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Abstract

Background: Chronic stress or prolonged administration of glucocorticoids suppresses proliferation and/or survival of
newborn cells in adult rat dentate gyrus. Earlier we showed that administration of the glucocorticoid receptor antagonist
mifepristone during the final 4 days of a 21 days period of corticosterone treatment fully normalized the number of
newborn cells. Here we aimed to better understand how mifepristone achieves this effect and questioned whether an even
shorter (single day) mifepristone treatment (instead of 4 days) also suffices to normalize neurogenesis.

Methods: We investigated various steps of the neurogenic process, using the immunohistochemical markers BrdU,
doublecortin, proliferating cell nuclear antigen as well as glial fibrillary acidic protein, after 17 or 21 days of corticosterone
(versus vehicle) treatment.

Results: Corticosterone primarily attenuates the proliferation of cells which subsequently develop into neurons; this is fully
reversed by mifepristone. Surprisingly, the corticosteroid effects on neurogenesis can even be fully re-set by a single-day
treatment with mifepristone (on day 18), despite the continued corticosterone exposure on subsequent days.

Conclusions: Our results emphasize that studies into the therapeutical efficacy of new antidepressants, especially those
targeting HPA-activity or the glucocorticoid receptor, should explore the possibility to reduce treatment duration.

Citation: Hu P, Oomen C, van Dam A-M, Wester J, Zhou J-N, et al. (2012) A Single-Day Treatment with Mifepristone Is Sufficient to Normalize Chronic
Glucocorticoid Induced Suppression of Hippocampal Cell Proliferation. PLoS ONE 7(9): e46224. doi:10.1371/journal.pone.0046224

Editor: Judith Homberg, Radboud University, The Netherlands

Received May 14, 2012; Accepted August 28, 2012; Published September 25, 2012

Copyright: � 2012 Hu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: PJL is supported by the Netherlands Brain Foundation, the European Union and ISAO. MJ is supported by NWO and the Human Frontiers Science
Program. MJ, PJL and PH were in part supported by Corcept Inc. PH is further supported in part by the Natural Science Foundation of China (81100811). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and would like to declare that there are no conflicts of interest to report other than that ms Hu,
unaware of this source, was in part supported by a student fellowship awarded to Prof. Dr. Joels by Corcept Therapeutics, USA, (http://www.corcept.com/). This
does this alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: p.j.lucassen@uva.nl

. These authors contributed equally to this work.

Introduction

Exposure to stress leads to activation of hypothalamo-pituitary-

adrenal axis (HPA), eventually resulting in enhanced release of

glucocorticoid hormones from the adrenal. These hormones enter

the brain and bind to intracellular receptors [1]. Glucocorticoid

receptors (GRs) are enriched in limbic areas like the hippocampus

and, due to relatively low affinity for corticosterone, are primarily

activated after stress [2].

Chronic stress and HPA dysfunction are generally considered

risk factors for the development of psychiatric disorders, including

major depression [3,4,5,6]. For instance, HPA-axis hyperactivity is

often seen in depressed patients and even in healthy high-risk

proband with a positive family history for affective disorders

[7,8,9]. HPA dysfunction is partly normalized upon treatment and

the degree of normalization inversely correlates with relapse

probability [10]. Recently, individuals with severe types of

depression, e.g. psychotic depression, were reported to benefit

from treatment with the GR-antagonist mifepristone

[11,12,13,14].

The cellular effects of chronic stress in the brain have been

extensively studied in rodent models, for reviews see [15,16,17,18].

Many parameters in target areas of corticosteroids, e.g. the

hippocampus, are altered after 21 days of stress or treatment with

high doses of corticosterone (the prevailing rat glucocorticoid),

including neurogenesis in the dentate gyrus (DG), for reviews see

[16,19,20,21,22]. Adult neurogenesis refers to the process by

which stem cells located in the subgranular zone undergo

sequential stages of proliferation, migration and neuronal differ-

entiation before incorporated into the existing adult hippocampal
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network [23,24,25,26]. Chronic stress and corticosterone treat-

ment were reported to reduce cell proliferation [27,28,29,30],

neuronal differentiation [31] and/or survival of newborn cells [32]

although also exceptions have been reported, for reviews see

[20,33,34]. Interestingly, the stress-reduced neurogenesis could be

completely normalized by mifepristone administration during final

4 days of stress or corticosterone administration (i.e. on days 18–

21), whereas the drug was ineffective in the handled control group

[35,36]. This may bear relevance to the clinical efficacy of

mifepristone.

How mifepristone achieves this normalizing effect is not well

understood. We performed two experiments to obtain more

insight. If corticosterone would only increase vulnerability to cell

death until day 18 while the actual reduction in newborn cell

number would only take place between days 18–21, then

mifepristone treatment starting at day 18 might prevent the latter

from happening (a ‘rescue’ effect). On the other hand, if

corticosterone would systematically reduce survival of newborn

cells throughout the entire application period, the normalizing

effect of mifepristone might take place between days 18–21, e.g. by

promoting additional rounds of cell division. In the first scenario,

the number of surviving newborn cells up to 17 days of

corticosterone administration is expected to be comparable to

that in vehicle-treated controls. In the latter case the number of

surviving newborn cells will be reduced after 17 days of

corticosterone. Corticosterone might also preferentially attenuate

proliferation, which would then be prevented or reversed by

mifepristone. These possibilities were examined in the first

experiment, by systematically studying cell proliferation and

survival after 17 or 21 days of corticosterone/vehicle administra-

tion. In the second experiment we questioned whether mifepris-

tone treatment for 4 consecutive days is necessary, or whether a

single-day treatment is already sufficient to reverse the chronic

corticosterone effect.

