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Congruent audio-visual stimulation 
during adaptation modulates the 
subsequently experienced visual 
motion aftereffect
Minsun Park   1, Randolph Blake   2*, Yeseul Kim1 & Chai-Youn Kim1*

Sensory information registered in one modality can influence perception associated with sensory 
information registered in another modality. The current work focuses on one particularly salient form 
of such multisensory interaction: audio-visual motion perception. Previous studies have shown that 
watching visual motion and listening to auditory motion influence each other, but results from those 
studies are mixed with regard to the nature of the interactions promoting that influence and where 
within the sequence of information processing those interactions transpire. To address these issues, 
we investigated whether (i) concurrent audio-visual motion stimulation during an adaptation phase 
impacts the strength of the visual motion aftereffect (MAE) during a subsequent test phase, and (ii) 
whether the magnitude of that impact was dependent on the congruence between auditory and visual 
motion experienced during adaptation. Results show that congruent direction of audio-visual motion 
during adaptation induced a stronger initial impression and a slower decay of the MAE than did the 
incongruent direction, which is not attributable to differential patterns of eye movements during 
adaptation. The audio-visual congruency effects measured here imply that visual motion perception 
emerges from integration of audio-visual motion information at a sensory neural stage of processing.

Our everyday perceptual experiences arise from externally generated physical signals that concurrently acti-
vate our sensory systems, together creating rich, multi-dimensional impressions of salient objects and events. 
Moreover, the richness of these perceptual experiences can be accompanied by enhanced detectability of weak 
sensory events arising from two or more modalities (e.g., weak odors accompanied by visualization of the odor 
source) and by improved recognition of suprathreshold sensory events when those events are represented by 
information from two or more senses (e.g., speech comprehension when watching the speaker’s mouth). Over 
the past few decades, the number of studies characterizing this aspect of perceptual experience – multisensory 
interaction – has increased rapidly (for reviews, see1,2). In this paper, we focus on one particularly salient form 
of multisensory interaction: audio-visual motion perception3,4. Evidence for audio-visual interaction has been 
found with a variety of situations involving motion, including continuous motion5–7, biological motion8–10 and 
simple 2-frame/tone apparent motion sequences11,12.

There are numerous instances in the literature where watching visual motion influences what is heard when lis-
tening to auditory motion12–16. For example, when auditory apparent motion sequences – left vs right – are accom-
panied by simultaneously presented visual apparent motion sequences, perceivers are better at discriminating the 
auditory apparent motion direction when auditory sound is accompanied by the congruent visual apparent motion 
than when it is accompanied by the incongruent visual apparent motion16. By the same token, there are instances 
where auditory information influences the perception of visual motion6,17–21. Taken together, auditory and visual 
motion signals can influence each other when it comes to perceiving and judging motion information.

However, the patterns of results from previous studies are inconsistent in terms of the direction of influences 
between visual versus auditory information. While visual influences on auditory motion perception have been 
reported consistently as mentioned above, results are mixed in terms of auditory influences on visual motion 
perception12,22,23. Soto-Faraco et al.12, for example, showed that visual apparent motion equivalent in speed and 
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direction to an auditory apparent motion event enhanced the ability to detect the perceived direction of auditory 
apparent motion. In contrast, auditory apparent motion did not bias judgments of perceived direction of visual 
apparent motion even when both forms of apparent motion were in the same direction. These asymmetric results 
might be explained by the modality appropriateness hypothesis wherein a greater weight is given to the sensory 
system with higher acuity for the task being performed24,25. It is generally believed that vision excels at registering 
precise spatial information while audition excels at registering precise temporal information (but also see26). 
Thus, the degree of influence of auditory versus visual information in a given task involving audio-visual stimu-
lation may depend on the extent to which spatial information versus temporal information is critical, a point that 
has been made before27.

In a related vein, differences in task performance with unimodal versus bimodal testing do not perforce impli-
cate audio-visual interactions at a sensory stage where afferent signals from the two modalities converge neurally. 
Evidence for bimodal interaction could also plausibly arise at a stage where auditory and visual sources of infor-
mation are jointly evaluated to derive the likelihood of a given stimulus event. A textbook example of this idea is 
the ventriloquist effect, sound mislocalization that can be deftly explained by Bayesian-optimal combination of 
information arising independently from the eyes and ears28. In the case of motion perception, several studies have 
found that conjoint audio-visual motion stimulation yields improved motion detection performance whether 
or not the directions of auditory and visual motion are congruent5,7,19. The absence of direction-dependence 
points to facilitation in detection arising from probability summation of independent signals, i.e., improvement 
mediated by having two independent sources of information specifying motion. On other tasks involving motion, 
however, evidence shows that audio-visual judgments are affected by direction-dependent congruence between 
simultaneously presented auditory and visual motion (e.g.29–31), suggesting that audio-visual integration entails 
modification of the neural representations of direction at sensory level of processing.

