
Age-related macular degeneration (AMD) is character-
ized by the progressive loss of central vision resulting from 
the damage to photoreceptor cells in the central retina and 
is associated with pathology at the RPE/choroid interface 
[1,2]. Depending on structural and functional alterations, 
advanced stages of AMD can be categorized as geographic 
atrophy (GA; dry) or choroidal neovascularization (CNV; 
wet) [3]. GA includes the thickening of Bruch’s membrane 
concomitant with impaired conductivity, the accumulation of 
large drusen, and RPE atrophy. Meanwhile, CNV is associ-
ated with new choroidal blood vessels penetrating through 

the impaired blood-retina barrier into the subretinal space, 
with fluid leakage resulting eventually in retinal detachment.

AMD is a multifactorial disease, influenced by both 
genetic and non-genetic insults [4]. Genetic studies have 
revealed the association of 52 independent susceptibility 
variants at 34 loci to advanced AMD [5]. Rare predicted loss-
of-function variants in complement pathway genes have been 
linked to GA and specific endophenotypes [6,7]. The ARMS2/
HTRA1 (OMIM 611313/602194; Gene ID 387715/5654) locus 
and complement factor H (CFH; OMIM 134370 ; Gene ID 
3075) exhibit the strongest genetic association, and variants 
at these loci are linked to subretinal hemorrhage and drusen 
area phenotypes, respectively [8,9]. Probably the most critical 
factor linked to AMD is advanced age. The environmental 
factor unequivocally associated with AMD is smoking [10], 
which presumably produces oxidative stress.
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Purpose: Smoking and the incidence of age-related macular degeneration (AMD) have been linked to an overactive 
complement system. Here, we examined in a retrospective cohort study whether AMD-associated single nucleotide 
polymorphisms (SNPs), smoking, ethnicity, and disease status are correlated with blood complement levels.
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Conclusions: Our results support previous studies of systemic complement components being potential biomarkers 
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The activation of a complement pathway has been 
demonstrated in both early and advanced stages of AMD and 
is likely activated by oxidative stress-mediated neoepitopes 
[11,12] or debris accumulating between the RPE and Bruch’s 
membrane [13], resulting in a chronic inflammatory response 
[14]. In addition to the association of complement proteins 
with the pathological features of AMD, such as drusen, baso-
laminar deposits, GA, CNV, and fibrosis [15-19], elevated 
levels of complement proteins have been reported in the 
serum of patients with AMD [20,21]. Cigarette smoking is 
shown to activate the alternative pathway of complements in 
vitro [22,23], and serum levels of complement components 
are correlated with the current cumulative consumption of 
cigarettes [24].

The complement pathway is an essential part of the 
evolutionarily ancient innate immune system, responsible 
for eliminating foreign antigens and pathogens as part of 
the normal host response [25,26]. However, analyses of 
autoimmune, inflammatory, and ischemic disease states 
have suggested the contribution of inappropriate or exces-
sive complement activation to pathology, including AMD 
[27]. The complement system comprises a cascade of over 30 
proteins that can be activated by three distinct pathways, the 
classical pathway (CP), lectin pathway (LP), and alternative 
pathway (AP) [28]. Its activation results in the formation of 
three distinct sets of biologic effector molecules, the anaphyl-
atoxins C3a and C5a; opsonins iC3b, C3d, and C3dg; and 
the membrane attack complex C5b-9. The risk haplogroups 
in at least six complement proteins, including complement 
inhibitors CFH [29] and others [5,30-33], are associated with 
AMD and predicted to exacerbate complement activation 
systemically or in affected tissues.

The goal of our study was to further dissect the associa-
tion between smoking and complement activation products in 
the serum of AMD patients and normal controls. We tested 
for levels of the anaphylatoxins C3a and C5a, the catalytic 
subunit of the alternative pathway serine protease Bb, and 
the inhibitory activity of CFH. A subset of single nucleotide 
polymorphisms (SNPs) associated with AMD was included 
in the analysis to identify SNPs associated with complement 
dysregulation.

METHODS

Subjects: We evaluated 223 subjects, including 90 AMD and 
133 control individuals (age 60 or above) from the local South 
Carolina community, recruited from the ophthalmology 
clinics at Storm Eye Institute and the Ralph H Johnson 
Veterans Affairs Medical Center. This study was approved by 
the local institutional review board (HR 20,083), sponsored 

by the Veterans Affairs Office of Research and Development 
as part of an observational trial (NCT01115231), and met the 
criteria of the Declaration of Helsinki.