Materials and Methods

Animals
All animal procedures presented in this paper were approved by

the animal ethics committee of the University of Amsterdam. We

here report on data obtained in 48 adult male Wistar rats (8 weeks

of age; 180–200 g on arrival). All animals were housed in pairs

under controlled conditions of a 12/12 h light/dark cycle (lights

on 08:00 h) with food and water ad libitum. They were habituated

to the experimental setting for 10 days. Temperature and

humidity were kept at 20–22uC and 50–55% respectively.

Corticosterone and mifepristone treatment
Corticosterone (CORT; Sigma, C-2505; 40 mg/kg) was

dissolved in arachidus oil. CORT or vehicle (VEHC) was

subcutaneously injected daily at 09:00 h for 17 days or 21 days.

Mifepristone (50 mg/kg body weight; Sigma, St Louis, MO, USA)

was dissolved in 15 mL ethanol/1.5 mL coffee cream (Campina,

Woerden, The Netherlands). In experimental groups examined for

21 days, animals were treated either i) only on day 18 or ii) on days

18–21, both at 09:00 h and 16:00 h with mifepristone or its vehicle

(VEHM), administered through an oral syringe directly into

stomach.

Rats were randomly assigned to one of eight experimental

groups (n = 6 animals per group; see Figure 1 for schedule).

Comparable to our earlier study [36], one group received

corticosterone injections for 21 days and another group received

21 days of corresponding vehicle. Both groups were treated with

the vehicle of mifepristone on days 18–21 (21ds CORT+ds18–21

VEHM and 21ds VEHC+ds18–21 VEHM respectively). In view

of the high reproducibility of corticosterone-induced reduction in

neurogenesis [31,32,36], it was considered valid to use these two

groups as a statistical reference for the two experiments, which is

also in accordance with the European animal research ethics law

that aims for reduction in the number of experimental animals as

much as possible.

For experiment #1, the two reference groups were compared

with a 17 days CORT group (17ds CORT) and a 17 days VEHC

group (17ds VEHC). For experiment #2, we added four groups:

rats received mifepristone treatment during the final 4 days of

corticosterone or vehicle (21ds CORT+ds18–21 MIF; 21ds

VEHC+ds18–21 MIF respectively); and rats receiving 21 days

corticosterone or vehicle, in combination with mifepristone

treatment on day 18 only (21ds CORT+d18 MIF and 21ds

VEHC+d18 MIF, respectively). During treatment all experimental

groups were mixed and animals were sacrificed on next day after

the last treatment (i.e. on d18 or d22 for the 17ds and 21 ds

treatment groups, respectively).

Body weight
Body weights were measured regularly, first at the beginning of

experiment to assess the baseline, and subsequently at daily

intervals. Data are expressed in percentage change of body weight

(weight at the day of sacrifice minus the baseline value divided by

baseline value).

Bromodeoxyuridine labeling
To study survival of newborn cells, all animals received 5-

bromo-2-deoxyuridine (BrdU) intraperitoneally (200 mg/kg body

weight, dissolved in 0.9% saline) at noon on the first day of chronic

CORT or vehicle administration (i.e., 3 h following the first

CORT or VEHC injection). The single injection paradigm was

chosen to ensure that the delay between, and the acute effect of,

the first injection (of CORT or VEHC) and BrdU incorporation

was comparable for all animals.

Figure 1. Schematic representation of experimental groups. In
experiment #1, we compared animals treated subcutaneously with
corticosterone (CORT) or vehicle (VEHC) daily for 17 days with animals
treated for 21 days; the latter groups also received the vehicle of
mifepristone (VEHM) on days 18–21. In experiment #2, the 21 ds CORT/
VEHC+ds 18–21 VEHM were used as statistical reference groups in a
comparison with experimental groups receiving mifepristone on d18
only (21ds CORT+ds18 MIF and 21ds VEHC+ds18 MIF) or on 4 days from
18–21 (21ds CORT+ds18–21 MIF and 21ds VEHC+ds18–21 MIF). All
animals were treated with BrdU on day 1 and sacrificed on the morning
after the last treatment.
doi:10.1371/journal.pone.0046224.g001
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Brain tissue processing
At the day of sacrifice, animals were anaesthesized in the

morning with pentobarbital sodium salt (Nembutal, 1 mg/kg

bodyweight; A.U.V. Cuijk, the Netherlands) and perfused

transcardially with saline followed by 4% paraformaldehyde in

0.1 M phosphate buffer (PB, pH 7.4). To prevent pressure

artefacts, brains were additionally post-fixed overnight in the skull

at 4uC, washed and cryoprotected in 30% sucrose in PB. Frozen

sections (40 mm thick) were cut using a sliding microtome and

collected in PB with sodium azide.