To address this conundrum, in the present study we sought to develop a testing procedure wherein the per-
ceptual task assessing the impact of concurrently presented auditory and visual motion did not itself involve 
audio-visual stimulation. To achieve this aim, we employed a purely visual task – judgment of direction of visual 
motion - whose performance was potentially dependent on the audio-visual context experienced immediately 
preceding task performance. Specifically, we deployed the visual motion aftereffect (MAE), i.e., the experience of 
illusory motion briefly seen following exposure (i.e., adaptation) to actual visual motion in a given direction32. 
The MAE can take several different forms, depending on the adaptation stimulus and the test stimulus. When 
adaptation entails translational motion in a given direction, e.g., rightward, a subsequently viewed stationary 
stimulus appears temporarily to move in the direction opposite to that of the adaptation motion, e.g., leftward33. 
Adaptation to translational motion can also produce an MAE when one views dynamic, Brownian-like random 
motion: such motion appears to have a net directional drift in the direction opposite to that of the adaptation 
motion34. Both forms of the MAE are commonly thought to reflect temporary reductions in neural activity within 
populations of visual neurons responsive to limited directions of motion35. Physiological evidence for such adap-
tation has been observed in neural responses measured from the early visual cortex of monkeys36 and humans37,38.

Is it plausible that sound could modulate neural adaptation of visually activated, direction-selective neurons 
at a sensory level? For several reasons, we think this possibility is plausible. First, we know that auditory motion 
can produce neural adaptation: exposure to an auditory stimulus that sounds like it is moving in a given direction 
can subsequently cause a stationary auditory stimulus to sound as if it were moving in the direction opposite to 
that of the previously heard sound, i.e., an auditory version of the MAE39–41. Second, it is well known that the 
magnitude of the visual MAE varies with the strength of the adapting motion, where strength refers to contrast, 
motion coherence, speed or duration. Is it plausible that sound, too, might modulate the strength of visual adap-
tation? This is not far-fetched, because we know that the MAE is influenced by other non-visual factors including 
imagination42 and attention43–46. Putting these facts together, we surmised that translational auditory motion and 
translational visual motion might indeed interact synergistically to impact the strength of a subsequently viewed 
visual MAE test stimulus. The following paragraph explains how this might happen.

If audio-visual sensory signals were to be combined when their directions and timing are congruent, the 
resulting MAE should be stronger if that bisensory combination transpires at or before the site of neural adap-
tation mediating the MAE. Integration of audio-visual signals, in other words, would produce stronger activity 
when those signals designate the same direction of motion, and that stronger activity would, in turn, produce 
a greater imbalance in activity among neurons responsive to direction of visual motion. Thus, we hypothesize 
that the visual MAE would be stronger and last longer when the direction of concurrent auditory motion was 
congruent with the direction of visual motion during adaptation, compared to conditions where auditory motion 
was absent or was incongruent with the direction of visual motion. This prediction would depend, of course, on 
selecting visual adaptation conditions (i.e., strength and duration) that themselves did not produce an asymptotic 
MAE.

To test this prediction, we performed two experiments in which the congruence of auditory and visual motion 
was varied during the adaptation phase of a trial and used the resulting MAE as an index of multisensory inter-
action. In an effort to tap into early-level sensory motion processing, we employed visual random-dot kine-
matograms (RDKs) moving either leftward or rightward (Fig. 1a), a class of visual animations widely used in 
the study of low-level motion perception34,47,48; the auditory stimulus was white noise in which the inter-aural 
intensity was continuously modulated to produce the perception of smooth, lateral sound motion (top panels 
of Fig. 1b). We specifically used repetitive, 2-sec pulses of concurrent visual and auditory motion to encourage 
the sense of the two events arising at the same time. Following a relatively brief period of adaptation to these 
concurrent audio-visual sequences, the resulting MAE was measured using either the duration of illusory motion 
of a stationary array of dots (Experiment 1) or the coherence of motion needed to nullify illusory drift in a subse-
quently viewed dynamic RDK (Experiment 2). So if auditory motion can indeed modulate the strength of visual 
motion, the visual MAE should take longer to dissipate, producing a longer MAE (tested in Experiment 1), and it 
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would necessitate stronger actual visual motion to nullify (tested in Experiment 2). It is important to note that the 
MAE duration and intensity were being judged during test periods when auditory stimulation was not present – 
any influence of sound on the MAE must be attributed to its impact on the strength of the motion experienced 
during the prior period of concurrent audio-visual stimulation.

Results
Experiment 1. Audio-visual direction congruence’s effect on visual MAE duration.  Twelve par-
ticipants (ten naïve) completed a total of 32 trials during which they viewed a stationary test figure and reported 
the perceived direction and the duration of MAE (leftward or rightward) by pressing one of the two keys at 
the moment when the illusory motion ceased to be experienced. MAE strength was indexed by the duration of 
illusory motion49, which depends on the strength of the visual motion experienced during adaptation32. The test 
figure followed an adaptation period which entailed a total of 32-sec of actual exposure to visual motion (See 
Methods) during which the dynamic RDKs were presented with the directions (leftward, rightward) and coher-
ence levels (50%, 100%) manipulated over blocks of trials. Over separate trials, we manipulated the audio-visual 
direction congruence based on the auditory stimuli (congruent, incongruent, stationary, no sound) accompa-
nying the RDK. We predicted that the audio-visual direction congruence would strengthen the visual motion 
experienced during adaptation, resulting in longer MAE durations.