Inclusion and exclusion criteria were as follows. The 
inclusion criteria for AMD patients included age (60 and 
older); a clear diagnosis of AMD in at least one eye; for 
controls, less than five small (< 63 μm) hard drusen; and 
categorized as either non-Hispanic white (henceforth referred 
to as Americans of European descent [EUR]) or Americans 
of African descent (AFR). Participants were excluded if they 
presented themselves with ocular diseases that might simu-
late AMD or preclude its diagnosis, that exhibit diseases that 
phenotypically overlap with AMD, or that present themselves 
with macular dystrophies, toxoplasmosis, histoplasmosis, 
degenerative myopia, central serous chorioretinopathy, or any 
disease or treatment that would diminish the ability to recog-
nize drusen, such as laser photocoagulation, prior retinal 
detachment surgery, posterior uveitis, and trauma. Control 
subjects were recruited from the General Ophthalmology 
clinic, and in addition to the exclusion criteria, patients from 
the experimental group were also required to be free of any 
ocular complications, including moderate or vision-limiting 
cataracts in either eye and glaucoma.

Subjects were categorized as either EUR or AFR, and 
information about gender, ethnicity, and smoking behavior 
was obtained. No distinction was made between intermediate 
and advanced AMD or AMD with subfoveal GA or CNV, and 
no information was obtained on treatment regimens. AMD 
subjects were recruited in the retina clinics during recurring 
visits; thus, most patients are presumed to have CNV.

Complement activation: Venous blood was obtained at the 
University phlebotomy laboratory for measurement of the 
complement components, processed for both plasma (CFH 
activity) and serum (C3a, C5a, and Bb) collection within 30 
min of collection and stored at −80 °C until use. A comple-
ment component analysis was performed as a fee for service 
at the National Jewish Health Advanced Diagnostic Labora-
tories (Denver, CO).

Bb and C3a was measured by Quidel ELISA (Quidel, 
San Diego, CA) using microtiter plates precoated with a 
specific monoclonal antibody against Bb [34] or C3a [35], 
respectively. The standards, controls, and test specimens were 
diluted and placed in duplicate into the wells and incubated to 
allow binding of the split product to the antibodies in the well. 
After washing away unbound proteins, a second anti-split 
antibody, conjugated to an enzyme (horseradish peroxidase) 
was allowed to react with the Bb (or C3a) bound to the first 
antibody on the plate. After an appropriate incubation time 
and washing, a chromogenic substrate for the enzyme was 
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added to the wells and the amount of color that developed 
was determined spectrophotometrically. All assays were 
performed with two quality control (QC) specimens supplied 
by the manufacturer, along with an additional in-laboratory 
characterized QC specimen.

C5a was measured by PharMingen (San Diego, CA) 
OptEIATM ELISA tests and solid-phase sandwich enzyme-
linked immunosorbent assays (ELISAs) using monoclonal 
antibodies specific to human C5a-desArg coated on 96-well 
microtiter plates [36,37]. Standards and specimens were 
added to the wells, and any available C5a-desArg would bind 
to the appropriate immobilized antibody. The wells were 
washed, and a mixture of biotinylated polyclonal anti-human 
C5a antibody and avidin-horseradish peroxidase was added, 
producing an antibody-antigen-antibody “sandwich.” The 
wells were again washed and a substrate solution was added, 
producing a blue color in direct proportion to the amount of 
the anaphylatoxin present in the initial specimen. The Stop 
Solution changed color from blue to yellow, and the samples 
were read at 450 nm.

The method for testing CFH function was based on 
published work [38], with modifications. Uncoated sheep 
cells were the target of lysis, and serial dilutions of the test 
specimen were mixed with equal volumes of the cells. All 
components except CFH were added in excess, and the patient 
samples supplied the factor H. If the patient’s CFH were fully 
functional, there would be no lysis, as the alternative pathway 
would be controlled. The results were based on the dilution 
necessary to achieve 50% lysis of the cells, but as the func-
tion of CFH would be inversely proportional to the amount of 
lysis, the results are expressed as percent lysis.

Genotyping: Genomic DNA was extracted from lympho-
cytes per the manufacturer’s instructions (QIAmp® DNA 
Mini kit; Qiagen, Germantown, MD). Representative SNPs 
were selected by their reported association in AMD consor-
tium studies [5,39]. At the CFH locus, we incorporated 
two additional SNPs spanning CFHR5 [40]. Thus, a total 
of ten SNPs were genotyped at the ARMS2 (rs10490924, 
rs3793917), CFH (rs3766404, rs393955), VEGFA (Gene ID 
7422; OMIM 601398; rs1536304), CETP (rs1864163; Gene 
ID 1071; OMIM 118470), C3 (OMIM 120700; Gene ID 
718; rs2230199), CFHR5 (OMIM 608593; Gene ID 81494; 
rs6667243, rs10922153), and COL8A1 (OMIM 12051; Gene 
ID 1295; rs1308155) loci using PCR-based assays (TaqMan 
assays, Applied Biosystems, Foster City, CA), per manufac-
turer’s instructions.

