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ABSTRACT
Introduction  The epidemiology and clinical characteristics 
of COVID-19 evolved due to new SARS-CoV-2 variants of 
concern (VOCs). The Omicron VOC’s higher transmissibility 
increased paediatric COVID-19 cases and hospital 
admissions. Most research during the Omicron period 
has focused on hospitalised cases, leaving a gap in 
understanding the disease’s evolution in community 
settings. This study targets children with mild to moderate 
COVID-19 during pre-Omicron and Omicron periods. 
It aims to identify patterns in COVID-19 morbidity by 
clustering individuals based on symptom similarities and 
duration of symptoms and develop a machine-learning tool 
to classify new cases into risk groups.
Methods  We propose a data-driven approach to explore 
changes in COVID-19 characteristics by analysing data 
from 581 children and adolescents collected within a 
paediatric cohort at the University Hospital of Padua. First, 
we apply an unsupervised machine-learning algorithm to 
cluster individuals into groups. Second, we classify new 
patient risk groups using a random forest classifier model 
based on sociodemographic information, pre-existing 
medical conditions, vaccination status and the VOC as 
predictive variables. Third, we explore the key features 
influencing the classification through the SHapley Additive 
exPlanations.
Results  The unsupervised clustering identified three 
severity risk profile groups. Cluster 0 (mildest) had an 
average of 1.2 symptoms (95% CI 0.0 to 5.0) and mean 
symptom duration of 1.26 days (95%CI 0.0 to 9.0), 
cluster 1 had 2.27 symptoms (95% CI 1.0 to 6.0) lasting 
3.47 days (95% CI 1.0 to 12.0), while cluster 2 (strongest 
symptom expression) exhibited 3.41 symptoms (95% CI 
2.0 to 7.0) over 5.52 days (95% CI 0.0 to 16.0). Feature 
importance analysis showed that age was the most 
important predictor, followed by the variant of infection, 
influenza vaccination and the presence of comorbidities. 
The analysis revealed that younger children, unvaccinated 
individuals, those infected with Omicron and those with 
comorbidities were at higher risk of experiencing a greater 
number and longer duration of symptoms.
Conclusions  Our classification model has the potential 
to provide clinicians with insights into the children’s risk 
profile of COVID-19 using readily available data. This 
approach can support public health by clarifying disease 

burden and improving patient care strategies. Furthermore, 
it underscores the importance of integrating risk 
classification models to monitor and manage infectious 
diseases.

INTRODUCTION
The epidemiology and clinical charac-
teristics of COVID-19 evolved during the 
pandemic, largely due to the emergence of 
new SARS-CoV-2 variants of concern (VOCs) 
with different virulence and transmissi-
bility. These changes in VOCs contributed 
to shifts in COVID-19 clinical manifesta-
tions and morbidity. The emergence of the 
B.1.1.529 (Omicron) VOC has been marked 
by a predominance of upper respiratory 
tract symptoms, such as rhinitis, cough and 
sore throat, resulting in a lower incidence of 
severe outcomes among adults. However, the 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ COVID-19 has shown evolving epidemiology and 
clinical characteristics due to emerging SARS-CoV-2 
variants, with research primarily focusing on hospi-
talised cases or the early Omicron period, leaving 
gaps in understanding the disease’s progression in 
community settings.

WHAT THIS STUDY ADDS
	⇒ This study introduces a machine-learning model 
that identifies patterns in COVID-19 morbidity and 
predicts infection type and disease progression 
based on patient profiles.
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	⇒ The approach can improve patient management by 
guiding clinical decisions and support public health 
efforts by providing a clearer understanding of dis-
ease burden, potentially influencing both clinical 
practice and public health policy.
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higher transmissibility of the Omicron VOC, combined 
with school reopening,1 has led to a rise in paediatric 
COVID-19 cases,2–4 significantly increasing hospital 
admissions among children5 and, consequently, severe 
outcomes in absolute terms.

Although the WHO has declared an end to COVID-19 
as a public health emergency,6 SARS-CoV-2 continues to 
persist and mutate. Coupled with a significant decline in 
global vaccination uptake and coverage, the risk remains 
of new VOCs emerging, potentially causing new surges in 
cases and deaths.

Given that the clinical characteristics of COVID-19 
vary with different viral strains, understanding and early 
recognition of SARS-CoV-2 infection in the paediatric 
population is crucial to reducing the global burden of 
the pandemic.7 8 With the decline in testing, providing 
evidence on the clinical patterns of paediatric COVID-19 
is essential for facilitating early recognition and prompt 
management of cases.

To date, most research describing the changing symp-
tomatology of COVID-19 during the Omicron period 
has concentrated on hospitalised cases, focusing on 
more severe cases and limiting our understanding of the 
disease’s evolution in community settings, which repre-
sent the majority of cases.4 9 10

This research focuses on the youngest population 
infected with mild to moderate COVID-19, covering pre-
Omicron and Omicron infections from April 2020 to 
December 2022 in the Veneto region of Italy. The anal-
ysed data consist of records of children aged 0–20 years 
seeking care from family paediatricians (FPs). The study 
aims to achieve two primary objectives: (1) uncovering 
patterns in COVID-19 morbidity by clustering individ-
uals according to the number and duration of symptoms 
experienced; (2) developing a machine-learning tool to 
classify new cases based on demographic data, treatments 
and coexisting medical conditions and vaccination status, 
using the classes of infection identified in the previous 
step.

This study builds on prior research by Di Chiara et 
al,11 which investigated the epidemiological and clinical 
features of SARS-CoV-2 variants using descriptive statis-
tics. Our research aims to reinforce these findings by 
employing an unsupervised machine-learning approach 
to analyse clinical manifestations in children. This 
approach helps clinicians to understand the classes of 
SARS-CoV-2 infections, thus the children’s risk profiles, 
and the possible burden of disease, facilitating better 
decision-making and personalised treatment.9 12 13

METHOD
Dataset description
In this study, we rely on data collected within a prospec-
tive cohort of 715 participants focusing on children and 
adolescents aged 0–21 years old attending the COVID-19 
Family Cluster Follow-up Clinic (CovFC) from April 
2020 to December 2022.11 The CovFC was instituted 

at the Department of Women’s and Children’s Health, 
University Hospital of Padua, situated in the Veneto 
region, Italy. Families, including children, older siblings 
and parents, who had recovered from COVID-19 were 
referred to the CovFC by their FPs, and to be eligible for 
the enrolment they had to meet two criteria: (1) have 
children under the age of 15 and (2) have one or more 
family members with a confirmed history of laboratory-
confirmed COVID-19 infection. During enrolment, 
paediatricians and/or infectious diseases specialists 
conducted clinical assessments, including the collection 
of demographic information, medical history, SARS-
CoV-2 virological test results from nasopharyngeal swabs 
and vaccination status.14 Clinical assessments and data 
collection were conducted for all individuals, including 
both parents and children, regardless of their laboratory-
confirmed COVID-19 history. Following this, individuals 
with confirmed COVID-19 cases underwent a 6-monthly 
clinical and serological follow-up for at least 1 year after 
the initial infection, while subjects who were asymp-
tomatic and had no analytical evidence of SARS-CoV-2 
infection were considered non-COVID-19 cases. Vaccina-
tion data were recorded as they became available for each 
age group. Two blinded paediatricians determined the 
baseline infection date for each individual in the study, as 
outlined in Di Chiara et al.11

In the current study, we implement additional specific 
exclusion criteria. Specifically, individuals classified as 
non-COVID-19 cases, and those older than twenty years, 
were excluded from the analysis. Within the sample of 
715 participants, 119 individuals were classified as non-
COVID-19 cases, and 15 individuals were aged more than 
twenty years. Following the exclusion criteria, we discard 
those cases from the dataset, resulting in a final dataset 
including 581 children and adolescents.