As expected44, MAE durations differed between the two coherence levels (F(1, 11) = 58.40, p < 0.001, 
ηp

2 = 0.939, see Fig. 2a) and among the four audio-visual conditions (F(3, 33) = 8.47, p < 0.001, ηp
2 = 0.384, see 

Fig. 2a), after collapsing the data from the two visual motion directions that were not different statistically (F(1, 
11) = 1.97, p = 0.188). Bayes factor (BF) analysis supported the audio-visual direction congruency effect on the 
perceived duration of visual MAE by the 95.297 of BF10, meaning that the current data were 95.297 times more 
likely to occur under the inclusion of the evidence for the factor of congruency than under the null hypothesis. 
The audio-visual direction congruency effect in the 50% coherence condition (i.e., congruent MAE dura-
tion > incongruent MAE duration) was not statistically different from that in the 100% coherence condition (F(3, 
33) = 0.48, p = 0.699), thus allowing us to collapse the MAE duration data from the two coherence conditions for 
further examination of the source of the significant variances. Post hoc analyses of paired t-tests were performed 
with the false discovery rate (FDR50) correction applied for multiple comparisons of the six pairs of tests. The 
results showed that the MAE duration in the congruent condition was significantly longer than the MAE duration 
in the incongruent (t(11) = 4.34, p = 0.006 FDR corrected, Cohen’s d = 0.610; BF10 = 35.130, strongly favored) and 
in the stationary (t(11) = 3.35, p = 0.021 FDR corrected, Cohen’s d = 0.318; BF10 = 8.395, moderately favored) con-
ditions. The difference between the congruent and the no-sound conditions also approached statistical signifi-
cance (t(11) = 2.417, p = 0.051 FDR corrected, Cohen’s d = 0.245; BF10 = 2.224, anecdotally favored). In addition, 
the shorter duration of MAE in the incongruent condition approached statistical significance compared to the 
MAE duration in the stationary condition (t(11) = −2.106, p = 0.071 FDR corrected, Cohen’s d = 0.265; 
BF10 = 1.463, anecdotally favored) and in the no-sound condition (t(11) = −2.431, p = 0.051 FDR corrected, 
Cohen’s d = 0.390; BF10 = 2.268, anecdotally favored). There was no significant difference between the stationary 
and no-sound conditions (t(11) = −0.898, p = 0.388; BF10 = 0.404).

The pattern of audio-visual congruency effect was consistent across most individuals (Fig. 2b), and this pat-
tern remained evident when MAE durations were reanalyzed with the data from the two non-naïve participants 
excluded (P1 and P4 in Fig. 2b). Results from the ten naïve participants showed that MAE durations were differ-
ent across the coherence levels (F(1, 9) = 41.73, p < 0.001, ηp

2 = 0.931) and audio-visual conditions (F(3, 9) = 4.96, 
p = 0.007, ηp

2 = 0.264). The two-way interaction was not significant (F(3, 9) = 0.50, p = 0.686). In post hoc paired 

Figure 1.  Schematic representation of the visual and auditory stimuli used during adaptation both in 
Experiment 1 and 2. (a) The visual stimulus was a RDK presented on a binocularly viewed video monitor. The 
fraction of dots moving coherently leftward or rightward (rightward in examples here) could be varied. In 
Experiment 1, RDKs with two different coherence levels were employed during adaptation, 50% and 100%. In 
Experiment 2, RDK coherence was fixed at 70% during adaptation. (b) The direction of auditory sounds was 
implemented by mimicking inter-aural intensity modulation, which was presented over binaural headphones. 
Considering sound and visual motion directions together, we created four different audio-visual conditions: 
congruent, incongruent, stationary, and no-sound.
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t-tests with the data merging two coherence levels, the MAE duration was significantly longer when audio-visual 
direction was congruent than when the direction was incongruent (t(9) = 3.623, p = 0.036 FDR corrected, 
Cohen’s d = 0.466) and stationary (t(9) = 2.599, p = 0.087 FDR corrected, Cohen’s d = 0.267).

The duration of motion adaptation was the same for all conditions, i.e., 32 sec taking into account the intermit-
tent presentation of visual and auditory stimulation (see Methods). One might worry that this duration of adap-
tation promoted saturation of the MAE, thus invalidating its usefulness as an index of adaptation strength for the 
different conditions. Were this true, we would not expect to find differences between the no-sound condition and 
the other sound-related conditions. On the contrary, however, the congruent sound condition produced longer 
lasting MAEs than did the no-sound condition, and that was true for each of the participants. We are confident 
that ceiling effects are not unwittingly limiting the pattern of results in this Experiment.

The MAE is known to be confined to the region of the visual field, retinotopically defined, within which 
motion adaptation was experienced51, which suggests that inadvertent eye movements could differentially dilute 
the strength of the MAE across audio-visual conditions. The observed modulatory effect of audio-visual con-
gruency during adaptation on the duration of visual MAE, however, does not stem from differential patterns of 
eye movements during the different audio-visual conditions. As shown in Fig. 2c, the standard deviations of the 
estimated (i.e., fitted with a normal distribution) left eye gaze deviation histograms across the four audio-visual 
conditions did not show a statistically significant difference (F(3, 30) = 1.11, p = 0.359).

Experiment 1 shows that audio-visual direction congruence during adaptation modulates the duration of the 
visual MAE. Audio-visual direction congruence during adaptation induces longer durations of the visual MAE. 
Conversely, the incongruence of audio-visual direction during adaptation abbreviates visual MAE durations. 