The genotypic data was subject to the following QC 
filters: markers that did not statistically conform to the 
Hardy–Weinberg equilibrium (HWE; at a p < 0.001) in 

controls, markers with >20% missing data, and markers with 
a minor allele frequency (MAF) of p < 0.05 were excluded 
from the analysis. The SNPs meeting these QC thresholds 
included seven of the original ten SNPs.

Statistical analysis: Descriptive statistics by AMD status 
were estimated for all variables in the data, with continuous 
variables being reported as the mean (±standard deviation) 
and categorical variables reported as n (%).

Associations with AMD: Associations between AMD status 
and complement levels, ethnicity, gender, and smoking status 
were examined using a series of univariate and multivari-
able logistic regression models in the combined data across 
all ethnicities and stratified by ethnicity. Smoking was 
considered as ever versus never, as no significant differ-
ences between current versus former were noted. Variables 
with p values of ≤ 0.2 were considered in a multivariable 
logistic regression model. The final model was selected using 
backwards selection based on the model with the smallest 
Akaike’s information criterion (AIC).

Associations between AMD and patient genotype were 
examined using a logistic regression approach stratified on 
ethnicity. Multiple imputation was conducted to impute all 
missing SNP values to generate ten datasets with complete 
SNP information using the haplo.stats library in R (R v 3.2.5). 
The haplo.stats library employs an expectation-maximization 
algorithm for the imputation of missing SNP values and uses 
the estimated linkage disequilibrium between SNPs during 
imputation to account for the linkage between SNPs when 
imputing missing values. For tests of associations between 
the SNPs and AMD status, we considered three different 
genetic models: additive, dominant, and recessive. The SNPs 
for which no subjects were homozygous for the minor allele, 
we only examined the dominant model. For SNPs with fewer 
than three subjects homozygous for the minor allele, only 
the dominant and additive models were considered. We also 
evaluated multivariable logistic regression models including 
smoking status, genotype, and the interaction between 
smoking status and genotype to examine the joint impact of 
smoking status and each SNP on AMD. As these analyses are 
exploratory, the p values given were not adjusted for multiple 
testing. Therefore, these findings will require further verifi-
cation in additional studies.

Associations with complement levels: Complement levels 
or activity was assessed in two shipments, which necessi-
tated data normalization within the two groups to remove 
batch effects. Associations between complement levels 
and smoking status were examined using a series of linear 
regression models. Levels of complement components 
were log-transformed to meet linear model assumptions, 
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and complement levels are therefore reported as geometric 
means. As a secondary analysis, differences in complement 
levels were examined by race and between races by AMD 
status. The association between race and complement levels 
was evaluated using a two-sample t test or Wilcoxon rank 
sum test where appropriate. The association between race by 
AMD status and complement levels was evaluated using an 
ANOVA or Kruskal–Wallis test approach. Pair-wise compari-
sons between groups were examined for significant associa-
tions between complement levels and race by AMD based on 
Tukey’s honestly significant difference (HSD) test to adjust 
for multiple comparisons. P values of <0.05 are accepted as 
significant in all analyses.

RESULTS

Ninety AMD patients and 133 controls were included in this 
study, with a mean age of 73.5±8.0 years. Most of the study 
participants were EUR (73.5%) and female (60.1%). Approxi-
mately 40% of the study participants have a positive diagnosis 
of AMD. Twenty-nine percent of subjects were current or 
former smokers at the time the data were collected. AFRs in 
the study constituted about 26% of the population and were 
significantly younger than the EURs (p = 0.007). Character-
istics of the patient population are reported in Table 1.

Association of AMD with demographic variables and comple-
ment factors: AMD is reported to be associated with patient 
age and race [41]. Likewise, across all subjects, individuals 
with AMD had higher levels of C3a (p = 0.032) and Bb (p = 
0.007); however, surprisingly, levels of C5a were lower (p = 
0.002), and CFH activity levels were unaffected (p = 0.864; 
Table 2; all subjects).

As race and genetics are predicted to affect the readouts 
examined here (C3a, C5a, and Bb complements and CFH 
activity levels), additional univariate analyses were stratified 
on race. Among EURs (Table 2; EUR), the occurrence of 
AMD was associated with patient age (p<0.001) and C3a (p 
= .038) and Bb levels (p = 0.004). However, AMD status was 
not associated with C5a levels (p = 0.12) or CFH activity (p 
= 0.946). Among AFRs, the occurrence of AMD was only 
associated with C5a levels (p = 0.045; Table 2; AFR).