Variables definition
We analyse data on existing medical conditions, vacci-
nation status and reported symptoms in the paediatric 
population, gathered through clinical assessments 
conducted at the enrolment. In terms of existing medical 
conditions, we first check the prevalence of each in the 
study sample, removing the ones without any representa-
tion in the dataset, and then we consider those among 
the list of comorbidities associated with severe paediatric 
COVID-19: chronic pulmonary conditions (eg, bron-
chopulmonary dysplasia and uncontrolled asthma); 
cardiovascular conditions (eg, congenital heart disease); 
immunocompromising conditions (eg, malignancy, 
primary immunodeficiency and immunosuppression); 
neurological conditions (eg, epilepsy and select chro-
mosomal/genetic conditions); prematurity; feeding tube 
dependence and other pre-existing technology depend-
ence requirements; diabetes mellitus; obesity.15–18

To include vaccination status information, we deal 
with missing values reported in the dataset for the vacci-
nation against COVID-19 due to the availability of the 
vaccines in the study period. For this reason, we consider 
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the approval releases per age group: individuals older 
than 12 years old are considered vaccine-eligible from 
31 May 2021,19 while individuals aged 5–11 years old 
are vaccine-eligible from 1 December 202120 and chil-
dren younger than 4 years old were vaccine-ineligible 
when the enrolment was open. The individuals infected 
before the approval date of the vaccine were classified as 
non-vaccinated, and individuals aged 0–4 years old are 
all considered not vaccinated. Within the symptom set, 
non-verbal symptoms for the younger age group, such as 
headache and small-taste alterations, have been excluded 
from the analysis. However, symptoms recognisable by 
parents, including myalgia and abdominal pain, have 
been retained. The final set includes fever, rhinitis, cough, 
dyspnoea, myalgia, arthralgia, sore throat, conjunctivitis, 
asthenia, abdominal pain, nausea, lack of appetite, skin 
rash, confusion, ear pain and other symptoms.

Starting from the available data, we extract additional 
information including the total number of symptoms 
reported during infection, the total number of comorbid-
ities, the length of each symptom, the median duration 
of symptoms, the variant of infection and the hexavalent 
vaccination (diphtheria-tetanus-acellular pertussis, Polio, 
Hib and hepatitis B). Specifically, we define an infection 
category for each individual, considering three types of 
infection: asymptomatic (duration of symptoms=0 days), 
short (duration of symptoms≤5 days) and long infection 
(duration of symptoms >5 days). These categories were 
defined in consultation with paediatricians who partic-
ipated in the enrolment process. To identify specific 
variants of infections, we consider that from a clinical 
and immunovirological point of view, the Parental and 
Delta variants exhibited striking similarities. With the 
emergence of the Omicron variant, marked by substan-
tial mutations in the spike-receptor binding domain 
(S-RBD), a notable shift in the clinical, immunological 
and epidemiological aspects of COVID-19 occurred. 
For these reasons, we classified cases into two groups 
based on the reported baseline date of infection onset: 
pre-Omicron and Omicron, defining any SARS-CoV-2 
infection occurring before 15 November 2021, as pre-
Omicron, and infections occurring after that day as 
Omicron. Finally, to include information on vaccination 
history, we combine available information on individual 
vaccinations and the hexavalent vaccination variable to 
determine whether an individual has received multiple 
vaccines intended to protect against several diseases 
(diphtheria, tetanus, pertussis (DTP), inactivated/oral 
poliovirus vaccine (IPV/OPV), hepatitis B virus (HBV), 
haemophilus influenzae type b (Hib)).

Study population
This study examines 581 children and adolescents who 
tested positive for SARS-CoV-2 (COVID-19 cases, sympto-
matic), aged 0–20 years old. The dataset includes socio-
demographic and health-related information. The 66.5% 
of the study population (386 individuals) infected by 
SARS-CoV-2 were older than 5 years old, while the gender 

was balanced. Most of the subjects do not show previous 
underlying disease: only 25% of the entire study popu-
lation exhibit at least one medical condition among the 
ones associated with severe paediatric COVID-19. During 
the pre-Omicron phase, almost all individuals had not 
done the COVID-19 vaccination yet, probably due to the 
vaccine eligibility. At the same time, during the Omicron 
variant, the number of vaccinated children and adoles-
cents increased (46 individuals out of 135 individuals 
infected during Omicron). As regards symptoms, only 7% 
of the infected people during the Omicron variant report 
no symptoms, while more than 70% present at least two 
symptoms. On the contrary, during the pre-Omicron 
period, nearly 35% of the individuals reported no symp-
toms, and less than 40% of the infected presented two or 
more symptoms. We provide a summary of clinical and 
sociodemographic characteristics (see table 1), including 
counts, percentages, medians and IQRs, as applicable. 
The stratification is based on the distinct phases consid-
ered, pre-Omicron and Omicron. To better characterise 
the cohort, we check the prevalence of comorbidities and 
symptoms (see online supplemental figure S1 and S2). 
Nearly 75% do not exhibit any comorbidities, followed 
by individuals with other comorbidities, asthma, prema-
turity and congenital heart disease. Lots of comorbidities 
included during the reporting phase do not show any 
representation in the dataset. For this reason, we remove 
them from the analysis, together with comorbidities not 
associated with severe COVID-19 in the paediatric age, 
that emerge to also have a low prevalence in the dataset 
(chronic hepatitis, rheumatic disease, nephropathy, 
haematological disease). We finally consider nine comor-
bidities: asthma, prematurity, congenital heart disease, 
neurological disease, diabetes, chronic respiratory 
disease, obesity and others. The most common symptoms 
are fever and rhinitis, followed by headache, asthenia and 
cough. We do not consider both headache and smell and 
taste alterations for the analysis to avoid biases, as they 
are non-verbal symptoms for the youngest population.