Figure 2.  Results from Experiment 1. (a) Effect of audio-visual direction congruence during adaptation on 
the duration of resulting visual MAE. Rain cloud plots illustrate the estimated distributions of individual mean 
MAE duration in each coherence (50%, 100%) and audio-visual (congruent, C; incongruent, I; stationary, S; 
no-sound, N) conditions. Dots represent the individual mean MAE duration. The middle, horizontal lines 
on the box plots indicates the median and the lower and upper ends of the box indicates the first and third 
quartiles. The cross hairs indicate the mean. RDK directional motion accompanied by congruent sound during 
adaptation induced longer duration visual MAEs than did the stationary sound or the no-sound. RDK motion 
accompanied by incongruent directional sound during adaptation produced the briefest MAE of all conditions. 
This pattern of results was observed for both levels of adaptation motion strength, 50% and 100% coherence.  
(b) Individual data for audio-visual direction congruence. Individual participant data, including two of the 
authors (P1-MP, P4-RB), exhibited longer durations of visual MAE in the congruent condition than the 
incongruent condition. (c) Differences in standard deviation of the estimated distribution of left eye positions 
across audio-visual conditions. To evaluate the possibility that unstable eye fixation during adaptation affected 
the subsequent visual MAE, we compared the standard deviations of the estimated distributions of eye fixations 
for each audio-visual condition. Those comparisons revealed no statistically significant differences, implying 
that eye fixation during adaptation did not contribute to the results of Experiment 1.
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These modulatory effects of direction congruency did not differ between the two coherence levels of visual 
motion, indicating that audio-visual integration occurs effectively even when the direction of visual motion is 
unequivocally specified by visual information alone. This result seems contrary to the prediction based on inverse 
effectiveness whereby multisensory inputs are more likely to interact synergistically when the task-dependent 
sensory stimulus (vision, in this case) is relatively weak52, but it may well be attributable to the fact that even 50% 
coherence provides a sufficiently strong experience of coherent directional motion. To evaluate this possibil-
ity will require further testing of MAE strength using even weaker coherence levels. Overall, the findings from 
Experiment 1 imply that auditory motion information has a strong influence on visual motion processing during 
adaptation.

Could one argue that this direction-selective interaction arises from a residual auditory MAE generated when 
hearing apparently moving sound during visual adaptation and then experienced during visual MAE test phase? 
This seems very unlikely for the simple reason that there was no external sound source present during the test 
phase that could mediate an illusory impression of auditory sound. Sound’s only means of influence on the visual 
MAE would be through the prior, concurrent presentation of sound with visual motion during adaptation.

Experiment 2. Audio-visual direction congruence’s effect on initial MAE strength.  Systematic 
variations in the duration index of MAE strength in Experiment 1 implied the existence of significant audio-visual 
interactions. Those interactions might raise the possibility that participant’s awareness to the state of congruence 
between sound and RDK motions influenced the judgments of subsequent MAE, although it is unlikely that 
naïve participants figured out the purpose of the experiment during the experiment and translated it into their 
responses during test phases. Still, we felt it worthwhile to make expectation even less likely, so we repeated the 
experiment using a nulling procedure that measures a complementary index of MAE strength. Unlike MAE 
duration, the nulling procedure uses a brief test stimulus presented immediately following offset of the adaptation 
period, and it relies on a two-choice categorization judgment to derive the index of the strength of the resulting 
MAE.

For this experiment, we used dynamic RDKs presented during brief test phases inserted between periods of 
adaptation to 70%-coherence RDK motion (Fig. 3a). Using the procedure with two interleaved adaptive staircases 
(see representative results in Fig. 3b), the coherence of the RDK was varied to find the directional signal strength 
necessary to cancel any net motion impression engendered by motion adaptation53. This nullifying coherence 
level provides an index of MAE strength immediately following adaptation - stronger MAEs are evidenced by 
higher coherence levels needed to nullify the perceptually induced MAE. In this procedure, participants would be 

Figure 3.  Procedures in Experiment 2 and an example of results from the adaptive staircase. (a) In a block, 
adaptation phase (50-s at the first trial and 5-s thereafter) and a brief test phase were alternated until the block 
was terminated once the randomly interleaved two staircases were completed. During the adaptation phase, the 
70% coherence level of RDK was presented, and the directional sounds were either presented or not presented 
according to the audio-visual conditions (congruent, C; incongruent, I; stationary, S; no-sound, N). During the 
test phase, the direction and coherence level of the test RDK were determined by separate staircases designed 
to nullify the visual MAE. (b) An example of a staircase for one participant (P3-LHS in Fig. 4b). Staircases 
were terminated after nine reversals, and the nulling coherence derived from the staircase was calculated by 
averaging coherence values associated with the last six reversals.
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unable to know what the test stimulus actually portrayed and would have to rely on what they saw, not what they 
thought they were supposed to be seeing. Ten participants successfully completed this experiment.

