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Abstract: Molecular analyses of normal and diseased cells give insight into changes in gene expres-
sion and help in understanding the background of pathophysiological processes. Years after cDNA
microarrays were established in research, RNA sequencing (RNA-seq) became a key method of quan-
titatively measuring the transcriptome. In this study, we compared the detection of genes by each of
the transcriptome analysis methods: cDNA array, quantitative RT-PCR, and RNA-seq. As expected,
we found differences in the gene expression profiles of the aforementioned techniques. Here, we
present selected genes that exemplarily demonstrate the observed differences and calculations to
reveal that a strong RNA secondary structure, as well as sample preparation, can affect RNA-seq. In
summary, this study addresses an important issue with a strong impact on gene expression analysis
in general. Therefore, we suggest that these findings need to be considered when dealing with data
from transcriptome analyses.

Keywords: transcriptome analysis; RNA sequencing; cDNA microarray; qRT-PCR; secondary struc-
ture; free energy of the RNA secondary structure

1. Introduction

To examine the expression of individual genes, quantitative RT-PCR (qRT-PCR) is a
widely used method. However, in the past, it became more and more important to analyze
the complete transcriptome within cells in an unselected manner for an in-depth under-
standing of, e.g., development and disease [1]. Starting in 1995, microarrays were used
as a standard method for analyzing parts of the transcriptome, until 2008, when the next-
generation sequencing method, RNA-sequencing (RNA-seq), revolutionized research [2].

DNA microarray analyses, which are based on the hybridization of fluorescently
labeled probes, require a reference genome/transcriptome for designing the microarray
probes. Therefore, cDNA microarrays are dependent on the choice of probes and their
binding specificity. Here, background signals and cross-hybridization can reduce the
specificity and sensitivity for some genes, which can lead to pitfalls and misallocations
during an analysis [3–7].

Due to these limitations of microarrays and the advantages of RNA-seq, such as cost
reduction through massively parallel sequencing, a shift from cDNA array analysis to
RNA-seq experiments has been observed in recent years [1,2,8,9]. Nowadays, RNA-seq
is a frequently used method with increasing importance for studying differential gene
expression, analyzing alternative splicing, and identifying novel RNA species [7,10,11].
Moreover, this technique enables a wider dynamic range for detection and provides less
background noise [7]. Despite all of its advantages, RNA-seq is still a technology that is
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in development, and its challenging aspects range from sample preparation (fragmenta-
tion method, size selection, library construction) to computational analysis (alignment,
quantification, filtering, and normalization), which have a great impact on the overall final
results [10,12].

Generally, transcriptome analyses, especially of large sample sets, are usually per-
formed with the newest and most advanced methods. Hardly ever is the same sample set
analyzed with both methods in parallel. So far, only a few comparisons that indicate possi-
ble discrepancies between the different methods for transcriptome analyses exist [13,14].

In this study, we compared the detection of two groups of genes (the SOX gene family
and YAP/TAZ effectors of the Hippo pathway) in various melanoma cell lines with different
transcriptome analysis methods—cDNA array, RNA-seq, and classical quantitative RT-
PCR—and revealed striking differences in gene detection. When comparing the expression
analysis results using these techniques, we observed that some genes were detectable
with qRT-PCR and cDNA arrays, but not with RNA-seq, and vice versa. In this study, we
focused on analyzing the loss of information within RNA-seq and, therefore, compared
our transcriptome data in different melanoma cell lines with the qRT-PCR and cDNA
microarray data, as well as with datasets from different research groups. Our results
demonstrate the urgent need for an in-depth understanding regarding RNA-seq data and
the related methodological challenges, and we show that there are variances in outcomes
with different processing methods.

We herewith suggest that the results of one methodology, which may be state of the art,
should always be validated with a second methodology with regard to the experimental setting.