Unsupervised clustering
To identify underlying patterns and structures within 
the dataset, we employ a clustering approach, an unsu-
pervised machine-learning technique that groups data 
elements based on inherent statistical similarities, without 
requiring predefined class labels.21 The objective is to 
derive insights into the risk stratification of SARS-CoV-2 
infections in children by leveraging the presence or 
absence of symptoms and the duration of infection. The 
clustering process generates class labels that characterise 
individuals according to the similarity of their reported 
symptoms, spanning seventeen distinct symptom types 
encoded as binary variables, as well as their classification 
within one of three infection duration categories.

We employ the K-modes algorithm,22 an extension 
of the well-established K-Means algorithm. K-means 
is well known for its efficiency in clustering large data 
sets. However, its limitation to numeric data restricts its 

https://dx.doi.org/10.1136/bmjph-2024-001888


4 Fiandrino S, et al. BMJ Public Health 2025;3:e001888. doi:10.1136/bmjph-2024-001888

BMJ Public Health

applicability in fields such as data mining, where exten-
sive categorical datasets are commonly encountered. 
Addressing the challenge of clustering large categorical 
datasets in data mining, Huang and Ng introduced the 
K-modes algorithm. This algorithm is a modified version 
of the K-means in which a simple matching dissimilarity 
measure tailored for categorical variables instead of the 
Euclidean distance is employed. Unlike K-means, the 
K-modes algorithm uses modes instead of means for clus-
ters and a frequency-based approach to update modes 
during the clustering process.23 24 The clustering proce-
dure requires specifying the number of groups to divide 
individuals a priori. To determine the optimal number of 
clusters, we use the Elbow method, which is based on the 
principle that increasing the number of clusters initially 
leads to a rapid reduction in total within-cluster variance, 
followed by a gradual levelling off. The optimal number 
of clusters is identified at the point where the decrease 
in variance slows significantly, forming an ‘elbow’ in the 
graph.25 Specifically, we calculate the total within-cluster 
sum of squares for cluster values ranging from 1 to 6. 
The point where the graph sharply bends, beyond which 
further increases in clusters yield minimal reduction in 
variance, indicates the optimal K value.

The analysis was performed using the kmodes library in 
Python (V.0.12.2, https://github.com/nicodv/kmodes) 
within a custom analysis pipeline developed by our team, 

available at https://github.com/sfiandrino/clustering_​
symptoms_VERDI.

Classification model
To predict the risk class to which a newly diagnosed indi-
vidual should be assigned, we employ a machine-learning 
classification model. These approaches have become 
increasingly popular in recent years for their ability to 
support better-individualised treatments. The risk groups 
are identified and defined by the output of the clustering. 
The predictive variables have been defined in consulta-
tion with paediatricians and include sociodemographics, 
vaccination status, comorbidities and variant of infection 
information. In the following, we report the extensive 
list: age, gender, asthma, prematurity, obesity, diabetes, 
chronic respiratory disease, congenital heart disease, 
neurological disease, presence of at least one comor-
bidity, COVID-19 vaccination, influenza vaccination and 
hexavalent vaccination, pre-Omicron/Omicron period 
of infection.

For classification, we use the random forest classifier, 
a supervised machine-learning algorithm that combines 
multiple decision trees. Each tree in the forest casts a 
vote, and the class with the majority of votes is selected 
as the most probable label for a given input.26 This 
ensemble method is widely used for its speed, robustness 
to noise, and success in identifying non-linear patterns in 

Table 1  Overview of sociodemographic and clinical characteristics in the study population, stratified by Omicron-infected 
and pre-Omicron group based on the SARS-CoV-2 variant

Pre-Omicron (N=428) Omicron (N=135) Total (N=581)

Age–median (IQR 25–75) 8.0 (4.0–11.0) 8.0 (5.0–10.0) 8.0 (4.0–11.0)

Age 0–2 years—No (%) 74 (17.29) 18 (13.33) 96 (16.52)

Age 3–5 years—No (%) 71 (16.59) 24 (17.78) 99 (17.04)

Age 6–10 years—No (%) 143 (33.41) 60 (44.44) 207 (35.63)

Age 11–13 years—No (%) 98 (22.90) 26 (19.26) 129 (22.20)

Age 14–20 years—No (%) 42 (9.81) 7 (5.19) 50 (8.61)

Gender male—No (%) 201 (46.96) 61 (45.19) 266 (45.95)

Gender female—No (%) 227 (53.04) 74 (54.81) 314 (54.05)

At least one comorbidity—No (%) 99 (23.13) 45 (33.33) 146 (25.13)

COVID-19 vaccination, done—No (%) 6 (1.40) 46 (34.07) 53 (9.12)

COVID-19 vaccination, not done - No (%) 422 (98.60) 89 (65.93) 528 (90.88)

No of symptoms—median (IRQ 25–75) 1.0 (0.0–2.0) 2.0 (1.0–3.0) 1.0 (0.0–2.0)

No of symptoms 0—No (%) 137 (32.01) 7 (5.19) 163 (23.45)

No of symptoms 1—No (%) 115 (26.87) 28 (20.74) 171 (30.66)

No of symptoms 2—No (%) 83 (19.39) 41 (30.37) 122 (23.00)

No of symptoms more than 2—No (%) 93 (21.73) 59 (43.70) 125 (21.52)

Median duration infection—median (IRQ 
25–75) 0.0 (0.0–2.0) 1.0 (0.0–3.0) 0.0 (0.0–2.0)

Infection category: asymptomatic—No (%) 246 (57.48) 65 (48.15) 387 (66.61)

Infection category: short infection—No (%) 127 (29.67) 57 (42.22) 166 (21.69)

Infection category: long infection—No (%) 55 (12.85) 13 (9.63) 68 (11.71)

https://github.com/nicodv/kmodes
https://github.com/sfiandrino/clustering_symptoms_VERDI
https://github.com/sfiandrino/clustering_symptoms_VERDI
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data. Also, it can effectively handle both numerical and 
categorical data, and it is resistant to overfitting.27

However, the analysed dataset is imbalanced, with the 
majority of samples belonging to clusters 0 and 1, while 
cluster 2 is underrepresented. This imbalance can cause 
the classifier to favour the majority classes, leading to 
poor performance on the minority class and reducing 
the model’s overall generalisability. To address this issue, 
we apply the Synthetic Minority Over-sampling Tech-
nique for Nominal and Continuous data (SMOTENC), a 
modified version of SMOTE28 which generates synthetic 
samples for both categorical and numerical features. For 
numerical features, SMOTENC uses Euclidean distance 
to identify nearest neighbours, while categorical features 
are assigned based on the most frequent category among 
those neighbours. This approach improves class balance 
in the training data, enhancing model learning without 
overfitting through data duplication. To prevent data 
leakage and bias, we apply SMOTENC only to the training 
set, ensuring that the test set remains representative of 
real-world conditions.