We expected that the congruence of the audio-visual direction would render visual motion stronger during 
adaptation, which requires higher motion coherence to nullify the induced MAE. As expected, the nulling coher-
ence differed across the four audio-visual conditions (F(3, 27) = 10.70, p < 0.001, ηp

2 = 0.543, see the left panel of 
Fig. 4a). The BF analysis indicated that the strength of the evidence favoring the audio-visual direction congru-
ency effect was 240.66 times more powerful than the evidence favoring the null hypothesis. Six FDR-corrected 
post hoc analyses of paired t-test showed that the nulling coherence in the congruent condition was significantly 
greater than the nulling coherence in the incongruent (t(9) = 5.90, p = 0.001 FDR corrected, Cohen’s d = 0.910; 
BF10 = 141.301, strongly favored), stationary (t(9) = 4.23, p = 0.004 FDR corrected, Cohen’s d = 0.666; 
BF10 = 21.311, strongly favored), and no-sound conditions (t(9) = 5.39, p = 0.001 FDR corrected, Cohen’s 
d = 0.914, BF10 = 81.312, strongly favored). However, there were no significant differences among incongruent, 
stationary, and no-sound conditions.

This strengthened MAE in the congruent condition was consistent in all the individual participants’ data 
(right panel of Fig. 4a). This pattern of audio-visual congruency effect was not affected even if the data were rea-
nalyzed after excluding the two non-naïve participants (P1 and P2 in Fig. 4b), indicating that the group results did 
not emanate exclusively from the two participants. MAE nulling coherences were significantly different across 
audio-visual conditions (F(3, 21) = 11.01, p < 0.001, ηp

2 = 0.611). In post hoc analysis of paired t-test, the greater 
nulling coherence in the congruent condition was found than the nulling coherence in the incongruent 
(t(7) = 5.73, p = 0.002, Cohen’s d = 0.882), stationary (t(7) = 3.80, p = 0.014, Cohen’s d = 0.676), and no-sound 
(t(7) = 6.91, p = 0.001, Cohen’s d = 1.016) conditions. There were no significant differences in other comparisons 
among incongruent, stationary, and no-sound conditions. The differences in the MAE intensity across the 
audio-visual conditions are not attributable to differential eye movements during adaptation (Fig. 4c). The esti-
mated standard deviations of the left eye gaze deviation histograms across four audio-visual conditions did not 
show a statistically significant difference (F(3, 24) = 0.54, p = 0.657).

Results from Experiment 2 indicate that the presentation of congruent audio-visual motion during adaptation 
strengthens the initial, perceived strength of the MAE. This strengthened MAE in the congruent condition was 
consistent in all the individual participants’ data (right panel of Fig. 4a). In Experiment 2, the motion coher-
ence and the direction of test stimuli were controlled by the staircase procedure on each trial, making it very 

Figure 4.  Results from Experiment 2. (a) Impact of audio-visual direction congruence on the strength of 
the dynamic visual MAE. The Rain cloud plots show the estimated distributions of the nulling coherence in 
each audio-visual condition. The absolute value of the nulling coherence indicates the intensity of the MAE 
and the polarity indicates the direction of signal dots needed to nullify the MAE. Thus, positive and non-zero 
numbers indicate the presence of the MAE. Individual mean nulling coherence values are presented as dots. 
Box plots illustrate the mean (cross hairs) and the median (bold, horizontal lines) as well as the first and third 
quartiles (each ends of the box) of the distribution. The nulling coherence values were significantly higher 
in the congruent than in the incongruent, stationary, and no-sound conditions. (b) The pattern of audio-
visual direction congruence in individual data. Individual data, including the two authors (P1-MP, P2-RB), 
consistently showed higher coherence value to nullify the induced visual MAE in the congruent condition than 
the incongruent condition. (c) Differences of left eye positions during adaptation across audio-visual condition. 
Results comparing the standard deviations obtained from each histogram across audio-visual condition showed 
no statistically significant differences in eye gaze during adaptation. This implies that the effect of audio-visual 
direction congruence did not result from eye fixation instability during adaptation.
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unlikely that participants’ expectations would be involved in their response. The advantage of the method used in 
Experiment 2 mitigated the factors that may affect the decision stage of audio-visual motion processing, thereby 
convincing us that the observed effect of audio-visual direction congruence arose at the perceptual stage of the 
processing. The boosted effect of the audio-visual direction congruence replicates the results obtained using MAE 
duration following adaptation during the congruent condition in Experiment 1. Again as a reminder, sound’s 
only means for influencing the visual MAE is through its impact on the strength of the visual motion experienced 
during concurrent audio-visual stimulation during the adaptation period.

What is different between results for the two experiments is the effect of incongruent sound on the strength of 
the MAE: in Experiment 1, incongruence in sound and RDK motion direction reduced MAE duration relative to 
no-sound and stationary sound conditions, but in Experiment 2 the RDK motion strength required to nullify the 
MAE was not different than the nulling coherence associated with the stationary and the no-sound conditions. 
Why might that be? The answer may well have to do with the fact that the two measures of MAE strength – dura-
tion and nulling coherence – tap into different aspects of visual adaptation. Specifically, the coherence required 
to nullify the MAE gauges the initial strength of adaptation immediately following offset of the adapting motion 
whereas the duration of the MAE gauges the decay of adaptation’s aftereffect over time. We have no way to insure 
that initial strength of adaptation was equivalent in the two experiments and, therefore, whether the start-points 
of the decay of adaptation was the same for both (see54 for a model that explicates the distinction between decay 
and nulling). This could provide some basis for the differential effect of incongruent sound during adaptation 
on the decay-based MAE and the nulling-based dynamic MAE. What we can say for certain is that the initial 
strength and decay time were amplified by presentation of congruent sound relative to presentation of incongru-
ent sound, stationary sound or no sound.

