrc1 0.0602446 1.5

CDGSH iron-sulfur domain-containing protein 1 Cisd1 0.0446392 1.6

T-complex protein 1 subunit beta Cct2 0.0880331 1.6

Basement membrane-specific heparan sulfate proteo-glycan core protein Hspg2 0.0499444 1.6

Pyruvate dehydrogenase protein X component, mitochondrial Pdhx 0.0121642 1.7

Catenin alpha-1 Ctnna1 0.0364573 1.7

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 Ndufa13 0.0596356 1.7

Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial Sdhb 0.0079267 1.7

Electron transfer flavoprotein subunit beta Etfb 0.0489129 1.8

ATP synthase subunit d, mitochondrial Atp5h 0.0923448 1.8

Hemoglobin subunit beta-1 Hbb-b1 0.032562 1.8

Cytochrome b-c1 complex subunit 8 Uqcrq 0.0703449 1.9

Ferritin light chain 1 Ftl1 0.0305524 1.9

Cofilin-1 Cfl1 0.0619513 1.9

Acyl-CoA dehydrogenase family member 10 Acad10 0.0765324 2

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7 Ndufa7 0.089645 2

Adenosylhomocysteinase Ahcy 0.0612594 2.1

Lipoprotein lipase LPL 0.0690628 2.3

Talin-1 Tln1 0.0040294 2.3

Laminin subunit gamma-1 Lamc1 0.0178447 2.4

Junction plakoglobin Jup 0.0020557 2.6

AFG3-like protein 2 Afg3l2 0.0210335 2.9

Glutathione S-transferase P 1 Gstp1 0.0086305 3

NSFL1 cofactor p47 Nsfl1c 0.0965357 3.3

Ubiquitin carboxyl-terminal hydrolase 14 Usp14 0.0142878 4.4

Vesicle-associated membrane protein-associated protein B Vapb 0.0669842 4.9

Adenylyl cyclase-associated protein 1 Cap1 0.034702 5.6

Glutaredoxin-1 Glrx 0.0590062 Only detected in KO

Summary data of semi-quantitative proteomic comparisons using SUR2KO-IR and WT-IR hearts. P-values were calculated using a pair-wise t-test based on three
replicates from each group of mice. p < 0.1 was considered statistically significant. The fold of expression change is shown as a ratio of KO/WT. The cut-off is set at
1.3-fold of difference.
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Cellular Components that are Affected in SUR2KO-IR miceB

Figure 6 Gene ontology enrichment analyses by DAVID using the 41 identified protein hits shown in Table 1. (A) Enriched biological
processes categories. (B) Enriched cellular components categories. In A-B, P-values were used to report whether significance of overlaps with known
functional categories was found. They were transformed into -Log values as shown on Y axis. Additional information is provided in Additional file 2.
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mutations can result in Alzheimer’s disease [45]. In addi-
tion to the findings in estrogen-related targets, we found
hits (Lamc1, Hspg2 and LPL) that are related to
N-glycosylation in our GO study. Levels of these three pro-
teins were found to be higher in the KO-IR hearts. A previ-
ous study showed that level of N-glycosylation in Lamc1 or
Hspg2 was altered in I-R rat hearts [31]. Changes in these
proteins could be related to the increase of general N-
glycosylation capacity in I-R. We also noticed that levels of
certain targets related to actin cytoskeleton were altered.
The alteration may be associated with the detected hyper-
trophy in KO hearts.
More recent studies have shown that KATP channels
are also present in the inner membranes of mitochondria
[46]. We previously reported that the diazoxide-sensitive
mitochondrial KATP activity was absent in SUR2KO mice
[21]. In our proteomic study, we found that 50% of the
identified protein hits are associated with mitochondrial
function and energy generation (Table 1). The finding re-
vealed that the KO female mitochondria were severely al-
tered in I-R. One important hit, optic atrophy 1 (OPA1), is
known to play a key role in shaping the mitochondria and
fusion to the inner membrane [47]. A recent report shows
that a decreased level of OPA1 is associated with heart



B

A Molecular Functions that are Affected in SUR2KO-IR Mice

Pathways that are Affected in SUR2KO-IR Mice

Figure 7 Gene ontology and KEGG pathway enrichment analyses using the 41 identified protein hits shown in Table 1. (A) Enriched
molecular function. (B) The 6 dysfunctional pathways identified in SUR2KO-IR mice. In A-B, P-values were used to report whether significance of
overlaps with known functional categories was found. They were transformed into -Log values as shown on Y axis. Additional information is
provided in Additional file 2.
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failure [48]. We detected a significant 2-fold reduction in
OPA1 level in SUR2KO-IR hearts, suggesting that disrupting
KATP likely affects OPA1 expression and the fusion/fission
rate of mitochondria. It is known that estrogen in involved
in modulating mitochondrial biogenesis and maintaining
mitochondrial membrane potential [3]. Functional estrogen
receptor, ERβ, has been found in the mitochondria [49] to
mediate anti-apoptotic response [50] and cardioprotection
[8,25]. The large numbers of mitochondrial hits identi-
fied in our proteomic study may be due to a combined
effect from losing the diazoxide-sensitive mitochondrial
KATP activity and altered mitochondrial ERβ level.
Future compartment-specific proteomic analyses using
enriched fractions isolated from mitochondrial or
plasma membranes may identify additional targets that
are related to estrogen regulation and female-specific
stress signaling network.