To further improve model performance and reduce 
bias, we employ a fivefold cross-validation strategy. Addi-
tionally, we use a grid search optimisation approach 
to systematically tune hyperparameters, selecting the 
optimal combination from a predefined set of alter-
natives. The list of hyperparameters and their corre-
sponding values used in the grid search are provided in 
the online supplemental table S1.

For the classification task, we used the scikit-learn 
library in Python (V.1.5.1, https://scikit-learn.org/), 
implemented within our analysis pipeline.

Explainability
Machine-learning approaches are often perceived as 
black boxes, offering recommendations without revealing 
the underlying processes. Therefore, interpreting the 
results, understanding the hidden patterns and compre-
hending the reasoning behind the model’s conclusion 
play a key role, especially when model outputs are used 
to support decision-making. To interpret the prediction 
model’s output, we use the SHAP (SHapley Additive 
exPlanations) framework.29 SHAP provides a unified 
measure of feature importance, aiming to understand 
each instance’s prediction by quantifying the contribu-
tion of each feature. Originating from cooperative game 
theory, the Shapley value addresses the issue of deter-
mining each player’s importance to the overall cooper-
ation. Since features contribute to the model’s output as 
players with varying magnitudes and signs, Shapley values 
consider both the magnitude and direction of their 
contributions30 and enable the visualisation of the range 
and distribution of impacts on the model’s output.31

SHAP analyses have been successfully applied to 
understand factors associated with COVID-19 outcomes, 
including mortality and severity risks,32–34 admissions 
to intensive care units (ICUs) or emergency depart-
ments,35 36 and mental health impacts on COVID-19 

patients.37 Specifically, Smith and Alvarez used SHAP 
values to identify mortality factors in COVID-19 patients, 
highlighting age, days in the hospital, lymphocytes 
and neutrophils as key variables influencing patient 
outcomes.32 Rajwa et al used similar approaches to 
explore predictive patient characteristics for in-hospital 
mortality in COVID-19 cases.34 Laatifi et al showed how 
the plasma level of cytokines in the blood influences the 
severity of SARS-CoV-2 infection.33 Cavallaro et al and 
Duckworth et al applied SHAP to identify factors linked to 
ICU admissions and death in hospitalised patients,35 and 
to emergency department attendance.36 Finally, Ikram et 
al leveraged SHAP to identify predictors of poor mental 
health outcomes among adult Asian Indians affected by 
COVID-19.37 However, the magnitude of SHAP values 
does not necessarily correspond to any causal rela-
tionships between a specific feature and the output.38 
Instead, it provides a powerful tool for understanding 
which features are most predictive of clinical condi-
tions by highlighting correlations between features and 
outcomes, which can serve as a basis for generating test-
able hypotheses regarding potential causal mechanisms.

RESULTS
Characterisation of clusters attributes
To determine the optimal number of clusters, we apply 
the Elbow method, which identifies three distinct groups. 
The corresponding visualisation is provided in online 
supplemental figure S3. Following this, we conduct 
statistical analyses to uncover underlying patterns, struc-
tures, similarities within the groups and key differences 
among them. The results show that the three clusters 
correspond to distinct levels of total symptom count and 
median infection duration. Notably, this information 
was not incorporated during the clustering process, but 
emerged as a key finding, emphasising the value of the 
machine-learning approach in identifying meaningful 
patterns within the data. The clusters can be character-
ised as follows: Cluster 0 represents individuals exhibiting 
few or no symptoms, suggesting a higher likelihood of 
asymptomatic infection; cluster 1 and cluster 2 include 
individuals with a higher number of symptoms; cluster 
2 includes COVID-19 cases with a longer likely duration 
of symptoms than people belonging to cluster 1. Table 2 
shows the descriptive statistics per cluster, together 
with the analysis of variance one-way analysis to find 
which variables had a statistically different mean value 
between (at least two of those) the clusters. More statis-
tics related to symptoms activity in different clusters are 
reported in online supplemental table S2. Cluster 1 and 
cluster 2 differ in the similarity of reported symptoms, in 
particular for fever, rhinitis and cough, and for the dura-
tion of the first two symptoms. Cluster 0 differs from the 
other two clusters because it captures the asymptomatic 
COVID-19 cases. Figure  1 shows the histogram of the 
percentage of individuals per number of symptoms. We 
find distinct patterns: within cluster 0, there is a notable 

https://dx.doi.org/10.1136/bmjph-2024-001888
https://scikit-learn.org/
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prevalence of individuals reporting no symptoms or a 
limited number of symptoms, while cluster 1 and cluster 
2 show no representation among individuals reporting 
no symptoms; conversely, the behaviour reverses for the 
occurrence of a high number of symptoms, where cluster 
1 and cluster 2 are prominent, while cluster 0 displays an 
opposing trend.

Classification process
We use a random forest classifier to predict the risk 
group of a new individual based on sociodemographic 
and clinical data. The results of the model yield a 
receiver operating characteristic (ROC) score of 0.78 
(95% CI 0.74 to 0.81), indicating that our model, on 
average, effectively classifies 78% of cases into the 
defined classes. Figure 2 shows the confusion matrix, 
a visual representation of the actual vs predicted 
values, that measures the performance of the classifi-
cation model. We report the raw confusion matrix and 

the row-wise normalised version to better understand 
the percentage of correct classifications and errors 
across classes. The diagonal represents correctly clas-
sified instances, and off-diagonal elements represent 
misclassifications. Specifically, people with few or 
no symptoms (cluster 0) were correctly classified for 
55% of cases (95% CI 49% to 58%) and misclassified 
as belonging to cluster 1 for 26% of cases (95% CI 
21% to 34%). Individuals belonging to cluster 1 were 
correctly classified for 64% of cases (95% CI 50% to 
76%) and misclassified as belonging to cluster 0 for 
21% of cases (95% CI 12% to 29%). Finally, COVID-19 
cases in cluster 2 were correctly classified for 66% of 
cases (95% CI 62% to 71%). Notably, when the model 
makes errors, it tends to misclassify individuals into 
the adjacent severity group rather than the more 
distant one. This pattern indicates that the model 
retains some discriminatory power, as it rarely assigns 

Table 2  Overview of cluster characteristics

Clinical characteristics Cluster 0 (N=378) Cluster 1 (N=113) Cluster 2 (N=90) ANOVA (p value)

Asymptomatic infection (No (%)) 312 (82.54) 0 (0.00) 7 (7.78) 0.000

Short infection (No (%)) 43 (11.38) 97 (85.84) 54 (60.00) 0.000

Long infection (No (%)) 23 (6.08) 16 (14.16) 29 (32.22) 0.000

Median duration symptoms (mean (SD)) 1.26 (7.37) 3.47 (7.36) 5.52 (13.3) 0.000

Number of symptoms (mean (SD)) 1.2 (1.34) 2.27 (1.50) 3.41 (1.20) 0.000

Individuals are grouped based on the similarity of reported symptoms and infection category. For the infection categories, the table presents 
the number of individuals and the corresponding percentage within the group, while the average and SD are provided for symptom duration 
and the number of symptoms.
ANOVA, analysis of variance.