Immunohistochemistry
Different stages of neurogenic process were studied as described

previously [37]. Immunohistochemistry for BrdU (monoclonal

mouse anti-BrdU, Roche Diagnostics, the Netherlands; 1:1000)

was used to assess cell survival of proliferating cells marked at the

first day of corticosterone (or vehicle) administration; PCNA

(monoclonal mouse anti-PCNA, DAKO, 1:400) to assess prolif-

eration; and doublecortin (DCX) (polyclonal goat anti-DCX,

SantaCruz; 1:800) to estimate neurogenesis. To analyze changes in

astrocyte numbers in dentate gyrus, immunohistochemistry for

GFAP (polyclonal rabbit anti-GFAP, DAKO; 1:10000) was done

as well. Amplification was performed with biotinylated secondary

antibodies, sheep anti-mouse (1:200; GE Healthcare), donkey anti-

goat (1:500; Jackson ImmunoResearch Labrotories) and goat anti-

rabbit (1:200; Vector Laboratories) immunoglobulins respectively,

followed by incubation in avidin-biotin complex (1:1000; Elite

Vectastain ABC kit, Brunschwig Chemie, Amsterdam) and

biotinylated tyramide (1:500; 0.01% H2O2; kindly provided by

Dr. I. Huitinga, Netherlands Institute for Neuroscience, Amster-

dam) and avidin-biotin-complex. Chromogen development was

performed with diaminobenzidine (DAB; 20 mg/100 mL Tris

buffer, pH 7.55, 0.01% H2O2).

To assess whether DCX+ neurons can re-engage in cell cycle

and undergo again proliferation, additional double immunofluo-

rescence stainings were performed for Ki67 and DCX in a limited

set of tissue sections from 21ds CORT+d18 MIF rats and their

vehicle treated controls. The following antibodies and conditions

were used; DCX (SantaCruz, polyclonal made in goat; 1:150) and

Ki67 (Novocastra, polyclonal made in rabbit; 1:250). Mounted

sections were first heated in 0.01 M citriate buffer (pH 6.0) in a

microwave oven (Bosch) for 5 minutes at 800 W and then

5 minutes at 400 W followed by 5 minutes at 260 W. After a

cool down period outside the oven of approximately 20 minutes,

the sections were washed and incubated in primary antibodies

diluted in 0.25% gelatine and 0.5% Triton-100 at room

temperature for 1 h, and then incubated overnight at 4uC. The

next day, the sections were washed and incubated for 2 h with

donkey-anti-rabbit biotinylated secondary antibody (for Ki67,

Jackson ImmunoResearch Labrotories; 1:200) and donkey-anti-

goat Alexa 488 antibody (for DCX, Molecular Probes, Leiden,

The Netherlands; 1:200) at room temperature before storage

overnight at 4uC. The next day sections were washed and

incubated for 2 h in Alexa 488-labeled streptavidine antibody (for

Ki67, 1:400, Molecular Probes, Leiden, The Netherlands; 1:400,

green). Following a brief rinse, they were embedded in Vectashield

(Vector Laboratories). Fluorescent signal was detected using a

confocal Nikon A1 laser scanning microscope and simultaneously

collected.

Quantification of DCX, GFAP, BrdU and PCNA
Stereological quantification of the number of DCX+ cells and

GFAP+ cells was performed unilaterally by systematic random

sampling in every 10th section using the StereoInvestigator system

(Microbright field, Germany) according to stereological principles

described previously, for details see [38] and without a left/right

preference within or between animals. Because of relatively low

numbers and the occurrence of clusters, BrdU+ and PCNA+ cells

were counted manually by means of modified stereological

procedure in every 10th hippocampal section (Zeiss microscope

2006 magnification) and multiplied by 10 to estimate the total

number in DG.

Statistics
Data are presented as mean 6 SEM. All statistics were

performed with SPSS 16. Data were subjected to an ANOVA,

using p,0.025 as the level of significance, thereby correcting for

the double use of the references groups (21 ds CORT and 21 ds

VEHC). This was followed by a post-hoc Tukey multiple

comparisons of the means.

Results

General expression patterns of BrdU, DCX, PCNA and
GFAP

BrdU was injected on day 1 and evaluated on day 18

(experiment #1) or day 22 (experiment #1 and 2). This gives

insight in the survival of proliferating cells [39]. BrdU+ cells

prevailed in the subgranular zone (SGZ; see Figure 2A for typical

example) but were also found in the hilus and -in considerably

lower numbers- the granule cell layer (GCL).

Doublecortin (DCX) is a microtubule binding protein expressed

in young neurons from approximately 4 to 14 ds after birth of the

cell [40]. DCX+ somata were located mainly in the SGZ and their

processes extended through GCL into the molecular layer (shown

in Figure 2B). In general, ‘gaps’ in the continuous line of DCX

expressing cells in SGZ and shorter extensions were frequently

found in CORT-treated animals compared to controls. We

distinguished morphologically different subtypes of DCX+ neu-

rons, reflecting different stages of neuronal development, as

described before [37]: those without dendrites or with horizontally

orientated dendrites were designated as type 1 cells (shown in

Figure 2C) and cells with dendrites growing into GCL but not the

molecular layer as type 2 cells (Figure 2D); these together are

considered to be less mature neurons which can still undergo cell

division [41]. In contrast, more mature DCX+ neurons are

characterized by a primary dendrite orientated perpendicularly to

the SGZ and with protrusions into the molecular layer (type 3

cells, Figure 2E).