Conclusions
The regulatory subunit for the cardiac KATP channels,
SUR2, is a low-affinity sulfonylurea receptor [28]. Because
sulfonylureas are commonly used in treating diabetes
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mellitus, knowledge about SUR2 regulation by estrogen is
expected to shed new light into hormonal regulation of a
“cardioprotective” ion channel and the related molecular
signaling pathways. Modulating activities of key ion chan-
nels via targeting their regulatory subunits has been
employed as a new therapeutic strategy to treat certain
cardiovascular diseases. Increasing SUR2 expression by N-
glycosylation mediated by estrogen may be an effective
manner to enhance KATP channel density in the heart.
The novel finding that KATP is a downstream regulatory
target of estrogen will provide new perspectives in future
estrogen replacement therapies to postmenopausal women.
The different I-R response in both genders of SUR2KO
mice indicates that these models are innovative platforms
to study gender-specific divergence in other cardiovascular
diseases.

Methods
Mice
Mouse protocols and handling were performed following
the guidelines of National Institutes of Health. All mice
were maintained at the University of Wisconsin Animal
Core Facility. SUR2 knockout mice were previously
created by inserting a disruption cassette at exons 12–16
of the SUR2 gene [19]. C57BL-6 J mice (Jackson Labora-
tories, Bar Harbor, Maine) that were heterozygous for
the Sur2 locus were bred into the FVB background [51].
Heterologous mice were interbred and genotyped to
obtain homozygous mutants. Age-matched female SUR2
KO and WT littermates were used in this study.

Related antibodies
SUR2 antibodies were custom-designed antibodies that
were generated as previously described [20]. Anti-
GAPDH was obtained from Assay Designs (Ann Arbor,
MI); anti-ERα was from Santa Cruz; anti-ERβ was from
Millipore; anti-concanavalin A was from Vector Labora-
tories (Burlingame, CA) and anti-DPM1 was from
IMGENEX (San Diego, CA). Secondary antibodies were
obtained from GE Healthcare (Piscataway, NJ).

Echocardiography
Mice were lightly anesthetized before echocardiographic
recordings using Vevo Model770 (VisualSonics, Canada).
Isoflurane was delivered at 3% during induction and at 1%
for maintenance via nose cone. Images were captured
using a 40-mHz mechanical transducer.

Ischemia-reperfusion procedure
An ischemia-reperfusion (I-R) protocol operated as previ-
ously described with modifications [22,23]. An open-chest
occlusion model was used to induce I-R in SUR2KO and
WT female mice. Mice were induced with 2% isoflurane,
intubated and ventilated at 150 breaths/min at 200–
300 μL tidal volume. Body temperature was maintained
with a heating pad. Electro-cardiogram (ECG) was used to
monitor mice and the ECG lead was processed with a
Gould amplifier and digitally converted for off-line ana-
lysis. The protocol included a 30-min ischemia phase
followed by a 90-min reperfusion period. Epicardial cyan-
osis, alteration in myocardial contractility, and ST segment
elevation were used to confirm ischemia. Reperfusion was
initiated by unclamping the hemostat and loosening the
suture from the polyethylene tubing, and it was confirmed
by elimination of epicardial cyanosis and normalization of
the S-T segment. Infarct sizes were determined as previ-
ously described [52].

Estrogen delivery in mice
Adult WT or SUR2KO female mice at the age of 9 wks
were subject to ovariectomization [25]. These mice were
subsequently implanted with 17β-estradiol (E2) or placebo
pellets (0.1 μg/g/day, 21-day release, Innovative Research
of America, Sarasota, FL). All mice received our I-R proto-
col on Day 18-20.

Quantitative RT-PCR
Total RNA was isolated from LV tissues using TRIzol re-
agents (Life Technologies) and RT-PCR reactions were
carried out as previously described [25]. Primers used to
amplify SUR2A are: 5’-TGGTGGTACCTCACTTCAGG
A-3’ and 5’-CAGGATGGTTTATACTGTA- TTCGGA-3’.
Controls primers used to amplify GAPDH are: 5’-AGA
CATCTAAGGTT- CCAGTATGAC-3’ and 5’-ATCGTCC
CATTTGATGTTAGAG-3’. Banding density was scanned
by the UVP BioSpectrum Imaging System (Upland, CA)
and normalized to GAPDH.