2. Results and Discussion
2.1. Correlation of RNA-Seq and cDNA Microarrays

In recent years, several groups, such as Fu et al. or Zhao et al., to name a few,
developed algorithms for comparing transcriptome data from microarray analyses and
RNA-seq [15,16]. In this study, however, we do not intend to present an algorithm for
the direct comparison of microarray fluorescence signals with read counts from RNA-seq,
but rather to point out, in general, that the two methods can reveal discrepancies for the
detection of individual genes.

To define the main variations between the results of a cDNA microarray (cDNA array)
and RNA-seq, we first analyzed the differences in gene expression obtained by these
two methods exemplarily based on melanoma cell lines. We compared the transcriptome
analysis results (Supplementary Tables S1 and S2) and performed correlation analyses,
which are illustrated as scatter plots (Figure 1). We determined that the gene expression
in the melanoma cell line Mel Im was only detectable with RNA-seq, which was expected
due to its methodological advantages with respect to microarray analysis (Figure 1A).
Surprisingly, we also found genes that were only detectable with microarray analysis,
but not with RNA-seq (Figure 1A, Supplementary Table S3). To demonstrate that this
observation is not specific to the cell line, we compared the transcriptome data for another
melanoma cell line, Mel Juso (Figure 1B, Supplementary Table S3). Here, there were also
genes that were detectable with one method and not with the other transcriptome analyses.
In previous studies focusing on the analysis of gene expression with different methods, the
loss of gene detection with RNA-seq was not described [13,14]. Due to the unexpected result
that genes were not found within the RNA-seq data, but were detectable with the cDNA
array analysis, we confirmed our findings by comparing the gene expression observed
with microarray or RNA-seq by focusing on individual genes (Figure 1, red label). (The
reverse analysis of genes detected with RNA-seq that were not found with the microarray
was neglected because of the specific choice of genes analyzed in the microarray.)
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Figure 1. Scatter plots depicting the detected genes measured with two different methods for transcriptome analysis, 
shown for the melanoma cell line Mel Im in (A) and Mel Juso in (B). The measured signals with log2 are depicted as plots 
for each gene. The light gray color shows genes that were measured with both methods, the dark gray color shows genes 
that were not detected (n.d.) with microarray analysis, and the black dots depict genes that were not detected with 
RNA-seq (genes that were not detected by RNA-seq are listed in Supplementary Table S3). The blue line represents the 
Spearman correlation between genes that were detected with both methods. The genes named within the plots (labeled in 
red) are further discussed within the following text. Statistical analysis was performed using R. 

2.2. Analysis of the Loss of SOX Genes with RNA-Seq 
Next, we aimed to identify the possible causes of the observed loss of some of the 
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the housekeepers (glyceraldehyde-3-phosphate dehydrogenase (GAPDH), gamma-actin1 
(ACTG1)), which were similarly expressed in each method, cell line, and dataset 
(GAPDH: Figure 2A; ACTG1: Supplementary Figure S1A). In the following, we focus on 
the SOX (=SRY-related HMG-box) family members, especially SOX21. We were able to 
detect SOX21 with the cDNA array; however, we observed no read counts with RNA-seq 
(Figure 2A, Supplementary Tables S4 and S5). Additionally, we showed these results for 
further cell lines to demonstrate their independence of the melanoma cell line and 
consistency across different array and RNA-seq datasets (Supplementary Figure S1A; 
Supplementary Tables S1, S2, S4, S5). To underline the expression of SOX21 within the 
melanoma cell lines and support the microarray data, we analyzed SOX21 on the mRNA 
(qRT-PCR) (Figure 2B) and protein (Western blot) levels (Figure 2C) and, therefore, 
confirmed its expression in melanoma cell lines. 