Proliferating cell nuclear antigen (PCNA) is involved in leading

strand synthesis during DNA replication and as such commonly

used as a marker for cell division [42,43]. In accordance with the

literature [44], PCNA+ cells prevailed in SGZ but were also found

in the hilus and to a lesser extent in the outer GCL as clusters, with

multiple cells per cluster (typical examples in Figure 2F).

We further included quantification of the number of GFAP-

positive astrocytes, as these glia cells have been implicated in the

pathogenesis of affective disorders [45] and were found to be

reduced after stress in animal models [46] and in patients suffering

from depression [47,48,49]. Typically, GFAP+ cells showed brown

DAB-staining in the processes and cytoplasm while the nucleus

was devoid of staining and they were present throughout the main

hippocampal subregions (Figure 2G).

Effects of 17 versus 21 days treatment with
corticosterone

Body weight gain was significantly different among the four

experimental groups (ANOVA F(3,20) = 113.8, p,0.001; Table 1).

Stress Hormone Receptor Blockade and Neurogenesis
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Post-hoc analysis revealed that both 17 days and 21 days CORT

exposure significantly (p,0.001) reduced the percentual change in

body weight, compared to the respective vehicle controls. As

expected, the gain in body weight was significantly lower after 17

ds VEHC than after 21 ds VEHC (p,0.05).

The four experimental groups differed significantly from each

other (F(3,20) = 13.7, p,0.001) with respect to the number of

BrdU+ cells (Figure 3A). Post-hoc analysis showed that both 17 ds

(p,0.05) and 21 ds CORT (p,0.001) exposure significantly

reduced the number of BrdU+ cells compared to the respective

controls.

Treatment also significantly affected the total number of DCX+

neurons (F(3,20) = 15.5, p,0.001; Figure 3B1). Both 17 ds CORT

exposure (p,0.001) and 21 ds CORT exposure (p,0.001)

significantly reduced total number of DCX+ neurons compared

to controls at the same day. Treatment effects were reflected

among the immature (type 1+2; ANOVA: F(3,20) = 8.2, p,0.001;

Figure 3B2) as well as more mature (type 3; F(3,20) = 13.6,

p,0.001; Figure 3B3) DCX+ cells. For both immature and mature

DCX+ cells, the reduction in cell number was significant after 17

ds CORT (p,0.05 and p,0.005 respectively) and after 21 ds

CORT exposure (immature neurons and mature neurons: p,0.05

and p,0.001) compared to the respective control groups.

The number of PCNA+ was also significantly (F(3,20) = 13.0,

p,0.001) affected by treatment (Figure 3C). The 17 ds and 21 ds

CORT groups were highly comparable and both showed a

significant (p,0.001 and p,0.005 respectively) reduction in the

number of PCNA+ cells compared to the corresponding control

groups. As shown in Figure 3D, CORT treatment did not affect

the number of GFAP+ astrocytes at all (F(3,20) = 0.977, p.0.05).

For all parameters tested (BrdU, DCX, PCNA, GFAP), the two

VEHC groups (17ds VEHC and 21ds VEHC+d18–21 VEHM)

were highly comparable. Similarly, the 17ds CORT and 21ds

CORT (+d18–21 VEHM) groups did not differ significantly from

each other for any of the markers investigated.

Collectively, these results are not compatible with the idea that

reduction in adult-born cell number starts only .17 ds after the

onset of CORT exposure, so that mifepristone at that time would

exert a ‘rescue’ effect. Rather, our data indicate that throughout its

presence, corticosterone steadily attenuates adult neurogenesis (see

further Discussion).

Effects of mifepristone administered on d18 or ds18–21
of a 3-weeks corticosterone treatment period

We next examined if we could replicate the earlier findings with

mifepristone [36]; and if so, whether the chosen 4-days treatment

period is required for complete reversal, or whether a single-day

treatment at d18 can already ‘reset’ the corticosterone-induced

attenuation of proliferation. To this end, we compared six

experimental groups, which differed from each other with respect

to corticosterone treatment (CORT vs VEHC for 21 ds) and

mifepristone treatment (a single administration of mifepristone on

d18; mifepristone on 4 consecutive days, i.e. ds 18–21; no

Figure 2. Distribution of BrdU, DCX, PCNA and GFAP positive cells in the rat dentate gyrus. A. BrdU+ cells are mainly located in the
subgranular zone (SGZ, arrowhead) but can also be found in the hilus. Considerably lower numbers are encountered in the granular cell layer (GCL).
Calibration bar: 50 mm. B. Overview of the rat dentate gyrus with vehicle treatment showing strong immunoreactivity of DCX in the SGZ and GCL,
with dendrites extending through the GCL into the molecular layer (ML). Calibration bar: 100 mm. C. Arrowhead points to a relatively immature type 1
DCX+ cell, without dendrites and/or with horizontally oriented dendrites. Calibration bar: 10 mm. D. Arrowhead points to a type 2 DCX+ cell, with
dendrites with an oblique orientation, growing into the GCL but not ML. Calibration bar: 10 mm. E. Arrow points to a relatively mature type 3 DCX+