Discussion
We found that adaptation to translational visual motion results in an initially stronger and longer lasting MAE 
when that visual adapting motion is accompanied by sound moving in the same direction as that visual motion, 
compared to sound motion in the opposite direction or, for that matter, to stationary sound or no sound at 
all. Before considering the potential implications of our results, we want to acknowledge that ours is not the 
first study to exploit adaptation aftereffects to examine multisensory interactions. Deas, Roach, and MacGraw55 
reported that adaptation to translational visual motion caused the perceived location of a subsequently heard, 
stationary sound to be displaced in a direction opposite that of the visual motion. While not a conventional MAE 
– the stationary sound did not seem to move – the displacement of the sound’s perceived location clearly does 
reveal an impact of visual motion adaptation on auditory perception. In a similar vein, Hidaka and colleagues56 
found that the net direction in the perceived flow of a weakly coherent RDK was biased when accompanied by a 
stationary tone previously paired with strongly coherent visual motion, i.e., a visual MAE contingent on audition. 
Kitagawa and Ichihara57 used loudness-modulated sound paired with a size-modulated visual square to generate 
an auditory aftereffect (illusory change in auditory loudness) and a visual aftereffect (motion depth produced 
by illusory changes in perceived visual size). They found that congruent audio-visual adaptation (e.g., increas-
ing loudness paired with increasing size) induced a stronger auditory aftereffect than did auditory adaptation 
alone, but the magnitude of the visual aftereffect was not modulated by the sound. Finally, Berger and Ehrsson58 
found that adaptation to a horizontally moving sound could generate illusory translational flow in a subsequently 
viewed visual RDK, i.e., a cross-modal adaptation aftereffect. Considered together, results from those studies, 
together with the present findings, underscore the fruitfulness of adaptation aftereffects as a tool for examining 
audio-visual interactions.

At the same time, several previous studies have failed to find a robust impact of adaptation to auditory motion 
on subsequent visual motion perception. As mentioned above, Kitagawa and Ichihara57 found that adaptation to 
sound that was actually increasing or was actually decreasing was unable to produce a subsequent visual afteref-
fect of motion in depth. Similarly, Jain and colleagues23 adapted participants to moving sound to see if that would 
produce a cross-modal visual MAE, which it did not. In both instances, in other words, sound adaptation did not 
impact subsequently viewed visual motion. We, however, have found that exposure to sound during adaptation 
potentiates visual adaptation, as evidenced by stronger and longer MAEs when visual and auditory motion direc-
tions were congruent (see also58). What might account for these seemingly inconsistent findings? One possibility 
is that the auditory stimuli in some of those previous studies relied on sound whose direction was implicitly 
connoted (e.g., rising/falling loudness denoting approaching or receding sound), whereas the sound motions in 
our study were defined explicitly by interaural intensity differences. But this cannot be the entire reason, for Jain 
et al.23 also used interaural loudness to create sound motion yet failed to find that this sound motion was able to 
induce a visual MAE on its own. That result, of course, is not inconsistent with our findings because we did not 
test for an auditory MAE in our study. It remains to be learned why there exists an asymmetry in the adaptation 
strengths of visual motion and auditory motion.

Turning now to the implications of our results, our findings provide evidence for genuine integration of visual 
and auditory motion signals at a stage of processing sufficient to impact visual motion adaptation. The logic of our 
experimental design focuses on neural synergy during the adaptation period, not during the testing period when 
the weak or ambiguous motion was presented. To presume that judgments of visual motion direction during the 
MAE test period could be directly impacted by sound presented before the visual test stimulus even appeared 
would violate one of the two pillars of multisensory interaction, namely the temporal contiguity principle stip-
ulating that sound stimuli and visual stimuli occur contiguously if they are to interact synergistically59. Thus we 
conclude that the critical interactions prompting the audio-visual integration we have documented occur during 
the adaptation period, when sound and visual motion were presented in close spatial and precise temporal coinci-
dence. We interpret our results as evidence for genuine neural confluence of sensory signals arising from auditory 
and visual modalities at a neural locus where patterns of activity among direction-selective visual neurons arise, 
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patterns of activity that register the direction of translational visual motion38. In the context of our experimental 
paradigm, integration of independent streams of auditory and visual information seems inadequate to account for 
the MAE results. To be sure, this does not mean that cue combination (e.g., Bayesian inference) does not transpire 
in other conditions, such as situations where neural information associated with weak signals in one modality are 
biased by stronger, more reliable signals in a second modality5.

Taken together, our main finding implicates integration of neural signals arising within auditory and visual 
pathways, resulting in enhanced neural responses within bimodal neurons. Neurophysiological evidence points 
to multiple sites where such interactions might occur, including deep layers of the superior colliculus (SC)52,60,61 
and cortical areas interconnected to the SC including the middle temporal (MT) area62 where, it is well known, 
adaptation produces temporary changes in neural activity within direction-selective cells32,63. Studies in humans 
using fMRI also show that activation in human V5/MT + area is modulated by the auditory motion. Thus, for 
example, lateral sound motion induces increased blood oxygenated level dependent (BOLD) signals in area of V5/
MT + when moving sound was accompanied by visual motion64 or when moving sound was heard while partic-
ipants were blindfolded65. Of particular relevance to our audio-visual congruency effect, Scheef and colleagues66 
demonstrated enhanced activation in V5/MT + in the presence of congruent audio-visual motion stimuli com-
pared to incongruent audio-visual or unimodal motion stimuli. These neurophysiological, electrophysiological 
and fMRI data are congruent with our psychophysical findings pointing to involvement of audio-visual neural 
integration when viewing motion while simultaneously hearing sound congruent with that motion.