Further, we performed qRT-PCR analyses to determine whether the loss of SOX21 in 
RNA-seq data was due to the library preparation, the mapping algorithm (STAR 
alignment software v2.5.2a, [17]), or the sequencing process [17]. We used samples 
produced from RNA with a standard cDNA preparation protocol and compared them 
with samples used for RNA-seq analysis after enrichment through PCR and ligation of 
the adapters (“library” or “library sample”; detailed description: Methods and 
Materials—Analysis of Gene Expression with Quantitative Real-Time PCR; Figure 2D). 
Corresponding to the RNA-seq data and in contrast to cDNA, the qRT-PCR 
quantification of the prepared library samples showed no results for SOX21 for the 
exemplarily used cell lines, indicating that SOX21 was lost during the sample 
preparation for RNA-seq. To confirm this observation, we searched for two specific 
SOX21 patterns (TACATGATCCCGTGCAACTG, TTAACCTTTATGTGTAAATG) in the 
raw RNA-seq fastq files, allowing up to three mismatches. The SOX21 pattern search 
yielded no hits with up to one mismatch. Random hits started to accumulate with two or 
more mismatches. A GAPDH pattern served as a positive control and yielded numerous 

Figure 1. Scatter plots depicting the detected genes measured with two different methods for transcriptome analysis, shown
for the melanoma cell line Mel Im in (A) and Mel Juso in (B). The measured signals with log2 are depicted as plots for each
gene. The light gray color shows genes that were measured with both methods, the dark gray color shows genes that
were not detected (n.d.) with microarray analysis, and the black dots depict genes that were not detected with RNA-seq
(genes that were not detected by RNA-seq are listed in Supplementary Table S3). The blue line represents the Spearman
correlation between genes that were detected with both methods. The genes named within the plots (labeled in red) are
further discussed within the following text. Statistical analysis was performed using R.

2.2. Analysis of the Loss of SOX Genes with RNA-Seq

Next, we aimed to identify the possible causes of the observed loss of some of the
aforementioned genes (Figure 1A,B, labeled in red). We first analyzed the expression of the
housekeepers (glyceraldehyde-3-phosphate dehydrogenase (GAPDH), gamma-actin1 (ACTG1)),
which were similarly expressed in each method, cell line, and dataset (GAPDH: Figure 2A;
ACTG1: Supplementary Figure S1A). In the following, we focus on the SOX (=SRY-related
HMG-box) family members, especially SOX21. We were able to detect SOX21 with the
cDNA array; however, we observed no read counts with RNA-seq (Figure 2A, Supple-
mentary Tables S4 and S5). Additionally, we showed these results for further cell lines to
demonstrate their independence of the melanoma cell line and consistency across different
array and RNA-seq datasets (Supplementary Figure S1A; Supplementary Tables S1, S2, S4
and S5). To underline the expression of SOX21 within the melanoma cell lines and support
the microarray data, we analyzed SOX21 on the mRNA (qRT-PCR) (Figure 2B) and protein
(Western blot) levels (Figure 2C) and, therefore, confirmed its expression in melanoma
cell lines.