cell, characterized by a primary dendrite orientated perpendicularly to the SGZ and with protrusions extending into the ML. Calibration bar: 10 mm. F.
Clustered PCNA-labeled cells prevail in the SGZ (arrowhead) but can also be found in the hilar region; these cells are less prevalent within the GCL.
Calibration bar: 50 mm. G. GFAP+ astrocytes are mainly located in the hilus and ML but not in the GCL. These cells show brown DAB-staining in their
processes and cytoplasm whereas the nucleus is devoid of staining (arrow). Calibration bar: 10 mm. H. Double immunofluorescent staining
(orthogonal planes) of a DCX-Ki67 double immunopositive cell in the SGZ of a 21ds CORT+d18 MIF treated animal, demonstrating that at least a
subset of the DCX+ cells can re-engage in cell cycle. Arrow indicates red Ki-67 signal in the nucleus of a green DCX+ cell. 406magnification; GCL:
granule cell layer of the hippocampal dentate gyrus.
doi:10.1371/journal.pone.0046224.g002

Table 1. Percentual change in body weight.

Group names VEHC CORT

Experiment 1

21 ds+ds 18–21 VEHM 36.062.0 24.563.0a

17 ds 27.560.9b 20.160.6a

Experiment 2

21 ds+ds 18–21 VEHM 36.062.0 24.563.0a

21ds+d18 MIF 31.460.9 4.260.8a,d

21ds+ds 18–21 MIF 43.161.0c 20.662.1a

Corticosterone (CORT) compared to vehicle treatment (VEHC) reduced the
percentual change in body weight, at 17 and 21 ds. This was not consistently
affected by treatment with mifepristone (MIF).
a: significantly different from the corresponding VEHC group (p,0.001).
b: significantly different from the 21 ds VEHC+ds 18–21 VEHM group (p,0.05).
c: significantly different from the 21 ds VEHC+d18 MIF group (p,0.001).
d: significantly different from the 21 ds CORT group (p,0.05).
doi:10.1371/journal.pone.0046224.t001
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mifepristone, i.e. VEHM on ds 18–21). An overall ANOVA

revealed a significant effect on the percent change of body weight

(F(5,30) = 132.7, p,0.001; Table 1), which was mostly explained

by a significantly reduced body weight in all 21 ds CORT groups,

with or without mifepristone (p,0.001 in all cases). In the VEHC

groups, 4 days of mifepristone administration resulted in more

gain in body weight than in the group which received no

mifepristone at all. Moreover, the 21ds CORT+d18 MIF group

had less attenuated body weight gain than the CORT treated

group receiving no mifepristone.

The number of BrdU+ cells differed among the groups

(F(5,30) = 7.3, p,0.001). We completely reproduced our earlier

finding [36] that mifepristone treatment during ds 18–21 fully

normalizes the CORT-induced reduction in number of BrdU+

Figure 3. Effects of 17 versus 21 days treatment with corticosterone. A. Both 17 ds (p,0.05) and 21 ds CORT (p,0.001) exposure
significantly reduced the number of BrdU+ cells compared to the respective vehicle control groups. B1. Likewise, both 17 ds and 21 ds CORT
exposure significantly (p,0.001) reduced the total number of DCX+ cells compared to the control groups. B2. A significant reduction in immature
DCX+ cells was found after 17 ds CORT (p,0.05) as well as after 21 ds CORT exposure (p,0.05) compared to the respective control groups. B3. The
number of mature DCX+ cells was significantly reduced after 17 ds CORT (p,0.005) and after 21 ds CORT exposure (p,0.001) compared to the
respective control groups. C. Both 17 ds and 21 ds CORT exposure groups showed a significant (p,0.001 and p,0.005 respectively) reduction in the
number of PCNA+ cells compared to the corresponding control groups. D. Treatment with corticosterone did not affect the number of GFAP+

astrocytes at all (p.0.05). Data are presented as mean+SEM (n = 6 animals per group). For each marker, the groups were first subjected to an ANOVA,
followed by a post-hoc Tukey multiple comparison of the means. * p,0.05; ***p,0.005; **** p,0.001.
doi:10.1371/journal.pone.0046224.g003
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cells (p,0.05 compared to 21 ds CORT+d18–21 VEHM;

Figure 4A). Surprisingly, mifepristone treatment only on d18 also

normalized the CORT-induced reduction (p,0.01) and no

significant difference was found between these two treatment

groups (21ds CORT+ds18–21 MIF versus 21ds CORT+d18 MIF;

p.0.1). Mifepristone treatment was entirely ineffective in the

vehicle (VEHC) control groups.