To test whether race and AMD are both associated 
with complement components, we examined differences in 
complement activity levels by both ethnicity and disease 
status (Table 3). C5a levels were higher in AFRs than in EURs 
(p < 0.001), whereas C3a, Bb, and CFH activity levels were 
similar. When analyzed by ethnicity and disease, significant 
differences were identified for C5a and Bb levels (global p 
= 0.003 and 0.020). Specifically, AFR control subjects had 
higher levels of C5a relative to EUR controls and EUR 

patients (p = 0.005 and p < 0.001, respectively; adjusted using 
Tukey’s HSD). EUR AMD patients also had higher levels of 
Bb relative to EUR controls and near-significant differences 
relative to AFR controls (p = 0.027 and 0.058, respectively).

A multivariable logistic regression model of AMD was 
developed for all participants (Table 4). All collected subject 
variables were considered in the final model, including age, 
race, C3a levels, C5a levels, CFH activity levels, and the 
interaction between CFH activity and age. EURs have 5.5 
times the odds of developing AMD relative to AFRs after 
controlling for age and complement levels (p < 0.001, odds 
ratio [OR]: 5.52, 95% confidence interval [CI]: 2.16–14.0). 
A ten-unit increase in the level of C3a is associated with a 
10% increase in the odds of AMD after controlling for other 
factors (p = 0.019, OR: 1.10, 95% CI: 1.02–1.19). Meanwhile, 
a ten-unit increase in C5a levels is associated with a 17% 
decrease in the odds of being AMD positive after controlling 
for other factors (p = 0.019, OR: 0.83, 95% CI: 0.72–0.97). 
A significant interaction was evident between patient age 
and levels of CFH activity. The model indicates that as age 
increases, the impact of the level of CFH activity on the odds 
of having AMD decreases, such that there is only a signifi-
cant impact in younger individuals (Figure 1). Similarly, the 
higher the level of CFH activity, the lesser the effect age has 
on the odds of developing AMD. However, increasing age has 
a strong impact on the odds of having AMD in the observed 
range of CFH activity.

Associations between Smoking and Complement Factors: 
Associations between complement levels with smoking status 
were examined using a linear regression analysis. Given that 
the dichotomous smoking variable exhibited stronger associa-
tions, we only report on the association between smoking as 
ever versus never. The complement factors C3a (p < 0.001) 
and Bb (p = 0.002) were associated with smoking, such that 
individuals across ethnicities that reported ever smoking 

Table 1. CharaCTerisTiCs of The sTudy populaTion. 

Characteristic # subjects All subjects
AMD (Yes) 223 90 (40.4)
Age (years) 223 73.2 (8.00)
Sex (Male) 223 89 (39.9)

Race (EUR) 221 164 (73.5)
Smoking status 223

Never 158 (70.9)
Former 42 (18.8)
Current 23 (10.3)

Continuous variables are reported as mean (SD) and categorical 
variables are reported as n (%).
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had higher levels of these complement factors (Table 5, all 
subjects). In a stratified analysis, this association held for 
EURs (p = 0.001 and 0.006, respectively; Table 5, EUR), but 
there was no apparent difference among AFRs (p = 0.132 and 
0.252, respectively; Table 5, AFR).

Associations between AMD with single nucleotide polymor-
phisms: Data were stratified based on ethnicity to examine 
the association between patient genotype and AMD status. 
Representative AMD-associated SNPs [5,39,40] were 
included in this analysis. Estimable ORs and 95% CIs for 

Table 2. univariaTe assoCiaTions beTween aMd sTaTus aCross raCe and wiThin raCe.

Characteristic No AMD AMD p
All No AMD (n=133) AMD (n=90)* p
Age 70.6 (6.30) 77.8 (8.33) <0.001
Sex (Male) 51 (38.4) 38 (42.2) 0.562
Race (EUR) 81 (60.9) 83 (92.2) <0.001
Smoking (Ever) 34 (25.6) 31 (34.4) 0.152
C3a 95.3 (34.3) 113.1 (58.8) 0.032
C5a 103.7 (23.9) 93.1 (24.4) 0.002
Bb 94.7 (42.5) 116.6 (71.5) 0.007
Factor H 98.3 (52.1) 104.8 (63.2) 0.864
AFR No AMD (n=52) AMD (n=7) p
Age 70.9 (6.95) 70.9 (10.4) 0.993
Sex (Male) 20 (38.5) 2 (28.6) 0.702
Smoking (Ever) 9 (17.3) 3 (42.9) 0.141
C3a 96.1 (29.3) 115.7 (55.0) 0.371
C5a 112.3 (24.6) 92.3 (26.1) 0.045
Bb 93.5 (35.7) 94.1 (49.1) 0.592
Factor H 95.9 (58.9) 135.9 (73.1) 0.103
EUR No AMD (n=81) AMD (n=83)* p
Age 70.6 (6.03) 78.3 (7.94) <0.001
Sex (Male) 31 (38.3) 36 (43.4) 0.506
Smoking (Ever) 25 (30.9) 28 (33.7) 0.694
C3a 94.8 (37.3) 112.9 (59.5) 0.038
C5a 98.1 (21.8) 93.1 (24.5) 0.17
Bb 95.4 (46.6) 118.5 (73.0) 0.004
Factor H 99.9 (47.5) 102.1 (62.0) 0.946

Continuous variables are reported as mean (SD) and categorical variables are reported as n (%).*One pa-
tient missing all complement data.