Further, we performed qRT-PCR analyses to determine whether the loss of SOX21 in
RNA-seq data was due to the library preparation, the mapping algorithm (STAR alignment
software v2.5.2a, [17]), or the sequencing process [17]. We used samples produced from
RNA with a standard cDNA preparation protocol and compared them with samples used
for RNA-seq analysis after enrichment through PCR and ligation of the adapters (“library”
or “library sample”; detailed description: Methods and Materials—Analysis of Gene Ex-
pression with Quantitative Real-Time PCR; Figure 2D). Corresponding to the RNA-seq
data and in contrast to cDNA, the qRT-PCR quantification of the prepared library samples
showed no results for SOX21 for the exemplarily used cell lines, indicating that SOX21 was
lost during the sample preparation for RNA-seq. To confirm this observation, we searched
for two specific SOX21 patterns (TACATGATCCCGTGCAACTG, TTAACCTTTATGTG-
TAAATG) in the raw RNA-seq fastq files, allowing up to three mismatches. The SOX21
pattern search yielded no hits with up to one mismatch. Random hits started to accumulate
with two or more mismatches. A GAPDH pattern served as a positive control and yielded
numerous hits with no mismatches. Thus, we can exclude that the detected loss of SOX21
read counts was a mapping artifact (Figure 2E).
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(A) Evaluation of the raw data from transcriptome analysis with a cDNA microarray (green, Supplementary Table S4) 
and RNA-seq (blue, Supplementary Table S5) for GAPDH and SOX21. (B) Expression analysis of SOX21 mRNA with 
qRT-PCR in different melanoma cell lines. (C) Western blot analysis revealing the SOX21 protein levels in human 
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shown for the GAPDH and two SOX21 patterns for the Mel Im, Mel Wei, and Mel Juso cell lines. Both paired-end fastq files 
per cell line were used for the pattern search. (F) Evaluation of the microarray fluorescence signal for further SOX genes 
relative to GAPDH based on cDNA array data (Supplementary Table S4). (G) Representation of the normalized RNA-seq 
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Figure 2. Comparison of cDNA microarray analysis with RNA-seq and qRT-PCR measurements for different SOX genes.
(A) Evaluation of the raw data from transcriptome analysis with a cDNA microarray (green, Supplementary Table S4) and
RNA-seq (blue, Supplementary Table S5) for GAPDH and SOX21. (B) Expression analysis of SOX21 mRNA with qRT-PCR
in different melanoma cell lines. (C) Western blot analysis revealing the SOX21 protein levels in human melanoma cell lines.
(D) Exemplary analysis of SOX21 mRNA expression in cDNA and library samples with qRT-PCR for two melanoma cell
lines (Mel Juso, Mel Wei). (E) The absolute numbers of pattern matches with no mismatches are shown for the GAPDH and
two SOX21 patterns for the Mel Im, Mel Wei, and Mel Juso cell lines. Both paired-end fastq files per cell line were used for the
pattern search. (F) Evaluation of the microarray fluorescence signal for further SOX genes relative to GAPDH based on
cDNA array data (Supplementary Table S4). (G) Representation of the normalized RNA-seq read counts for further SOX
genes relative to GAPDH (Supplementary Table S5). (H) Comparison of qRT-PCR measurements for further SOX genes of
cDNA and library samples analogous to Figure 2D. For all analyses (A–H), at least two different melanoma cell lines were
used with three biological replicates. GAPDH was used as an internal control for each transcriptome method and cell line
separately. The dot and box plots show the mean ± SEM.

To investigate whether the loss of detection was observed for the whole SOX family,
we chose additional SOX genes (SOX2, SOX3, SOX4, and SOX11) and compared the cDNA
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array data (Supplementary Table S4) with the RNA-seq read counts (Supplementary Ta-
ble S5) relative to GAPDH. All of the SOX genes showed a positive signal with the cDNA
microarray gene expression analysis (Figure 2F). Interestingly, the RNA-seq experiments
resulted in no read counts for SOX3 and SOX11, while SOX2 and SOX4 showed a com-
parable expression in RNA-seq to that observed in the cDNA arrays (Figure 2G). This
was already visible within the comparison of the transcriptome data from the microarray
and RNA-seq analysis (Figure 1A,B, red label) and was further confirmed in another tran-
scriptome analysis dataset (Supplementary Figure S1B,C). We additionally quantified the
mRNA levels of these SOX genes with qRT-PCR from cDNA in comparison with prepared
library samples (Figure 2H) and observed the same aforementioned loss in our RNA-seq
library samples. We were able to detect fluorescence signals for all of the investigated
SOX genes through the microarray analysis, and we were able to quantify the cDNA
expression levels; however, no RNA-seq reads were found for SOX3 or SOX11, and no
amplification was observed when analyzing the respective library samples with qRT-PCR.
We also compared the cDNA array (Supplementary Figure S2A) and the RNA-seq data for
the entire SOX gene family (Supplementary Figure S2B) and demonstrated that there were
genes in addition to SOX21, SOX3, and SOX11 within the SOX family that could not be
detected with RNA-seq, but resulted in a fluorescence signal in the microarray analysis.