Figure 1  The figure presents the histogram of the prevalence of the number of symptoms reported by individuals within the 
three obtained clusters. Different patterns can be observed: individuals reporting no symptoms are assigned to cluster 0, while 
people reporting a higher number of symptoms belong to cluster 1 and cluster 2.
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individuals from cluster 0 directly to cluster 2 or 
vice versa. Instead, misclassifications are more likely 
to occur between neighbouring clusters, reflecting 
the severity levels. Also, considering our three-class 
framework, a purely random classifier would achieve 
an accuracy of approximately 33%. In contrast, even 
the lower bounds of the CIs in our results do not 
approach this threshold, indicating that our model 
provides significant predictive value beyond random 
chance.

Explanation of predicted variables
To understand the most predictive variables for the 
random forest classifier, we use SHAP values.

Figure  3A reports the SHAP summary plot, where 
features are first sorted by their global impact, and 
dots represent the shape values, coloured by the 
value of that feature, from low (blue) to high (red). 
In other words, positive SHAP values indicate the 
feature increases the probability of assignment to 
the highest-risk group. Age appears to be the most 
important factor, and the colouring shows a smooth 
decrease in the model’s output as age increases. 
Notably, we have similar results for gender, influenza 
vaccination and the presence of at least one comor-
bidity, meaning that a lower-risk profile characterises 
females, people with influenza vaccination and those 
without comorbidities. On the contrary, a higher 
risk profile characterises people infected during 

the Omicron variant, as shown by the opposite dot 
colour distribution. Figure 3 reports the mean abso-
lute SHAP value of the features for the three classes, 
providing a general overview of the most influential 
features for the model (on the top) and their impact 
on the classification of each class.

The top five predominant factors identified as crucial 
for the classification task are age, the VOC, the presence 
of influenza vaccination, gender and the presence of at 
least one comorbidity. In addition to influenza vaccina-
tion, COVID-19 vaccination also emerged as a predictive 
factor, although with lower importance. This is likely due 
to the relatively low coverage among children in the anal-
ysed period, which may have limited its impact on the 
model’s predictions.

DISCUSSION
The study employs a data-driven approach to characterise 
COVID-19 manifestations in children and adolescents 
during pre-Omicron and Omicron periods. Through 
an unsupervised machine-learning approach, we iden-
tify three clusters of individuals based on symptom type 
and duration, revealing distinct clinical patterns that 
emerged from the clustering process. Additionally, we 
develop a classification model using sociodemographic 
variables, vaccination status and the VOC to predict an 
individual’s risk profile.

Figure 2  The figure presents the results of the multiclass classification model in distinguishing three severity risk groups 
(cluster 0 to cluster 2, ordered by increasing severity). (A) displays the raw confusion matrix, while (B) shows the row-wise 
normalised version, highlighting classification performance across classes. The x-axis represents the predicted labels, and the 
y-axis denotes the actual labels.
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Our analysis confirms the findings reported by Di 
Chiara et al,11 where statistical and clinical descriptive 
approaches were employed, showing a different pattern 
of clinical manifestation of COVID-19 in the paediatric 
population according to age, comorbidities, vaccination 
and infective VOC.

The unsupervised clustering approach identifies three 
risk profile clusters that reflect a spectrum of burden 
and infection duration: cluster 0, characterising indi-
viduals with fewer symptoms and most asymptomatic 
infections; cluster 1, characterising medium levels of 
number of symptoms and duration of symptoms; cluster 
2, including the most symptomatic cases. This challenges 
the traditional binary classification of symptomatic versus 
asymptomatic cases and underscores the continuum of 
COVID-19 manifestations in children. Notably, symptom 
duration—though not an input variable—aligned with 
the identified clusters, highlighting the ability of machine 
learning to uncover clinically relevant patterns.

Clinically, the distinction between clusters 1 and 2 
suggests that specific symptoms, such as fever, rhinitis 
and cough, may be key indicators of disease progression. 
These findings could help refine monitoring strategies, 
particularly in identifying children at risk of prolonged 
illness who may benefit from closer follow-up.

The increased frequency of upper respiratory tract 
symptoms in Omicron-infected children observed in 
our study is consistent with previous reports docu-
menting a shift from lower to upper respiratory involve-
ment.2 4 11 39 This shift may explain the higher incidence 
of croup during the Omicron wave and has implications 
for clinical management, particularly regarding airway 
support in younger children.40

The classification model achieves moderate predic-
tive performance (ROC-AUC=0.78), with age, VOC, 
vaccination status, gender and comorbidities emerging 
as the most influential predictive features. The impact 
of age and comorbidities aligns with previous studies, 
which have identified these factors as key determinants 
of COVID-19 severity.41–43 The lower symptom burden 
observed in vaccinated children aligns with adult studies 
showing reduced systemic symptoms postimmunisation, 
therefore, confirming the role of vaccination in mitigating 
disease severity also in children.44–46 This result highlights 
the importance of ongoing vaccination efforts, especially 
in light of the rapid expansion of SARS-CoV-2 variants 
and sublineages.44–46 Interestingly, influenza vaccination 
emerged as a predicted variable for milder COVID-19, 
suggesting a potential cross-protection of influenza vacci-
nation against COVID-19, as well as a potential enhanced 
effectiveness of dual influenza and COVID-19 seasonal 
vaccination in the paediatric population.47 48 Interest-
ingly, the model demonstrates a tendency to misclassify 
individuals into adjacent severity clusters rather than 
distant ones, reflecting the continuum of disease severity 
rather than discrete categories. This suggests that while 
our model captures relevant clinical patterns, further 
refinement—potentially incorporating additional clin-
ical parameters—could enhance its precision.

Implications and applications
Despite COVID-19 becoming endemic among other 
seasonal respiratory viruses, the risk of new VOCs 
emerging with different virulence and transmissibility 
profiles, potentially leading to more severe cases, still 
persists. This work aids public health preparedness efforts 

Figure 3  The figure presents the results of the explainability analysis using SHAP values: on the left (A) instance-individual 
SHAP values showing the impact on model output (higher risk group output), with importance ranking of the top variables 
and positive SHAP values indicating the feature increases the probability of assignment to higher risk group; on the right 
(B) global features importance based on the mean absolute magnitude of the SHAP values per class. SHAP, SHapley Additive 
exPlanations.
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and clinical decision-making. Furthermore, recent years 
have shown significant changes in the epidemiology and 
clinical presentation of seasonal respiratory viruses, with 
more severe cases of influenza and RSV among older 
children.49 50 In this context, a model that predicts infec-
tion type and progression based on a patient’s profile 
can guide clinical decisions, improving patient manage-
ment and outcomes. As self-diagnosis becomes more 
common, it is crucial to recognise the limitations of self-
diagnosis in terms of specificity and sensitivity, which can 
lead to misdiagnosis. Supplementing testing with clinical 
insights is essential to accurately identifying severity and 
risk profiles. The rise of self-testing also brings the risk 
of overtreatment, especially the overuse of antibiotics, 
which is a global health threat due to antibiotic resist-
ance. A precise risk profile model can support clinicians 
in distinguishing between infections, helping to reduce 
unnecessary antibiotic prescriptions at the community 
level. Moreover, this model could be particularly bene-
ficial in low-income and middle-income countries where 
resources are limited. The ability to classify risk and 
predict disease progression using minimal resources 
can aid healthcare providers in these regions, improving 
patient outcomes.