A highly similar pattern was observed with respect to the

number of DCX+ cells: We observed a significant overall

difference between the groups in the number of DCX+ cells

(F(5,30) = 4.2, p,0.01). Mifepristone treatment either during ds

18–21 (p,0.05) or only on d18 (p,0.05) normalized the CORT-

induced reduction in DCX+ cells (Figure 4B1). These two

treatment groups (21ds CORT+ds18–21 MIF versus 21ds

CORT+d18 MIF) yielded comparable numbers of DCX+ cells.

Follow-up analysis of various developmental stages in DCX+ cells

showed that mifepristone treatment was effective in normalizing

the CORT-induced reduction of immature DCX+ neurons to

control levels (ANOVA: F(5,30) = 4.4, p,0.005; Figure 4B2). Both

the 21ds CORT+d18 MIF and 21 ds CORT+ds18–21 MIF

groups differed significantly (p,0.05) from the 21ds

CORT+ds18–21 VEHM group. The number of mature DCX+

cells was also different among the treatment groups (F(5,30) = 5.2,

p,0.005; Figure 4B3). However, post-hoc analysis of the groups

showed that mifepristone was ineffective in restoring the CORT-

induced reduction in the number of mature DCX+ cells. CORT-

treated animals receiving mifepristone for 4 days (21ds

CORT+ds18–21 MIF) still had a significantly lower number of

mature DCX+ cells than the corresponding vehicle group (p,0.05

vs 21ds VEHC+ds18–21 MIF). This group did not differ

significantly (p.0.05) from the CORT-treated group receiving

MIF only on d18.

A similar overall pattern was observed for the proliferation

marker PCNA (ANOVA: F(5,30) = 6.6, p,0.001; Figure 4C).

Thus, mifepristone administration on d18 alone (p,0.05) or

during ds18–21 (p,0.01) normalized CORT- induced reduction

in PCNA+ cells; in this respect the two mifepristone-treated groups

were indistinguishable. Again, mifepristone treatment had no

effect in the VEHC groups. We did not observe a significant

overall effect of treatment on GFAP staining (ANOVA:

F(5,19) = 2.649, p.0.05; Figure 4D).

Double immunofluorescent staining for DCX and the prolifer-

ation marker Ki-67 revealed several co-labeled cells in the 21ds

CORT+d18 MIF group indicating that a subset of the neurogenic

cells is actively engaged in proliferation after MIF treatment (see

example in Fig. 2H). This was not observed in the vehicle-treated

control group (not shown).

In conclusion, for all proliferation and survival markers,

mifepristone treatment on d18 alone was as effective as treatment

on ds18–21.

Discussion

This study set out to elaborate on our previous findings that a

GR-antagonist can rapidly reverse the reductions in adult

neurogenesis caused by chronic stress exposure [35] or prolonged

corticosterone administration [36]. In the current study, we

replicated this phenomenon and provide evidence that GR-

antagonist mifepristone does not achieve its effect by rescuing

vulnerable cells from a late cell death, but rather by reversing the

ongoing corticosterone-induced attenuation of cell proliferation,

and thereby stimulating extra rounds of cell division. Surprisingly,

also a single day treatment on day 18 had exactly the same effect

as when the drug was given for 4 consecutive days.

Experimental design
We chose to treat rats with corticosterone for 21 days, rather

than exposing them to daily stress. While daily corticosterone

treatment is essentially different from chronic stress, the common

element in both paradigms is the extended over-exposure to

corticosterone. Since both approaches cause strongly overlapping

effects on neurogenic process [35,36], corticosterone seems to be

an important mediator. We therefore selected the more straight-

forward (and easier to accomplish) protocol of corticosterone

administration for 21 days. Extrapolation of these findings to

conditions of chronic stress, however, should be done with care.

The phenotype of 21ds corticosterone administration is robust.

Earlier experiments had shown that this regime strongly reduces

body weight gain as well as adrenal and thymus weight [36,50].

We here only examined body weight gain and observed a severe

attenuation in body weight gain in all corticosterone treatment

groups, i.e. also after 17ds of hormone administration. We did

observe some effects of mifepristone on body weight, but these

were only small and not entirely consistent. For instance, in

corticosterone-treated animals mifepristone administration on d18

caused a less severe attenuation in body weight gain compared to

animals receiving no mifepristone, but this was not seen with

mifepristone treatment for 4 consecutive days.

Mifepristone has a strong affinity for the GR, preventing

transactivation of GR-responsive genes [51]. However, this

compound also binds to progesterone receptors. Although the

anti-progesterone activity is likely limited in adult male rats, we

cannot entirely exclude some of the observed affects were due to

mixed pharmacological profile of mifepristone. We nevertheless

decided to use this drug, to allow easy comparison with earlier

studies in rats and men [11,12,13,14,35,36,51,52,53,54,55,56,57].