Table 3. assoCiaTions beTween raCe by aMd sTaTus and CoMpleMenT levels. 

Complement
Healthy controls AMD

p
AFR (n=52) EUR (n=81) AFR (n=7) EUR (n=82)*

C3a 96.1 (29.3) 94.8 (37.3) 115.7 (55.0) 113.6 (60.0) 0.282
C5a 112.3 (24.6) 98.1 (21.8) 92.3 (26.1) 92.4 (24.3) 0.003
Bb 93.5 (35.7) 95.4 (46.6) 94.1 (49.1) 119.8 (73.4) 0.02

Factor H 95.9 (58.9) 99.9 (47.5) 135.9 (73.1) 102.6 (62.5) 0.422

*One of the Caucasian patients is missing all complement information. p values are reported for the global test that at least one of the 
groups is different.
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SNPs considered in the analysis are shown in Figure 2A 

(EURs) and Figure 2B (AFRs).

In EURs, the occurrence of AMD was associated with 
the additive effect of rs1536304 VEGFA (p = 0.043); marginal 
associations were also noted with the additive effect of the 
rs3766404 CFH (p = 0.075). Specifically, EUR participants 
had a 39% decrease in the odds of AMD with increasing 
copies of rs1536304 (OR = 0.61, 95% CI 0.38–0.98) and 
higher odds of having AMD with increasing copy numbers 
of rs3766404, though the association was not significant (OR 
= 0.20, 95% CI 0.93–4.42).

In AFRs, the occurrence of AMD was not significantly 
associated with any of the SNPs under consideration. Never-
theless, there was a marginal association between AMD 
status with the rs10490924 ARMS2 in the additive and domi-
nant models (p = 0.060 and 0.062, respectively). Participants 
with at least one copy of the minor allele for rs10490924 had 
5.2 times the odds of AMD relative to participants with no 
copies, although this association was not significant (p = 
0.062, OR: 5.24, 95% CI 0.92–29.9).

Associations between SNPs and Complement Factors: Data 
were stratified based on ethnicity and SNPs to examine the 
association between genotype and complement activation 
status (Figure 3).In EURs, there was a significant associa-
tion between rs2230199 (C3) and C3a levels (p = 0.05) in the 
recessive model, indicating that two copies of the allele are 
required for an increase in complement activation in the 
common terminal pathway. An association was also detected 
between rs2230199 and Bb levels (p = 0.049) in the dominant 

Table 4. MulTivariable logisTiC regression Model of aMd 
sTaTus aCross all parTiCipanTs in The sTudy.

Variable Odds Ratio (95% CI) p
Race (EUR versus AFR) 5.52 (2.16, 14.01) <0.001
C3a (10 units increase) 1.10 (1.02, 1.19) 0.019
C5a (10 units increase) 0.83 (0.72, 0.97) 0.016
Age (years) See Below <0.001
Age x CFH activity See Below 0.058
Age (10 year increase)

If CFH activity is 60 3.71 (2.06, 6.69)
If CFH activity is 90 2.90 (1.80, 4.65)
If CFH activity is 120 2.26 (1.45, 3.53)

Results for race are reported as odds ratio of AMD for EUR participants relative to AFR participants. 
Results for C3a and C5a that are not in an interaction are reported as odds ratios estimated for a specific 
increase in complement levels. Results for CFH activity are reported as odds ratios for a specific increase 
in CFH activity at specific patient ages. Similarly, results for age are reported as odds ratios for a specific 
increase in Age at specific levels of CFH activity to account for the interaction between age and CFH 
activity observed in the model. P values reported in the table are for the estimated regression coefficient 
from the model.