Strengths and limitations
Using data from a prospective cohort ensured more 
accurate and consistent data collection, limiting 
reporting bias. However, the present work comes 
with some limitations. The framework needs further 
testing on a substantially larger dataset, including the 
integration of socioeconomic information and the 
most severe cases such as hospitalised patients with 
the need for medical care (eg, oxygen, ventilatory 
support). Similar to influenza, given the numerous 
variables that influence the risk of COVID-19 and 
the severity of the resulting illness, confounding is 
a significant issue in studies examining risk factors 
for COVID-19. Key potential confounders in these 
studies include socioeconomic variables such as 
household crowding, education level and income.13 
Nonetheless, despite the limited size of our study 
population, the focus on mild and moderate cases, 
and the missing information on more detailed soci-
oeconomic aspects, we have identified differences 
in clinical manifestations among cases, highlighting 
distinct infection classes.

CONCLUSIONS
This data-driven approach provided different risk 
profile classes of COVID-19 in children using readily 
available information such as clinical history, VOC, 
vaccination status and sociodemographic factors. 
This helps predict the risk profile group for a new 
patient. Overall, our findings highlight the impor-
tance of integrating risk-classification models to 
improve the management of infectious diseases, not 

only for COVID-19 but also for other respiratory infec-
tions. Further research is needed to profile classes 
of COVID-19 severity in children. This approach can 
support public health efforts by providing a clearer 
understanding of disease burden and facilitating 
better resource allocation and patient care strategies.
X Costanza Di Chiara @C_DiChiara_MD

Acknowledgements  The corresponding author would like to thank Dr Bertilla 
Ranzato for her support in patient enrolment. The authors thank all the family 
paediatricians collaborating with the project. The authors thank all families who 
attended the COVID-19 family clusters follow-up Clinic of the University Hospital of 
Padova.

Contributors  SF conceptualised and designed the study, performed the analysis 
and wrote the manuscript. DD performed the patients’ enrolment investigations, 
data curation, interpretation and visualisation and contributed to the writing. 
CG conceptualised and supervised the study and contributed to the writing. 
PP performed the validation and methodology and contributed to the writing. 
MDT performed the validation and methodology and contributed to the writing. 
CDC conceptualised and designed the study, performed the patients’ enrolment 
and investigations, data curation and interpretation, supervised the study and 
contributed to the writing. DP conceptualised and designed the study and 
methodology, supervised the study and contributed to the writing. CDC and DP 
contributed equally as co-last authors. All authors had full access to all the data in 
the study, approved the final manuscript as submitted and accepted responsibility 
for submitting it for publication. CDC and DP are the guarantors of this study and 
take full responsibility for the integrity of the work, from inception to publication. 
Both authors ensure that all aspects of the work, including study design, data 
collection, analysis and interpretation, have been conducted and reported 
accurately and ethically.

Funding  This work is part of the VERDI project (101045989), which is funded by 
the European Union.

Disclaimer  Views and opinions expressed are, however, those of the author(s) only 
and do not necessarily reflect those of the European Union or the European Health 
and Digital Executive Agency. Neither the European Union nor the granting authority 
can be held responsible for them.

Competing interests  None declared.

Patient and public involvement  Patients and/or the public were not involved in 
the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication  Not applicable.

Ethics approval  This study involves human participants. The study protocol was 
approved by the Ethics Committee of the University Hospital of Padova, Italy (Prot. No 
0070714 of 24 November 2020; last amendment Prot. No 0024018 of 4 May 2022). 
Parents/legally authorised representatives were informed of the research proposal 
and provided written consent to participate in the study and use the collected patient 
data. Participants gave informed consent to participate in the study before taking 
part.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available on reasonable request. Requests 
should be made to the corresponding author.

Supplemental material  This content has been supplied by the author(s). It 
has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have 
been peer-reviewed. Any opinions or recommendations discussed are solely 
those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability 
and responsibility arising from any reliance placed on the content. Where the 
content includes any translated material, BMJ does not warrant the accuracy and 
reliability of the translations (including but not limited to local regulations, clinical 
guidelines, terminology, drug names and drug dosages), and is not responsible 
for any error and/or omissions arising from translation and adaptation or 
otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the 
use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

https://x.com/C_DiChiara_MD
http://creativecommons.org/licenses/by-nc/4.0/


10 Fiandrino S, et al. BMJ Public Health 2025;3:e001888. doi:10.1136/bmjph-2024-001888

BMJ Public Health

ORCID iD
Costanza Di Chiara http://orcid.org/0000-0002-3586-0612

REFERENCES
	 1	 Bassi F, Doria M. Diffusion of COVID-19 among children and 

adolescents during the second and third waves of the pandemic in 
Italy. Eur J Pediatr 2022;181:1619–32. 

	 2	 Taytard J, Prevost B, Schnuriger A, et al. SARS-CoV-2 B.1.1.529 
(Omicron) Variant Causes an Unprecedented Surge in Children 
Hospitalizations and Distinct Clinical Presentation Compared 
to the SARS-CoV-2 B.1.617.2 (Delta) Variant. Front Pediatr 
2022;10:932170. 

	 3	 Han MS, Kim KM, Oh KJ, et al. Distinct Clinical and Laboratory 
Features of COVID-19 in Children During the Pre-Delta, Delta and 
Omicron Wave. Pediatr Infect Dis J 2023;42:423–8. 

	 4	 Westerhof I, de Hoog M, Ieven M, et al. The impact of variant and 
vaccination on SARS-CoV-2 symptomatology; three prospective 
household cohorts. Int J Infect Dis 2023;128:140–7. 

	 5	 Curatola A, Ferretti S, Graglia B, et al. COVID-19 increased in Italian 
children in the autumn and winter 2021-2022 period when Omicron 
was the dominant variant. Acta Paediatr 2023;112:290–5. 

	 6	 Wise J. Covid-19: WHO declares end of global health emergency. 
BMJ 2023;381:p1041. 

	 7	 Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of 
the risks of hospitalisation and death associated with SARS-CoV-2 
omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a 
cohort study. Lancet 2022;399:1303–12. 