A potential limitation of the present study is that an extra

experimental group treated with vehicle only on d18 was not

included. This was done as a 21ds CORT+ds18 VEHM group

was expected not to be different from the 21ds CORT+ds18–21

VEHM animals, which we did examine. Although one could

reason that 4 days of (oral) VEHM administration is more stressful

than just 1 day, it should be noted that all animals already received

an injection (CORT or VEHC) in the morning, so that the added

stress of VEHM delivery was probably limited. Moreover, in the

evening (during the 2nd MIF administration) CORT levels are at

the peak of circadian rhythm, so that even in the VEHC group the

relative increase in corticosterone level due to VEHM delivery was

probably low. Therefore, we expect administration of VEHM by

itself (be it once or on 4 consecutive days) will not have influenced

our data much. This is in line with the fact that both a single- and

4 consecutive-days administrations of mifepristone in the VEHC

groups did not affect any of the parameters investigated; if the

administration of mifepristone (or its vehicle) was highly stressful,

we would expect that a single versus repetitive exposure causes a

different phenotype, which was not the case. Altogether we have

no reason to assume that lack of the VEHC/CORT+d18 VEHM

groups would seriously hamper our conclusions.

Primary target of corticosterone in the neurogenic
pathway

Earlier studies have supplied evidence that chronic corticoste-

roids over-exposure affects multiple steps in the neurogenic

pathway: corticosteroids reduce proliferation [29], decrease

neuronal differentiation [31], and impair survival of adult-born

cells [32,36].

Our first experiment gives additional insight in this issue. The

results with PCNA -a marker for cell proliferation at the time of

sacrifice [58,59]- indicate corticosterone exposure reduces prolif-
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Figure 4. Effects of mifepristone given at d18 only or during ds18–21 of 3-weeks corticosterone treatment period. A. Mifepristone
treatment during ds 18–21 fully normalizes the CORT-induced reduction in number of BrdU+ cells (p,0.05 compared to 21 ds CORT+d18–21 VEHM).
Surprisingly, mifepristone treatment only on d18 also normalized the CORT-induced reduction (p,0.01). No significant difference was found between
these two treatment groups (21ds CORT+ds18–21 MIF versus 21ds CORT+d18 MIF; p.0.05). Mifepristone treatment was entirely ineffective in the
vehicle (VEHC) control groups. B1. Mifepristone treatment either during ds 18–21 (p,0.05) or only on d18 (p,0.05) normalized the CORT-induced
reduction in DCX+ cells. These two treatment groups (21ds CORT+ds18–21 MIF versus 21ds CORT+d18 MIF) yielded comparable numbers of DCX+

cells. B2. Mifepristone treatment either during ds 18–21 (p,0.05) or only on d18 (p,0.05) was effective in normalizing the CORT-induced reduction
in immature DCX+ cells. B3. Mifepristone was ineffective in restoring the CORT-induced reduction in the number of mature DCX+ cells (p.0.05 in
both treatment groups). CORT-treated animals receiving mifepristone for 4 days (21ds CORT+ds18–21 MIF) still had a significantly lower number of
mature DCX+ cells than the corresponding vehicle group (p,0.05 vs 21ds VEHC+ds18–21 MIF). C. Mifepristone administration either on d18 alone
(p,0.05) or during ds18–21 (p,0.01) normalized CORT-induced reduction in PCNA+ cells. Again, mifepristone treatment had no effect in the VEHC
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eration, both after 17 ds and 21 ds treatment. The degree of

reduction was comparable at both timepoints, suggesting an

ongoing attenuation during the daily corticosterone exposure.

Immunostaining for DCX reflects the sum of neuronal differen-

tiation and survival of migratory young neurons born 4–14 days

before staining [40]. Given the attenuated proliferation indicated

by PCNA staining on d18, the reduction in number of immature

DCX+ cells seen on d22 (partly reflecting cells that were born

around d18) could be well explained by a reduced proliferation of

cells that subsequently differentiate into neurons. In view of the

highly comparable reduction in the number of immature DCX+

cells at d18 (which were most likely born ,d14), corticosterone

treatment may indeed suppress proliferation for most of the 21ds

treatment period. This is underlined by the extensive reduction in

number of mature DCX+ cells (a cumulative measure of cells born

during the first two weeks of treatment and differentiating into

neurons), both after 17 and 21 ds corticosterone exposure.

Nevertheless, additional corticosterone effects on neuronal differ-

entiation and/or survival cannot be excluded. A shift from

neuronal into glia phenotype seems unlikely, because the number

of GFAP+ cells is not altered; however, it is possible that changes in

differentiation may remain unnoticed, since the number of

newborn cells becoming GFAP+ is only a fraction of the total

pool of GFAP+ cells [60,61,62].

In our experimental design, BrdU staining reflected the survival

of cells that were derived-probably after several rounds of

replication- from a subgroup of cells born on day 1. If we assume

an ongoing suppression of replication by corticosterone, the

reduced number of BrdU+ cells both at d18 and d22 can be

understood in the absence of any steroid effect on cell survival or

even with increased cell survival. However, if cells incorporating

BrdU on d1 did not undergo several rounds of replication, the

findings support the view that corticosterone impairs survival of

newborn cells.

Collectively, although additional hormonal influences on

differentiation and survival of newborn cells cannot be excluded,

the results support the view that corticosterone attenuates cell

proliferation and adult neurogenesis, probably for most of period

in which the hormone is administered.