2.3. Analysis of Further Genes through Transcriptome Analysis

To rule out that the observed loss of gene information was mainly associated with
SOX-transcription factors, we further analyzed YAP1 (yes-associated protein 1) and TAZ
(transcriptional co-activator with PDZ-binding motif ) within the datasets. Therefore, we
analyzed the fluorescence signals detected with the microarray analysis for YAP1 and
TAZ (Figure 3A) and the read counts measured with RNA-seq for both genes (Figure 3B).
We were able to detect both genes with both methods (Figure 3A,B). These results were
again independent of the housekeeper and were demonstrated in parallel for ACTG1
within two different datasets of transcriptome analyses for each method (Supplementary
Figure S1D,E). The microarray data indicate that genes that have generally lower detection
signals (Figure 3A and Figure S1D) are potentially more difficult to detect with RNA-seq
(Figure 3B and Figure S1E).

In addition, the effect of genes that are undetectable or difficult to detect with RNA-seq
was not only observed for transcription factors, as shown in Figure 1A,B (black dots: n.d.
RNA-seq) and the corresponding Supplementary Table S3, but also for S100A7, which is
known in the literature to be expressed in melanoma, as well as chemokine 5 (CXCL5), just
to name a few [18–20].

2.4. Discussion of Possible Causes of Gene Loss

After demonstrating the loss of information by comparing the results of RNA-seq,
microarrays, and qRT-PCR based on various examples and independent of the cell line
and housekeeper, we aimed to understand the underlying causes for why certain genes
are more difficult to detect or are not detectable with RNA-seq. First, we focused on the
GC content, which could make it challenging to identify the genes investigated in this
study. Price A. et al. (2017) discussed this before and observed a relationship between a
varying GC content, local RNA secondary structure, and read depth [21]. However, linking
the GC content to the detection of the genes of interest did not lead to conclusive results.
We could not see any dependence of the GC content on the detectable or undetectable
genes with RNA-seq (Supplementary Table S6). Because RNA directly reaches its folded
state after synthesis, we further focused on the secondary structure of the RNA [22]. Here,
we used a thermodynamic structure prediction tool to predict the minimum free-energy
structures and base-pair probabilities from single RNA sequences according to the Zuker
algorithm [23]. We calculated the total of the quotient out of the minimum free energy of
the mRNA secondary structure and the number of nucleotides of each RNA sequence to
adjust to the mRNA length (Supplementary Table S6). These additional analyses showed
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a lower quotient for detectable genes (Figure 3C, blue dots) and a higher quotient for
undetectable genes (Figure 3C, red dots). This led to the assumption that the secondary
structure could be one of the main criteria for the accessibility of the RNA for further
processing steps and, consequently, for a successful RNA sequencing approach.
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Figure 3. Detection of genes using transcriptome analysis. (A) Analysis of the microarray fluorescence signals of YAP1
and TAZ (Supplementary Table S4) relative to GAPDH within three different cell lines. (B) YAP1 and TAZ detection with
RNA-seq (Supplementary Table S5) normalized for each cell line to GAPDH. (C) Trend for genes that are detectable by using
RNA-seq (blue dots) as a function of the |free energy| divided by the RNA length. Undetectable genes via RNA-seq are
illustrated as red dots. (D) Analysis of the microarray data from Hoek et al. (GSE4845 GPL570) for some genes of interest.
(E) Analysis of RNA-seq datasets of mechanically fragmented RNA samples (SOX3 mean value: 0.88 × 10−3) from Kunz
et al. (GSE112509). GAPDH was used for normalization. The box plots show the mean ± SEM.

For the processing, library preparation, and subsequent sequencing, RNA molecules
must initially be sheared into smaller pieces to be compatible with most deep sequencing
technologies, such as RNA-seq [1]. There are two options for RNA shearing: chemical and
mechanical [7,24]. Chemical shearing includes shearing with enzymes (RNase III), alkaline
solutions, or divalent cations (Mg++, Zn++) with incubation at an elevated temperature (70
to 95 ◦C), while mechanical shearing comprises acoustic shearing (nebulization, sonifica-
tion) [7,24,25]. It is possible that different processing methods are differently affected by
the RNA secondary structure [7].