	 8	 Han L, Shen P, Yan J, et al. Exploring the Clinical Characteristics of 
COVID-19 Clusters Identified Using Factor Analysis of Mixed Data-
Based Cluster Analysis. Front Med (Lausanne) 2021;8:644724. 

	 9	 Quintero AM, Eisner M, Sayegh R, et al. Differences in SARS-
CoV-2 Clinical Manifestations and Disease Severity in Children and 
Adolescents by Infecting Variant. Emerg Infect Dis 2022;28:2270–80. 

	10	 Aiello TF, Puerta-Alcalde P, Chumbita M, et al. Infection with 
the Omicron variant of SARS-CoV-2 is associated with less 
severe disease in hospitalized patients with COVID-19. J Infect 
2022;85:e152–4. 

	11	 Di Chiara C, Boracchini R, Sturniolo G, et al. Clinical features of 
COVID-19 in Italian outpatient children and adolescents during 
Parental, Delta, and Omicron waves: a prospective, observational, 
cohort study. Front Pediatr 2023;11:1193857. 

	12	 Cui X, Zhao Z, Zhang T, et al. A systematic review and meta-analysis 
of children with coronavirus disease 2019 (COVID-19). J Med Virol 
2021;93:1057–69. 

	13	 Gordon A, Reingold A. The Burden of Influenza: a Complex Problem. 
Curr Epidemiol Rep 2018;5:1–9. 

	14	 Di Chiara C, Cantarutti A, Costenaro P, et al. Long-term Immune 
Response to SARS-CoV-2 Infection Among Children and Adults 
After Mild Infection. JAMA Netw Open 2022;5:e2221616. 

	15	 Woodruff RC, Campbell AP, Taylor CA, et al. Risk Factors for Severe 
COVID-19 in Children. Pediatrics 2022;149:e2021053418. 

	16	 Graff K, Smith C, Silveira L, et al. Risk Factors for Severe COVID-19 
in Children. Pediatr Infect Dis J 2021;40:e137–45. 

	17	 Farrar DS, Drouin O, Moore Hepburn C, et al. Risk factors for 
severe COVID-19 in hospitalized children in Canada: A national 
prospective study from March 2020-May 2021. Lancet Reg Health 
Am 2022;15:100337. 

	18	 Please provide reference 18.
	19	 Agenzia Italiana del Farmaco. AIFA approva l’utilizzo del vaccino 

comirnaty per la fascia di età 12-15 anni. n.d. Available: https://
www.aifa.gov.it/-/aifa-approva-l-utilizzo-del-vaccino-comirnaty-per-​
la-fascia-di-et%C3%A0-12-15-anni

	20	 Agenzia Italiana del Farmaco. AIFA approva il vaccino comirnaty per 
la fascia di età 5-11 anni. n.d. Available: https://www.aifa.gov.it/-/​
aifa-approva-il-vaccino-comirnaty-per-la-fascia-di-et%C3%A0-5-​
11-anni

	21	 Talabis MR, et al. Analytics defined. In: Information Security 
Analytics. Boston: Syngress, 2015: 1–12.

	22	 Chaturvedi A, Green PE, Caroll JD. K-modes Clustering. J of 
Classification 2001;18:35–55. 

	23	 Goyal M. Granth Sahib World University Fatehgarh Sahib, India. A 
review on K-mode clustering algorithm. Int J Adv Res Comput Sci 
2017;725–9. 

	24	 Huang Z, Ng MK. A Note on K-modes Clustering. J Classif 
2003;20:257–61. 

	25	 Bholowalia P, Kumar A. EBK-means: A clustering technique 
based on elbow method and k-means in WSN. Int J Comput Appl 
2014;105.

	26	 Breiman L. Random forests. Mach Learn 2001;45:5–32. 
	27	 Robnik-Šikonja M. Improving random forests. In: Machine Learning: 

ECML 2004. Berlin, Heidelberg: Springer, 2004: 359–70.
	28	 Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: Synthetic Minority 

Over-sampling Technique. jair 2002;16:321–57. 
	29	 Lundberg S, Lee SI. A unified approach to interpreting model 

predictions. arXiv; 2017.
	30	 Rodríguez-Pérez R, Bajorath J. Interpretation of machine learning 

models using shapley values: application to compound potency 
and multi-target activity predictions. J Comput Aided Mol Des 
2020;34:1013–26. 

	31	 Lundberg SM, Erion G, Lee SI. Consistent individualized feature 
attribution for tree ensembles. 2018;arXiv.

	32	 Smith M, Alvarez F. Identifying mortality factors from Machine 
Learning using Shapley values - a case of COVID19. Expert Syst 
Appl 2021;176:114832. 

	33	 Laatifi M, Douzi S, Ezzine H, et al. Explanatory predictive model 
for COVID-19 severity risk employing machine learning, shapley 
addition, and LIME. Sci Rep 2023;13:5481. 

	34	 Rajwa B, Naved MMA, Adibuzzaman M, et al. Identification of 
predictive patient characteristics for assessing the probability of 
COVID-19 in-hospital mortality. PLOS Digit Health 2024;3:e0000327. 

	35	 Cavallaro M, Moiz H, Keeling MJ, et al. Contrasting factors 
associated with COVID-19-related ICU admission and death 
outcomes in hospitalised patients by means of Shapley values. 
PLoS Comput Biol 2021;17:e1009121. 

	36	 Duckworth C, Chmiel FP, Burns DK, et al. Using explainable machine 
learning to characterise data drift and detect emergent health risks 
for emergency department admissions during COVID-19. Sci Rep 
2021;11:23017. 

	37	 Ikram M, Shaikh NF, Vishwanatha JK, et al. Leading Predictors of 
COVID-19-Related Poor Mental Health in Adult Asian Indians: An 
Application of Extreme Gradient Boosting and Shapley Additive 
Explanations. Int J Environ Res Public Health 2022;20:775. 

	38	 Ma S, Tourani E. Predictive and causal implications of using shapley 
value for model interpretation. In: Proceedings of the 2020 KDD 
Workshop on Causal Discovery. PMLR; 2020:23–38. Available: 
https://proceedings.mlr.press/v127/ma20a.html

	39	 Tagarro A, Coya O-N, Pérez-Villena A, et al. Features of COVID-19 in 
Children During the Omicron Wave Compared With Previous Waves 
in Madrid, Spain. Pediatr Infect Dis J 2022;41:e249–51. 

	40	 Shoji K, Akiyama T, Tsuzuki S, et al. Clinical characteristics of 
COVID-19 in hospitalized children during the Omicron variant 
predominant period. J Infect Chemother 2022;28:1531–5. 

	41	 Barek MA, Aziz MA, Islam MS. Impact of age, sex, comorbidities 
and clinical symptoms on the severity of COVID-19 cases: A meta-
analysis with 55 studies and 10014 cases. Heliyon 2020;6:e05684. 