Effects of mifepristone
The findings with PCNA indicate that mifepristone normalized

corticosterone-induced attenuation in cell proliferation. As the

antagonist was ineffective in VEHC-treated animals, we conclude

that mifepristone -rather than e.g. through additional pathways-

prevents corticosterone from exerting suppressive effect on

proliferation. Surprisingly, this was not only seen when mifepris-

tone was administered during the days preceding the moment on

which proliferative activity was probed (d22), but even when it was

given just on d18, i.e. 4 days before PCNA staining. Thus, despite

continued presence of corticosterone after d18 and the presumed

absence of mifepristone at that time- its presence at d19–21 can be

ruled out in view of the short half-life time [63,64]- later

corticosterone no longer seems able to reduce proliferation or

overrule the proliferative changes initiated at d18.

The observations with DCX are also compatible with the view

that mifepristone prevents corticosterone not only from reducing

proliferation, but also from reducing the number of cells that

lateron develop into neuronal phenotype. The number of

immature DCX+ cells (which were born on d18 or earlier) was

fully restored by mifepristone. The fact that corticosterone-

induced reduction in the number of mature DCX+ cells was not

normalized fits with this view, since the proliferation giving rise to

these cells probably took place before mifepristone was adminis-

tered. Incidentally, if mifepristone would primarily prevent a

putative corticosterone-induced suppression in cell survival, one

would expect that the number of mature DCX+ cells is also (partly)

normalized by mifepristone; since the number of mature DCX+

cells in the 21ds CORT+ds18–21 MIF group was significantly

lower than that in the 21ds VEHC+ds18–21 MIF group, this

strongly argues against effects of corticosterone and mifepristone

on cell survival per se. Similar to the PCNA results, mifepristone

on d18 alone was as effective as a 4ds delivery in normalizing the

number of immature DCX+ cells. This is less surprising, since

DCX immunoreactivity discerned on d22 most likely reflects

neurons born at d18 or earlier.

A significant proportion of the newborn cells in adult SGZ

undergoes apoptosis, most likely within their first week of life

[39,65]. Earlier studies have suggested that GR activation may

play a pivotal role in glucocorticoid-induced apoptosis and

proliferation [66,67], whereas mifepristone pre-treatment could

e.g. prevent stress-induced apoptosis of hippocampal newborn

neurons [56]. Albeit in osteoblastic cells, mifepristone also

abolishes the GR agonist dexamethasone (DEX)-induced apopto-

sis and G0/G1 arrest and increases cell proliferation, an effect that

may be mediated through GR [68]. At the start, we considered the

possibility that mifepristone may exclusively act by preventing

death of a group of neurons [56] at d18 or later. If so, we would

expect the number of BrdU+ cells to be comparable up to d18 and

then drop dramatically. However, this was not the case

(experiment #1). Since the equilibrium between proliferation

and death of cells born on d1 (reflected by the number of BrdU+

cells) can be fully restored by mifepristone, and in view of the

findings with PCNA and DCX, we conclude that normalization in

the number of BrdU+ cells at d22 by mifepristone is caused by the

drug preventing attenuation of proliferation caused by corticoste-

rone. In fact, mifepristone may, either directly or indirectly, also

stimulate proliferation of some neurogenic cells. As shown in

Fig. 2H, a small subset of the DCX+ cells were co-labeled for the

proliferation marker Ki-67 indicating that at least some of the

neurogenic cells can re-engage in proliferation. Earlier, Walker et

al. [69], using fluorescence-activated cell sorting (FACS), could

demonstrate that of the DCX+ cells those with relatively low levels

of DCX per cell were capable of dividing again.

As was argued above for PCNA, the BrdU data support the

concept that a single mifepristone administration is sufficient to

prevent subsequent corticosteroid-effects at least for several days,

even in the continued presence of corticosterone. Regarding this

rapid normalization, several similar observations exist in literature

in which e.g. the HPA axis or opioid system were ‘reset’ already

after a short stimulus; for example, a short inescapable stressor

produced long-lasting changes in the brain-pituitary-adrenal axis

of adult male rats, while a single administration of interleukin-1

causes long-lasting changes in HPA sensitization [70,71,72].

Moreover, also for opioid sensitivity, similar ‘swicth-like’ effects

have been described [73,74,75].

In conclusion, the current study provides evidence that

repetitive corticosterone administration primarily attenuates pro-

groups. D. No significant overall effect of treatment was found on GFAP+ cells number (p.0.05). Data are presented as mean 6 SEM (n = 6 animals
per group). For each marker, the groups were first subjected to an ANOVA, followed by a post-hoc Tukey multiple comparison of the means. *
p,0.05; ** p,0.01; ***p,0.005; **** p,0.001.
doi:10.1371/journal.pone.0046224.g004
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liferation and more specifically neurogenesis, in the rat DG. This is

prevented already by a brief administration of a GR-antagonist.

Surprisingly, also a single day administration of the antagonist is

already sufficient to normalize the neurogenic process, possibly by

resetting their initial level of proliferation. A similar quick switch

may explain the rather rapid beneficial effects of mifepristone

observed in a small sample of patients with psychotic depression

[12,14,54,55]. This underlines that studies into therapeutical

efficacy of experimental antidepressants that target HPA-activity

should explore possibility of reducing treatment duration since this

might result in equally beneficial effects.
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