2.5. Analysis of Mechanically Sheared RNA-Seq Datasets

To exclude that the described observations only apply to our datasets, we analyzed
already published RNA-seq data from Kunz et al. (accessible NCBI Gene Expression
Omnibus (GEO), GEO Series GSE112509, melanoma tissue) and the cDNA microarray data
from Hoek et al. (GEO Series accession GSE4845 GPL570, melanoma cell lines) [26,27],
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keeping in mind that comparing expression data obtained in different laboratories and
using different biological materials can also yield discrepancies. Differently from our enzy-
matic shearing approach, the samples of Kunz et al. were preprocessed through mechanical
shearing [26]. Due to the fact that Kunz et al. used melanoma tissue in an independent
study, this comparison with our datasets only gives an approximation of the difference
between the two fragmentation methods. Interestingly, the published analysis results of
both the microarray (Figure 3D, Hoek et al. [27]) and RNA-seq (Figure 3E, Kunz et al. [26])
showed a different output concerning the genes of interest compared to the data analysis
of our RNA-seq approach. Here, the expression of all genes of interest (SOX2, SOX3,
SOX4, SOX11, SOX21, YAP1, and TAZ) could be determined with RNA-seq. We further
investigated YAP1 and TAZ and, in comparison with our data, were able to detect both
genes through mechanical RNA sample processing (Figure 3E). We further analyzed the
whole SOX gene family for the microarray analysis and RNA-seq of the datasets from Hoek
et al. (Supplementary Figure S2C) and Kunz et al. (Supplementary Figure S2D), respec-
tively [26,27]. By comparing the RNA-seq detection of the SOX-gene family with different
fragmentation methods, it became clear that several genes remained measurable during
mechanical processing (Supplementary Figure S2D) compared to chemical fragmentation
(Supplementary Figure S2B). Therefore, it seems that chemical shearing is less effective
for highly structured RNA, and there are differences within the outputs of RNA-seq with
different fragmentation methods. However, this assumption remains to be verified for
melanoma cell lines that are preprocessed through mechanical shearing, as the effects of
other factors (such as the different biological materials used) must be kept in mind.

Consequently, as described by Griffith M. et al., the RNA-seq method is still an area
under development, and changing experimental design parameters can have significant
impacts on the strategy of the analysis and on the results [28]. This is also demonstrated by
the possibility of using different kits from various suppliers for sample/library preparation.
In summary, when using different datasets generated by different groups (e.g., provided
on NCBI GEO), it is important to pay attention to the sample/library preparation and data
generation, as well as to confirm the results with another method—e.g., qRT-PCR.

3. Materials and Methods
3.1. Cell Lines and Culture Conditions

Human melanoma cell lines (501 Mel, A375, Mel Ei, Mel Ho, Mel Im, Mel Juso, and
Mel Wei) were described previously [29–31]. The human cell lines Mel Ei, Mel Ho, Mel Im,
Mel Juso, and Mel Wei were provided by Dr. Judith Johnson (LMU, Munich, Germany).
A375 cells (CRL-1619) were obtained from ATCC and 501Mel cells were provided by Dr.
Ruth Halaban (Department of Dermatology, Yale University School of Medicine, New
Haven, CT, USA). Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with penicillin (400 units·mL−1), streptomycin (50 mg·mL−1), and 10% fetal
calf serum (FCS; Sigma Aldrich, St. Louis, MO, USA). For the melanoma cell lines 501 Mel,
Mel Ho, and Mel Juso, Roswell Park Memorial Institute (RPMI) 1640 medium with NaHCO3
was used with the same supplements. All cell lines were split at a ratio 1:5 on every 3rd
day and were incubated at 37 ◦C in a humidified atmosphere containing 8% CO2. The
cell lines Mel Im and Mel Juso were analyzed with both RNA-seq and a cDNA microarray
(see Sections 3.4 and 3.5). WM3211, WM1366, and WM793, which were analyzed within
a second dataset for RNA sequencing, were previously described and provided by Dr.
Meenhard Herlyn (Wistar Institute, Philadelphia, PA, USA) [32]. These Wistar cell lines
were maintained in a culture medium consisting of MCDB153 (Sigma Aldrich) with 20%
Leibovitz’s L-15 (PAA Laboratories, Pasching, Austria), 2% FCS, 1.68 mM CaCl2 (Sigma
Aldrich), and 5 µg·mL−1 insulin (Sigma Aldrich), and they were incubated at 37 ◦C in an
atmosphere containing 5% CO2.
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3.2. Protein Analysis (Western Blotting)