Protein extraction and Western blot analysis
LV tissues were carefully isolated for protein extraction
and concentrations were determined using a DC Protein
Assay Kit (Bio-Rad, Hercules, CA) as previously reported.
Protein samples were separated on 4-12% MOPS NuPAGE
gels unless stated elsewhere. Western blots were performed
more than three times. Chemiluminescence was detected
using an ECL-Plus Detection Kit (GE Healthcare). Blots
were scanned and banding densities were determined by
the UVP Imaging System.

De-glycosylation Treatment
Mouse LV tissues were isolated from 10–12 wks-old
female hearts and subjected to membrane protein isola-
tion. Plasma membrane proteins were purified from
mouse LV or cell lysates using a MEM-PER Eukaryotic
Membrane Protein Extraction kit (Thermo). 300 μg LV
membrane proteins were treated by an enzymatic de-
glycosylation reaction using a peptide N-glycosidase F
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(PNGase F) following manufacturer’s protocol (Sigma,
St. Louis, MO). Protein samples were ran on 3-8% Tris-
acetate NuPAGE gels to allow better separation. The
blots were probed with anti-SUR2 (T1) at 1:2000 or
BNJ-2 at (1:1000).

Estrogen treatment in cultured cells
For COS1 cell culture, cells were seeded on a 35-mm-
diameter plate (1×105) containing complete MEM
medium (Life Technologies), 10% fetal bovine serum,
2 mM L-glutamine, 0.1 nM MEM non-essential amino
acid solution, 1 mM MEM pyruvate solution, 10 U penici-
llin and 10 g streptomycin. SUR2A was co-transfected into
a COS1 line stably expressed a Kir6.2 pore [20] using a
TransIT-COS transfection kit (Mirus, Madison WI). 24 h
post transfection, cells were treated with 100 nM E2 or
DMSO (vehicle) for 24 h. Cells were subjected to mem-
brane protein isolation for Western blot analysis.

Co-Immunoprecipitation (Co-IP)
Co-IP experiments were carried out using a Classic Co-IP
Kit (Thermo) following manufacturer’s recommended
procedures. 7 μg anti-SUR2 (T1) was used to IP 500 μg
LV proteins (combined from five independently handled
mice) from R-, I- or IR- mice followed by immunoblotting
using an anti-ConA.

Proteomic study
Isolated LV tissues from three independently handled
SUR2KO-IR or WT-IR mice were used for protein
extraction in the presence of one protease cocktail in-
hibitor tablet (Roche, Indianapolis, IN). 600 μg protein
from each sample was subjected to an albumin depletion
column (Qiagen) to remove excessive albumin. “In-liquid”
digestion and subsequent mass spectrometric analysis
were carried out at the University of Wisconsin Mass
Spectrometry Facility. 200 μg of albumin-depleted protein
sample was re-solubilized and denatured in 15 μL buffer
containing 8 M urea, 50 mM NH4HCO3 (pH8.5) and 1
mM Tris–HCl (pH7.5) for 10 min at room temperature.
The mixture was diluted to 60 μL in the reduction/ alkyl-
ation step by adding 2.5 μL of 25 mM DTT, 5 μL MeOH
and 37.5 μL of 25 mM NH4HCO3 (pH8.5). The mixture
was incubated at 50°C for 15 min. Once it was cooled
down to room temperature, 3 μL of 55 mM iodoaceta-
mide was added and the mixture was incubated in the
dark at room temperature for 15 min. The reaction was
quenched by adding 8 μL of 25 mM DTT. Peptides were
released using 30 μL Trypsin Gold solution (100 ng/μL in
25 mM NH4HCO3, Promega, Madison, WI) to reach a
100-μL final volume. Digestion was conducted at 42°C for
1 h. Then 15 μL of fresh trypsin solution was added to
reach a final enzyme:substrate ratio of 1 to 44, and the di-
gestion reaction was carried out at 37°C for overnight.
The reaction was terminated by adding 2.5% trifluoroace-
tic acid to reach a 0.3% final concentration. 8 μL (12 μg)
of the peptide mixture was loaded for subsequent mass
spectrometry analysis.