	42	 Chen A, Huang J-X, Liao Y, et al. Differences in Clinical and Imaging 
Presentation of Pediatric Patients with COVID-19 in Comparison 
with Adults. Radiol Cardiothorac Imaging 2020;2:e200117. 

	43	 Ludvigsson JF. Systematic review of COVID-19 in children shows 
milder cases and a better prognosis than adults. Acta Paediatr 
2020;109:1088–95. 

	44	 Trevisan C, Noale M, Prinelli F, et al. Age-Related Changes in Clinical 
Presentation of Covid-19: the EPICOVID19 Web-Based Survey. Eur J 
Intern Med 2021;86:41–7. 

	45	 Xue FX, Shen KL. COVID-19 in children and the importance of 
COVID-19 vaccination. World J Pediatr 2021;17:462–6. 

	46	 Zimmermann P, Pittet LF, Finn A, et al. Should children be vaccinated 
against COVID-19? Arch Dis Child 2022;107:e1:e1–8:. 

	47	 Xie Z, Hamadi HY, Mainous AG, et al. Association of dual COVID-19 
and seasonal influenza vaccination with COVID-19 infection and 
disease severity. Vaccine (Auckl) 2023;41:875–8. 

	48	 Del Riccio M, Lorini C, Bonaccorsi G, et al. The Association between 
Influenza Vaccination and the Risk of SARS-CoV-2 Infection, Severe 
Illness, and Death: A Systematic Review of the Literature. Int J 
Environ Res Public Health 2020;17:7870. 

	49	 European Centre for Disease Prevention and Control. Intensified 
circulation of respiratory syncytial virus (rsv) and associated hospital 
burden in the eu/eea. 2022 Available: https://www.ecdc.europa.eu/​
en/publications-data/intensified-circulation-respiratory-syncytial-​
virus-rsv-and-associated-hospital

	50	 Tokars JI, Olsen SJ, Reed C. Seasonal Incidence of Symptomatic 
Influenza in the United States. Clin Infect Dis 2018;66:1511–8. 

http://orcid.org/0000-0002-3586-0612
http://dx.doi.org/10.1007/s00431-021-04330-6
http://dx.doi.org/10.3389/fped.2022.932170
http://dx.doi.org/10.1097/INF.0000000000003872
http://dx.doi.org/10.1016/j.ijid.2022.12.018
http://dx.doi.org/10.1111/apa.16576
http://dx.doi.org/10.1136/bmj.p1041
http://dx.doi.org/10.1016/S0140-6736(22)00462-7
http://dx.doi.org/10.3389/fmed.2021.644724
http://dx.doi.org/10.3201/eid2811.220577
http://dx.doi.org/10.1016/j.jinf.2022.07.029
http://dx.doi.org/10.3389/fped.2023.1193857
http://dx.doi.org/10.1002/jmv.26398
http://dx.doi.org/10.1007/s40471-018-0136-1
http://dx.doi.org/10.1001/jamanetworkopen.2022.21616
http://dx.doi.org/10.1542/peds.2021-053418
http://dx.doi.org/10.1097/INF.0000000000003043
http://dx.doi.org/10.1016/j.lana.2022.100337
http://dx.doi.org/10.1016/j.lana.2022.100337
https://www.aifa.gov.it/-/aifa-approva-l-utilizzo-del-vaccino-comirnaty-per-la-fascia-di-et%C3%A0-12-15-anni
https://www.aifa.gov.it/-/aifa-approva-l-utilizzo-del-vaccino-comirnaty-per-la-fascia-di-et%C3%A0-12-15-anni
https://www.aifa.gov.it/-/aifa-approva-l-utilizzo-del-vaccino-comirnaty-per-la-fascia-di-et%C3%A0-12-15-anni
https://www.aifa.gov.it/-/aifa-approva-il-vaccino-comirnaty-per-la-fascia-di-et%C3%A0-5-11-anni
https://www.aifa.gov.it/-/aifa-approva-il-vaccino-comirnaty-per-la-fascia-di-et%C3%A0-5-11-anni
https://www.aifa.gov.it/-/aifa-approva-il-vaccino-comirnaty-per-la-fascia-di-et%C3%A0-5-11-anni
http://dx.doi.org/10.1007/s00357-001-0004-3
http://dx.doi.org/10.1007/s00357-001-0004-3
http://dx.doi.org/10.26483/ijarcs.v8i7.4301
http://dx.doi.org/10.1007/s00357-003-0014-4
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/s10822-020-00314-0
http://dx.doi.org/10.1016/j.eswa.2021.114832
http://dx.doi.org/10.1016/j.eswa.2021.114832
http://dx.doi.org/10.1038/s41598-023-31542-7
http://dx.doi.org/10.1371/journal.pdig.0000327
http://dx.doi.org/10.1371/journal.pcbi.1009121
http://dx.doi.org/10.1038/s41598-021-02481-y
http://dx.doi.org/10.3390/ijerph20010775
https://proceedings.mlr.press/v127/ma20a.html
http://dx.doi.org/10.1097/INF.0000000000003482
http://dx.doi.org/10.1016/j.jiac.2022.08.004
http://dx.doi.org/10.1016/j.heliyon.2020.e05684
http://dx.doi.org/10.1148/ryct.2020200117
http://dx.doi.org/10.1111/apa.15270
http://dx.doi.org/10.1016/j.ejim.2021.01.028
http://dx.doi.org/10.1016/j.ejim.2021.01.028
http://dx.doi.org/10.1007/s12519-021-00466-5
http://dx.doi.org/10.1136/archdischild-2021-323040
http://dx.doi.org/10.1016/j.vaccine.2022.12.043
http://dx.doi.org/10.3390/ijerph17217870
http://dx.doi.org/10.3390/ijerph17217870
https://www.ecdc.europa.eu/en/publications-data/intensified-circulation-respiratory-syncytial-virus-rsv-and-associated-hospital
https://www.ecdc.europa.eu/en/publications-data/intensified-circulation-respiratory-syncytial-virus-rsv-and-associated-hospital
https://www.ecdc.europa.eu/en/publications-data/intensified-circulation-respiratory-syncytial-virus-rsv-and-associated-hospital
http://dx.doi.org/10.1093/cid/cix1060

	Clinical characteristics of COVID-­19 in children and adolescents: insights from an Italian paediatric﻿﻿ cohort using a machine-­learning approach
	Abstract
	Introduction﻿﻿
	Method
	Dataset description
	Variables definition
	Study population
	Unsupervised clustering
	Classification model
	Explainability

	Results
	﻿﻿Characterisation﻿﻿ of clusters attributes
	Classification process
	Explanation of predicted variables

	Discussion
	Implications and applications
	Strengths and limitations

	Conclusions
	References