Cell lysates were prepared as described; 30 µg was loaded per lane, separated on
a 12.75% sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-page) gel,
and blotted onto a polyvinylidene difluoride (PVDF) membrane (Bio-Rad) [33]. After
blocking for 1 h with 5% bovine serum albumin solved in tris-buffered saline with Tween20
(BSA/TBS-T), the membrane was incubated at 4 ◦C overnight with one of the following
antibodies: anti-SOX21 antibody (1:2000; AMAB91311; Sigma Aldrich) or anti-GAPDH
(1:1000; #2118; Cell Signaling Technology, Danvers, MA, USA). After three steps of washing
with TBS-T, the membrane was incubated for 1 h at room temperature with a horseradish
peroxidase-coupled secondary anti-mouse or anti-rabbit antibody at 1:2000 dilution in
TBS-T. After washing again, the staining was performed by using the ECL Plus Western
Blotting Detection Kit (GE Healthcare Life Science Europe GmbH, Freiburg, Germany),
and luminescence was measured with the Intas ECL chemocam imager.

3.3. Analysis of Gene Expression with Quantitative Real-Time PCR (qRT-PCR)

Isolation of total cellular RNA was performed using the E.N.Z.A. MicroElute Total
RNA Kit (Omega Bio-Tek, VWR, Darmstadt, Germany) as described by the manufacturers.
cDNA was generated as previously described through the use of 500 ng RNA [34]. The
description “library sample” or “library” was used to designate RNA samples that were
prepared for RNA-seq analysis according to the manufacturer’s instructions (Illumina,
Inc., San Diego, CA, USA); they contained ligated adapters and were enriched through
PCR. Therefore, 1 µL out of a 1:10 dilution of these enriched library samples was used for
analysis with qRT-PCR. The qRT-PCR analysis was performed on a LightCycler® 480 II
system (Roche, Rotkreuz, Switzerland) as described before, and it was performed with
specific sets of primers (Table 1) [35]. GAPDH was used for normalization. For each gene
analysis, the length of the LightCycler product was chosen to be nearly identical to the
product length of the housekeeper GAPDH. Therefore, two different GAPDH primers were
required for normalization. For all qRT-PCR analyses, at least two different melanoma cell
lines were used with three biological replicates.

Table 1. Oligonucleotide sequences for the qRT-PCR analysis.

Primer Forward Primer 5′-3′ Reverse Primer 5′-3′ Product Size in
bp

Melting Peak
in ◦C

GAPDH TGGGGAAGGTGAAGGTCGGA TTGATGACAAGCTTCCCGTTC 207 83
GAPDH GGCTCTCCAGAACATCATCCCTGC GGGTGTCGCTGTTGAAGTCAGAGG 269 88
SOX21 GGAGAACCCCAAGATGCACA CCGGGAAGGCGAACTTGT 202 89
SOX2 GAACCAGCGCATGGACAGTT AGCCGTTCATGTAGGTCTGC 199 91
SOX3 GATAAGCCTACCCTTCCCGC GTGTCCCTACGGGGTTCTTG 196 92
SOX4 CAGCAAACCAACAATGCCGA GATCTGCGACCACACCATGA 209 93
SOX11 GAGGGCGAATTCATGGCTTG ATTTTCCAGCGCTTGCCCAG 199 89
YAP1 CCCTCGTTTTGCCATGAACC ACCATCCTGCTCCAGTGTTG 286 88
TAZ TGGACCAAGTACATGAACCACC AAATTCTGCTCCTCGGCACA 278 88