Mass spectrometry procedure
Peptides were analyzed by Nano-LC-MS/MS using the
Agilent 1100 NanoFlow System (Agilent Technologies,
Santa Clara, CA), which was connected to a hybrid Linear
Ion Trap-OrbiTrap Mass Spectrometer (LTQ-OrbiTrap
[53]) equipped with a Nano-electrospray ion source
(Thermo-Fisher Scientific). HPLC was performed using a
15-cm column packed with MAGIC C18AQ 3-μm 200 Å
particles (MICHROM BioResources, Auburn, CA) and a
P-2000 laser pulled tip (Sutter Instrument, Novato, CA)
that was connected with a 360 μm × 75 μm fused silica
tubing. Sample loading and desalting were carried out at a
10 μL/min rate using a Zorbax 300SB-C18 trapping col-
umn (Agilent Technologies), which was in line with an
auto-sampler. Peptide elution was carried out using sol-
vents comprised of 0.1% formic acid in water (Solvent A)
and 0.1% formic acid/95% acetonitrile in water (Solvent
B). The gradient consisted of a 20-min loading and desalt-
ing period with a stepwise column equilibration at 1%
Solvent B initially, ramp to 40% B for 195 min, ramp to
60% B for 20 min, ramp to 100% B for 5 min and held for
3 min. The column was then re-equilibrated at 1% Solvent
B for 30 min. The flow rate for peptide elution and re-
equilibration was 0.2 μL/min.

Spectra collection
The LTQ-Orbitrap was set to acquire MS/MS spectra in
a data-dependent mode. MS survey scans from m/z 300
to 2000 were collected in centroid mode at a resolving
power of 100,000. In each scan, MS/MS spectra were
collected from the five most-abundant output signals.
Dynamic exclusion was employed to increase dynamic
range and maximize peptide identification. This feature
excluded precursors up to 0.55 m/z below and 1.05 m/z
above those previously selected precursors. Precursors
remained on the exclusion list for 40 s. Singly-charged
ions or ions for which the charge state could not be
assigned were rejected for further consideration.

Database analysis
Raw MS/MS data was searched against the UniProt
Mouse Amino Acid Sequence Database, which contains
over 30,634 protein entries. A Mascot Search Engine
2.2.07 (Matrix Science, Boston, MA) was used in the
search with fixed cysteine carbamidomethylation, vari-
able methionine oxidation and asparagine/glutamine
deamidation. Peptide mass tolerance was set at 20 ppm
and fragment mass at 0.8 Dalton. Protein annotation,
significance of identification and spectral based
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quantification were carried out using the Scaffold Soft-
ware Package 4.1.1 (Proteome Software, Portland, OR).
In this version, quantitative values of protein hits were
normalized to total spectral counts, enhancing the ac-
curacy in target identification. Samples from three inde-
pendently handled KO-IR or WT-IR mice were
analyzed. Protein probabilities were assigned by the Pro-
tein Prophet algorithm [54]. An average of 494 hits was
identified in each sample. Protein identifications were
accepted if they could be established at greater than
95.0% probability and contained at least two identified
peptides. Among the total 612 protein hits found from the
three sets of samples, the prophet false discovery rate
(FDR) for proteins was at 0.1%. Peptide identifications
were accepted if they could be established at greater than
90.0% probability as specified by the Peptide Prophet algo-
rithm [55]. Based on the ~66,000 spectra that were found
from the three sets of samples, the prophet FDR for spec-
tra was at 0.9%. Proteins that contained similar peptides
and could not be differentiated based on MS/MS analysis
alone were grouped to satisfy the principles of parsimony.

Pathway enrichment analysis
Using the normalized spectrum data collected from KO-
IR or WT-IR mice, Gene Ontology [39,40] and pathway
enrichment [41,42] were performed using the DAVID
(Database for Annotation, Visualization and Integrated
Discovery) Bioinformatics Resources v6.7 (NIAID, NIH).
DAVID categorizes genes based on enrichment of GO
classification, Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG), and information from other databases.
P-values were used to report whether significance of
overlaps with known functional categories was found.

Other statistical analysis
Data were reported as mean ± SEM in the echocardiog-
raphy and I-R experiments while other data were reported
as mean ± STDEV. Statistical analysis was performed
using Origin Version9. Statistical significance was deter-
mined by Student t test (2-tailed) for two experimental
groups or one-way ANOVA for multiple groups with post
hoc test using the Bonferroni method. A p < 0.05 was con-
sidered statistically significant.

Additional files

Additional file 1: Figure S1. (A). Average area-at-risk over left ventricular
region ratios recorded in SUR2KO and WT hearts post I-R. Treated mice had
similar area-at-risk over LV ratios post I-R, n=6-8. (B). Ovariectomized mice
implanted with either estrogen (E2) or placebo pellets displayed comparable
area-at-risk over LV ratios after I-R treatment. n=4-5. This is a control parameter
that shows our consistency in surgical handling.

Additional file 2: Table S1. Biological Process GO Classification. Table
S2 and Table S3. Molecular Function GO Classification. Table S4.
Affected pathways.
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