Methods
Participants.  Thirteen and fourteen participants took part in Experiment 1 and 2, respectively. Both 
Experiments included two of the authors (MP and RB). Experiment 1 was conducted at Vanderbilt University 
(VU) and Korea University (KU), and Experiment 2 was performed at KU except for one participant (RB at VU). 
All participants had normal or corrected-to-normal visual acuity. Except for the two authors, all the participants 
were naïve to the purpose of the experiment. They gave informed consent approved by the Institutional Review 
Board of VU (IRB #000700) and KU (IRB 1040548-KU-IRB-17-85-A-1) prior to the experiment. All procedures 
were approved by the Vanderbilt University Human Research Protection Program or Institutional Review Board 
of Korea University, and the study was carried out in accordance with the Code of Ethics of the World Medical 
Association (Declaration of Helsinki).

Apparatus and stimuli.  Gray-scale visual stimuli were displayed on a gamma-corrected CRT monitor 
(frame rate 100 Hz), which was used both in VU and KU (viewing distance 108 cm in VU, 95 cm in KU). Binaural 
auditory stimuli were delivered via headphones. Participants viewed the monitor with their head stabilized by a 
head/chin rest. The position of their left eye was tracked at a sample rate of 500 Hz using an Eyelink eye tracker 
(Model 1000, SR Research), controlled by the Eyelink toolbox in MATLAB67. The experiment was conducted in 
a quiet dark room.

Auditory stimuli were created, manipulated and saved using Sound Studio (v. 4.9.3, Felt Tip Inc.). Those 
sounds were stored as.wav files on the computer and utilized by MATLAB for presentation over binaural head-
phones (Yamaha YH-1 over-ear; 150 ohm impedance, 96 dB/mW). Each discrete sound comprised a 2-s pulse of 
white noise generated at a sampling rate of 44.1 kHz. Auditory motion was simulated by using a linear ramp to 
cross-fade the intensity (dB) of the white noise samples presented to left- and right-channels of the headphones. 
This produced a clear impression of sound movement either leftward or rightward depending on the leading ear 
of the cross-fade. For the stationary sound, white noise was played at constant, equal intensity over both channels 
of the headphones. The initial onset and final offset of all sounds were ramped on and off (linearly in units of dB) 
over 150 ms, to preclude abrupt transients.

Visual stimuli used in the adaptation phase were RDKs created by MATLAB using Psychophysics 
Toolbox-368,69. RDKs appeared within a light gray (VU: 62 cd m2, KU: 28 cd m2) circular aperture 4° in diameter, 
containing 240 black dots (dot size: 4.74 arcmin; dot density: 19 dots/deg2) and a central red fixation point. The 
RDK dots were centered within a 6° diameter, circular background pattern filled with outline “bubbles” of dif-
ferent sizes. The dots began their motion trajectories from quasi-random positions within the aperture, and they 
were repositioned by 1 pixel every 10 ms. The dots moved at a fixed speed of 2°/s, which matched the duration 
required for a dot to move across the entire diameter of the RDK window during the 2-s auditory noise presenta-
tion. Signal dots moved coherently either leftward or rightward; noise dots selected their directions randomly. 
The mean lifetime of a given dot’s trajectory was 400 ± 200 ms. At the end of its lifetime or upon moving outside 
of the aperture, a given dot was ‘reborn’ at a new random position.

As with the auditory stimuli, the dots appeared and disappeared smoothly with their luminance modulated 
gradually for 150 ms at the beginning and at the end of the presentation. This procedure was implemented to 
prevent abrupt stimulus onsets and offsets that could potentially generate motion energy70. During the test phase 
in Experiment 1, stationary dot patterns were used to measure the duration of MAE. In Experiment 2 where we 
measured a nulling coherence level, dynamic RDKs were used to vary perceived motion coherence over trials. 
Mean lifetime of test RDKs was relatively brief (16 ± 40 ms).

Procedures.  Experiment 1.  Each trial started with a 40-s visual motion adaptation phase accompanied by 
sounds of one of the four audio-visual conditions. During the adaptation phases with sound, the 2-s sound was 
played 16 times with an 800-ms interval interleaved, and the onset of RDK was synchronized with the sound. To 
encourage attention to both the auditory and the visual motion, participants were required to perform a simple 
attention task associated with each relatively brief pulse of visual motion: the duration of RDK was either 1.8 s or 
2.2 s, and participant reported whether the duration of RDK was shorter or longer than that of the accompanying 
sound. On trials without sound, simply the duration of the RDK was reported (short or long). Prior to the main 
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session, participants underwent a practice session to familiarize them with the attention task; this practice was 
continued until their performance achieved or exceeded 70% accuracy. Based on the attention task performance, 
we excluded one participant, thus a total of twelve participants were included for the final analysis.