3.4. Transcriptome Analysis with cDNA Microarrays

After the cellular RNA was isolated, sample processing was performed at an Affymetrix
Service Provider and Core Facility, “KFB—Center of Excellence for Fluorescence Bioana-
lytics” (Regensburg, Germany; www.kfb-regensburg.de (accessed on 8 December 2020)).
Samples were generated according to the manufacturer’s instructions for the Affymetrix
GeneChip WT Plus reagent kit (Thermo Fisher Scientific, Waltham, MA, USA). The fluores-
cence signals were measured with an Affymetrix GeneChip Scanner 3000 7G and normalized
with the RMA algorithm. In this study, two datasets were used. The first dataset contained
two different cell lines (Mel Im and Mel Juso) that were analyzed in two biological replicates
(Supplementary Table S1). The second dataset (Supplementary Table S4) contained three
further melanoma cell lines (501 Mel, A375, and Mel Ho) in a single replicate each.

www.kfb-regensburg.de
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3.5. Transcriptome Analysis with Total RNA-Seq

RNA-seq samples and libraries were prepared as described previously [36]. Library
preparation was performed with at least two biological replicates. The resulting libraries
were checked for size (200–500 bp) and concentration by Tape Station 4200 (Agilent) using
the High-Sensitivity DNA Kit (Agilent). Qualified RNA-seq libraries were sequenced
according to the 75 bp paired-end RNA-seq approach on a HiSeq3000/4000 (Illumina,
Inc.) with an average number of 20 million reads per sample. Paired-end reads were
aligned to the human reference genome (hg38) and processed as described previously [37].
The resulting annotated reads normalized to library size were used for further analysis.
For analysis within this manuscript, two different datasets were used. The first dataset
(Supplementary Table S2) contained the same cell lines (Mel Im and Mel Juso) analyzed
with a cDNA microarray. The second dataset (Supplementary Table S5) contained three
additional melanoma cell lines (WM3211, WM1366, and WM793). In both datasets, the cell
lines were analyzed in two biological replicates.

3.6. Analysis of the RNA

The free energy of the RNA secondary structure was analyzed with the RNAfold
server of the ViennaRNA Web service (http://rna.tbi.univie.ac.at/ (accessed on 2 March
2021)). This tool calculates the minimum free energy of an RNA sequence based on the
Zuker algorithm [23]. For calculations of the GC content of RNA molecules, the online
tool endmemo (http://www.endmemo.com/bio/gc.php (accessed on 11 March 2021))
was used.

3.7. Statistical Analysis

The results are shown as the mean ± SEM (standard error of the mean) calculated
with the GraphPad Prism software (GraphPad Software, Inc., San Diego, CA, USA). A
correlation analysis was performed using R v.4.0.3 with the help of the ggplot2 and gg-
pubr v.0.4.0 packages by A. Kassambara (https://github.com/kassambara/ (accessed on
8 December 2020)) [38–40].

3.8. Accession Numbers

The data were deposited in the NCBI Gene Expression Omnibus under GEO:
Kunz et al. [26]; GSE112509; DESeq2_normalized_counts file: (Ensemble-ID: ENSG0000

0111640 = GAPDH; ENSG00000125285 = SOX21); https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE112509 (accessed on 11 January 2021).

Hoek et al. [27]; GSE4845-GPL570_series_matrix: (ID_REF: 212581_x_at = GAPDH;
208468_at = SOX21); https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4845
(accessed on 11 January 2021).

4. Conclusions

This study indicates that genes with strong secondary-structured mRNA are difficult
to determine in RNA sequencing after chemical shearing. Chemical shearing seems to fail
in breaking up strong secondary RNA structures. However, we cannot state whether the
method of chemical shearing also has advantages with regards to the detection of other
genes. Therefore, we strongly suggest that, as for cDNA array analyses at the time that
that method was established, all pros and cons must be defined in detail and made public;
if possible, they also need to be incorporated into bioinformatical analyses. Although
RNA-seq offers immense advantages over microarray analysis, there are challenges that
need to be addressed. Therefore, we recommend validating the results of transcriptome
analyses by using at least one additional method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22179349/s1.
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