Figure 1. Plot of the OR for a ten-year increase in age with increasing 
levels of the inhibition of alternative pathway-mediated lysis by 
factor H. Percent inhibition of lysis has been normalized to 100 as 
described in the methods. The solid line is the OR from the multiple 
logistic regression model of AMD presented in Table 3. The dashed 
lines represent the 95% confidence interval for the OR at specific 
values of the inhibition of lysis. The solid gray line represents the 
null OR of 1. Values of the inhibition of lysis range from 50 to 
175, which are the 10th and 90th percentiles of observed values in 
our study population. The plot indicates that as the inhibition of 
lysis increases, the impact of increasing age on the probability of 
developing AMD decreases.

http://www.molvis.org/molvis/v25/79
https://www.ncbi.nlm.nih.gov/snp/?term=rs1536304
https://www.ncbi.nlm.nih.gov/snp/?term=rs3766404
https://www.ncbi.nlm.nih.gov/snp/?term=rs1536304
https://www.ncbi.nlm.nih.gov/snp/?term=rs3766404
https://www.ncbi.nlm.nih.gov/snp/?term=rs10490924
https://www.ncbi.nlm.nih.gov/snp/?term=rs10490924
https://www.ncbi.nlm.nih.gov/snp/?term=rs2230199
https://www.ncbi.nlm.nih.gov/snp/?term=rs2230199


Molecular Vision 2019; 25:79-92 <http://www.molvis.org/molvis/v25/79> © 2019 Molecular Vision 

85

model, indicating that at least one copy of the minor allele 
resulted in decreased complement activation. Increased 
activity was not due to a decreased level of CFH activity or 
associated with higher levels of C5a.

In AFRs, there was an association with the dominant 
effect of rs6667243 (CFHR5) on C3a levels (p = 0.044) and 
additive and dominant effects on C5a (p = 0.041 and 0.027, 
respectively). Participants with at least one copy of the minor 
allele for rs6667243 had higher levels of anaphylatoxins rela-
tive to participants with no copies of the minor allele. In addi-
tion, marginal associations were noted for the dominant effect 
of rs1864163 (CETP; p = 0.064) and rs1308155 (COL8A1; p = 
0.092) on C3a levels. Participants with at least one copy of the 
minor allele for rs1864163 had lower levels of C3a, whereas 
those with at least one copy of the minor allele for rs1308155 
had higher C3a levels relative to participants with no copies.

DISCUSSION

AMD is a multifactorial disease caused by the combined 
effects of lifestyle, environmental factors, race, and variants 
at multiple loci. Here, we explored the association between 
complement activation and AMD, focusing on genetic risk 
factors, race, smoking, and complement dysregulation in 
a South Carolinian population. Specifically, in the context 
of systemic complement components in serum as potential 
biomarkers for AMD, we asked whether complement compo-
nents in serum are affected by race, whether their levels are 
affected in a synergistic way between smoking and disease, 

and whether they correlate with particular SNPs. In addition, 
and novel to this study, we examined whether CFH activity 
rather than level differed in AMD and control subjects and 
how those activity levels change with age.

The original reports on the Y402H polymorphism 
in CFH as a major risk factor for AMD suggested that an 
overactive complement system is associated with AMD 
disease and risk; thus, elevated complement components and 
their breakdown products have been examined as potential 
biomarkers. While the best combination of markers still 
needs to be confirmed due to differences in analyses, the 
subjects included in the studies (all cases, GA or CNV only) 
had elevated plasma markers of chronic activation (Ba and 
C3d) [20,42] [43]; an increased C3d/C3 ratio [21,43]; elevated 
anaphylatoxins C3a, C4a, and C5a [43,44]; and altered levels 
of factor B, factor D, and factor I [20,42,43,45]. A few studies 
have indicated impairment of CFH-mediated complement 
inhibition, based on reduced CFH protein levels in an Indian 
AMD cohort [46]. In addition, it has been reported that AMD 
patients might have higher concentrations of nitrated CFH, a 
form that exhibits impaired GAG and C3b binding, as well 
as cofactor activity [47]. Here, we confirmed that AMD is 
associated with elevated levels of the anaphylatoxin C3a, and 
we showed that a 10-unit/mL increase in the level of C3a is 
associated with a 10% increase in the odds of AMD. Most 
of the biologic effectors of complement activation appear to 
be generated by the AP, a prediction that is supported by the 
elevated levels of the active AP serine protease Bb identified 

Table 5. assoCiaTions beTween sMoking sTaTus and CoMpleMenT levels.

Complement factor Never Ever p
All Never (n=158) Ever (n=64)* p
C3a 97.2 (46.1) 115.4 (45.2) <0.001
C5a 100.1 (25.4) 97.8 (22.7) 0.396
Bb 97.8 (52.5) 117.5 (64.6) 0.002
Factor H 101.1 (58.8) 100.4 (51.6) 0.279
EUR Never (n=111) Ever (n=52)* p
C3a 97.8 (50.3) 116.8 (48.6) 0.001
C5a 95.1 (23.8) 96.9 (22.1) 0.864
Bb 99.9 (57.3) 122.2 (69.8) 0.006
Factor H 101.3 (57.5) 100.4 (50.3) 0.204
AFR Never (n=47) Ever (n=12) p
C3a 95.6 (34.5) 109.3 (26.7) 0.132
C5a 112.1 (25.2) 101.7 (25.7) 0.152
Bb 92.6 (39.1) 97.4 (28.2) 0.252
Factor H 100.6 (62.7) 100.8 (59.1) 0.992

*One of the EUR ever smokers is missing all complement information
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in AMD patients. The lack of increased levels of C5a in 
American AMD subjects contradicts some previous findings; 
in two European studies of either neovascular AMD [43] or 
predominantly neovascular AMD [48], elevated levels were 
reported, whereas in two studies with US participants, levels 
of C5a were only associated with GA but not CNV [49], or no 
association was found [20].