After the adaptation phase, a stationary pattern appeared within the circular stimulus window. Participants 
were instructed to press one of the two keys corresponding to the perceived MAE direction the moment the dots 
ceased their illusory motion. For the trials where participants did not experience any MAE, a third key-press was 
made. Upon this key-press, an enforced, 15-s break was inserted with a stationary dot pattern and a stationary 
white noise sound before the next trial was launched. If the participant experienced even a hint of visual MAE 
after the break, they pressed the spacebar to introduce an additional 10-sec recovery period, and this procedure 
continued until the MAE had dissipated completely.

Participants were instructed to maintain strict fixation on the central fixation point. Horizontal and vertical 
positions of the participant’s left eye were monitored during the adaptation phase using the eye tracker. Eye cali-
bration and validation were repeated every 8 trials.

In the main session, participants performed a total of 32 trials: 2 visual directions (leftward, rightward) × 2 
coherence levels (50%, 100%) × 4 audio-visual conditions (congruent, incongruent, stationary, no-sound) × 2 
repetitions (Fig. 1). The order of the trials was pseudo-randomized. The main session took about an hour.

Experiment 2.  In the practice session, participants were familiarized with the appearance of global net flow from 
RDKs. On each self-paced practice trial, either a leftward or rightward RDK was presented for 800 ms. Initial 
coherence level was 70% and thereafter it was controlled by 1-up 2-down staircase method to find the threshold 
value supporting 71% correct performance71. Participants reported the global direction of the RDK by pressing 
one of the two keyboard buttons, followed by auditory feedback. Four successive staircases were performed. The 
fourteen participants exhibited coherence thresholds ranging from 6% to 50.2% (22.9% ± 13.8%), values well 
below the level of coherence used for adaptation during the main experiment.

The main session comprised of a series of the adaptation and the test phases administered in a block design 
(Fig. 3a). Each block began with an initial 50-s adaptation period followed by a test phase. A 5-s top-up adapta-
tion then followed each test phase thereafter. During the adaptation phase, a 70%-coherence RDK was displayed 
for 2 s simultaneously accompanied by 2-s sound, and they were repeatedly presented with a 500-ms interval. 
Participants were instructed to attend to both auditory and visual stimuli with fixation maintained on a central 
red fixation dot. Following the adaptation phase, the test RDK was presented for 800 ms. The coherence and the 
direction of the test RDKs were controlled by two independent 1-up/1-down staircases randomly interleaved. The 
coherence level at the first test trial was 0%. Step size of the coherence level was 12% for the initial three reversals 
and 4% thereafter. Following each RDK test presentation, participants reported the perceived global direction of 
the test RDK by pressing one of the two keyboard buttons within 500 ms after the test RDK disappeared. When 
they failed to respond during the test phase (which rarely happened), the coherence level in that trial was pre-
sented again on the next test presentation. Each of the two staircases terminated after nine reversals, and the mean 
of the last six reversals was taken as the nulling coherence of the corresponding staircase. A test block terminated 
after both interleaved staircases for that condition had reached the ninth reversal points. Participants took a 
4-min break between blocks. If there was any residual MAE perceived on the stationary dot patterns after the 
break, participants took an additional 30-s break until all hints of coherent motion had disappeared. The stability 
of the left eye was monitored by eye tracking throughout the main session. Eye calibration was performed before 
every block.

Each audio-visual condition included four staircases (Fig. 3b). The nulling coherence value for each condition 
was estimated by averaging the coherence values obtained from the four staircases. The absolute value of nulling 
coherence value indicates the intensity of the MAE and the polarity indicates the direction of signal dots needed 
to nullify the MAE. Positive numbers denote the direction that was opposite to the direction to the MAE for nulli-
fying, which indicates the presence of the MAE. Four participants who did not experience MAE in the no-sound 
condition during session 1 (i.e., nulling motion of zero coherence or negative polarity of nulling direction) were 
not tested on the remaining conditions, leaving a total of ten participants who completed this experiment.

Each of two sessions comprised four blocks, each of which was randomly assigned to one of the four 
audio-visual conditions. Each participant was visually adapted to only one of two directions (left or right) 
throughout the experiment, with the adaptation direction counterbalanced across participants. The experiment, 
including practice, main sessions and breaks, took approximately 2.5 hours.

Analysis.  Bayes factor analysis.  To quantify the evidence for the hypothesis that audio-visual congruency 
modulates the strength of visual MAE, we conducted Bayes factor (BF) analysis using the JASP software72. We 
calculated the ratio of Bayesian probability that the current data favor the null hypothesis (no difference of the 
MAE strength according to the audio-visual congruency) to the probability that they favor the alternative hypoth-
esis. For all BF analysis, we used a common Cauchy prior with width 0.707. The BF10 value signifies how strongly 
support the alternative hypothesis than the null hypothesis.

Gaze stability analysis.  We analyzed the horizontal eye positions of participants’ left eye during adaptation 
phase. Recorded horizontal left eye position samples were transformed to deviations from fixation, and the num-
ber of deviations was reduced by averaging the deviations within every 20-ms bin. By creating a gaze histogram 
for each condition using these deviation samples, we extracted a parameter of standard deviation from the histo-
gram fitted with a normal distribution.

Data availability
The datasets of Experiments 1 and 2 are available on https://osf.io/tfec5/.
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