Surprisingly, in our cohort, AMD was significantly 
associated with reduced levels of the anaphylatoxin C5a, an 
association that was driven by ethnicity, as there was no asso-
ciation between C5a levels and AMD in EURs, but there was 

in AFRs. Based on this observation, we reexamined all our 
complement data between EURs and AFRs and suggested 
that complement levels can only be used as biomarkers in 
EURs, but not in AFRs, as elevated levels in C3a and Bb are 
only present in EURs.

Smoking is a major modifiable risk factor for AMD, and 
the association between risk for AMD and smoking has been 
documented in many epidemiological studies. Smoking not 
only increases the overall risk of developing AMD [50], but 
it also promotes the progression of AMD from the atrophic 
to neovascular form [51], and it does so significantly earlier 

Figure 2. Association between 
advanced AMD and common SNPs 
in EURs and AFRs. A forest plot of 
the univariate association between 
advanced AMD and common SNPs 
in A: EURs and B: AFRs. The table 
describes the SNP being consid-
ered, the model type, the estimated 
OR for AMD, and the associated p 
value. The plot shows the estimated 
OR with 95% CIs for the respective 
SNP and model. The gray vertical 
line represents the null OR of 1. 
Recessive SNP models missing 
values in the table and on the plot 
indicate that there were fewer than 
three subjects in the study popula-
tion with two copies of the minor 
allele for that SNP. Additive models 
with missing values indicate that 
no subjects were recessive for the 
minor allele.
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in smokers compared to non-smokers [52]. In addition, the 
additive effects of smoking and genetic risk factors in the 
development of AMD have been shown [53]. Three patho-
genic mechanisms have been examined extensively, including 
the role of cigarette smoke and nicotine on angiogenesis and 
neovascularization, the generation of oxidative stress due to 
the presence of pro-oxidant compounds in smoke, and the 
direct toxic effects of compounds, such as polycyclic aromatic 
hydrocarbons, on ocular cells (reviewed in [10]). An observa-
tion that we have discussed previously [54] is that compounds 
in cigarette smoke can directly activate the AP in vitro [22], 
which might explain why serum levels of complements are 
associated with current or cumulative cigarette consumption 
[24]. Here, we report that ever smokers had higher levels of 
C3a and Bb. However, despite the known risk of smoking and 
AMD, in our cohort, an association between smoking and 
AMD was not found in either the EUR or the AFR group. 
This lack of association might be due to the small sample 
size and lack of information on the extent of smoking (e.g., 
pack years for ever smokers or years since quitting for former 
smokers). The lack of synergism between smoking and higher 
levels of complement activation might suggest that not all 
changes in complement levels with smoking are associated 
with disease.

Variants at multiple genetic loci are independently 
associated with AMD [5,39], and a risk calculator has been 
developed based on ten variants [55]. Here, we tested two 
SNPs that are part of the risk calculator, ARMS2 (rs10490924) 
and C3 (rs2230199), as well as eight additional SNPs: 
ARMS2 (rs3793917), CFH (rs3766404, rs393955), VEGFA 

(rs1536304), CETP (rs1864163), C3 (rs2230199), CFHR5 
(rs6667243, rs10922153), and COL8A1 (rs1308155), for their 
association with AMD. In EUR participants, the occurrence 
of AMD was associated with the additive effect of rs1536304 
VEGFA (significant) and rs3766404 CFH (marginal). While 
the rs3766404 CFH locus has been shown previously to 
predispose individuals to AMD [56], no reports are currently 
available for rs1536304 VEGFA. In AFRs, marginal asso-
ciations between AMD status with the known ARMS2 SNP 
(rs10490924) [57] in the additive and dominant models were 
identified.

Interactions between risk factors are expected in AMD. 
To date, the additive effects of smoking and genetic risk 
factors in the development of AMD have been shown for 
HTRA1 and CFH [53,58]. The association between genotype 
and levels of complement activation products has been exam-
ined in the literature. The CFH [43] and ARMS2 [21,43] risk 
genotypes have been shown to be independently associated 
with an elevated C3d/C3 ratio, and carriers of the CFB (OMIM 
138470, Gene ID 629) protective allele had lower serum levels 
of CFB [43]. Here, we added to this pool of information that 
in EURs, rs2230199 C3 was associated with an increased 
complement activation, as demonstrated by elevated levels of 
C3a and C5a; whereas in AFRs, complement activation (C3a 
and C5a) was associated with a dominant effect of rs1536304 
VEGFA and potentially with a dominant effect of rs1864163 
CETP and rs1308155 COL8A1.

Finally, because CFH plasma concentrations range 
considerably between individuals (250 to 564 µg/ml) [59], 

Figure 3. Association between 
complement levels and SNPs across 
all subjects. A forest plot of the 
association between complement 
levels and SNPs by race (EUR 
or AFR). The table describes the 
SNP and complement factor being 
considered, the SNP model type, 
the estimated difference in mean 
complement levels by SNP status, 
and the associated p value. The plot 
shows the estimated mean differ-
ence in complement levels with 
95% CIs for the respective SNP 
and model. The gray vertical line 

represents a null mean difference of 0. Recessive SNP models missing values in the table and on the plot indicate that there were fewer than 
three subjects in the study population with two copies of the minor allele for that SNP. Additive models with missing values indicate that 
no subjects were recessive for the minor allele.
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rather than examining levels of CFH, we used a modified 
erythrocyte lysis assay to determine the inhibitory capacity 
of CFH present in the serum. CFH activity was not correlated 
with AMD or ethnicity. However, a significant interaction 
between patient age and levels of CFH activity was observed. 
Importantly, the model indicated that there is only a signifi-
cant impact in younger individuals. In other words, the model 
indicates that as age increases, the impact of the level of CFH 
activity on the odds of having AMD decreases, and alterna-
tively, the higher the levels of CFH activity, the less impact 
age has on the odds of having AMD. This observation might 
imply that CFH-based complement inhibition should become 
less efficacious with advanced age. A marginal correlation 
was identified between age and CFH activity (p = .0965), 
which is significant if levels in younger (below 70 years-of-
age) subjects are compared to those in older subjects (above 
70 years of age; p<0.05). We suggest that augmented comple-
ment activation in advanced AMD might be attributed to a 
decrease in CFH activity in younger patients, a hypothesis 
that needs further investigation. Importantly, this observation 
should be considered in the context of data obtained in young 
healthy CFH homozygous CC haplotype subjects who exhibit 
an abnormal choroidal blood flow regulation decades before 
potentially developing the disease. The authors have specu-
lated that this might lead to ischemia or hypoxia [60]. These 
data in the context of our results suggest that AMD in CFH-
risk subjects might be a disease that needs to be prevented 
early in life rather than treated when fully established.

We note several limitations to the study. As indicated 
previously, a relatively small sample size does not allow us 
to examine the association between AMD and smoking, and 
it might also responsible for the lack of association between 
AMD and C5a levels in EURs or the apparent association 
between AMD and low C5a levels in AFR subjects. The 
small sample size prohibits the detection of moderate to 
weak associations between genetic factors with complement 
activation products and AMD status. This is even more 
relevant when stratifying on race, as the study includes only 
59 AFRs, among whom only seven had AMD. A posteriori 
power calculation shows that for common SNPs occurring 
in 50% of AFRs, our study was powered to detect a larger 
OR of 5.8. For rarer SNPs (10% of AFRs have the minor 
allele), the study was powered to detect only much larger ORs 
(>11). As we had a limited sample size, we could not adjust for 
multiple comparisons when examining associations between 
SNPs with complement components or with AMD status. 
However, given the exploratory nature of this study for evalu-
ating genetic factors, the goal was to identify those SNPs that 
are likely associated with AMD and complement activation 
and that are worth further examination. In addition, race was 

self-reported. Thus, AFR cases and controls might be geneti-
cally dissimilar, but the insufficient sample size and SNPs did 
not permit the examination of genetic admixture. All these 
results require further validation in a larger cohort of AFRs 
that such a study accounts for genetic admixture. Neverthe-
less, our findings are intriguing and indicate that complement 
activation may differ in patients with and without AMD, and 
this association may be tempered by ethnicity and genetic 
factors. Within the context of race, we note that non-Whites 
do not respond as well to intravitreal ranibizumab treatment 
for wet AMD as compared to Whites, suggesting differences 
in disease etiology across ethnic groups [61].

In summary, our results first validate and further 
extend reports of systemic complement components, such 
as C3a and Bb, in serum as potential biomarkers for AMD. 
However, the lack of association between AMD and comple-
ment components in AFR subjects suggests that complement 
dysregulation might not underlie AMD pathology in all races. 
Second, they suggest that smoking and disease might not 
synergistically affect complement levels. Third, our results 
suggest that augmented complement activation in advanced 
AMD might be attributed to a decrease in CFH activity in 
younger patients. Though these findings are intriguing, they 
need verification in a larger study.
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