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1 Introduction

With the availability of open access databases, such as
ChEMBL DB,[1] PubChem,[2] Drugbank,[3] and IUPHAR,[4] the
pharmacoinformatics community now has access to mil-
lions of data points. These data are mostly compiled from
literature sources and are thus quite heterogeneous with
respect to the biological assays used. Furthermore, these
datasets mainly comprise compounds from different local
SAR series and therefore show an inhomogeneous distribu-
tion both within the biological property space and the
chemical space. This renders it difficult to create global
QSAR models based on open data.

In this case classification algorithms seem to be the
method of choice. They could be an excellent tool for ex-
ploration of the diverse chemical space provided in open
data sources. Moreover, separation of data points through
classification models has proven to be a fast and reliable
tool in computational chemistry.[5,6] In an attempt to exploit
the wealth of open data available and to check the perfor-
mance of classification algorithms applied to these data we
aimed to collect, systematize and analyze a set of data
available in ChEMBL DB. As a model target we chose the
transient receptor potential vanilloid type 1 (TRPV1), which
became of interest to us in light of our work on piperine-
type compounds.

TRPV1 is a transmembrane ion channel and is mainly lo-
cated in the nociceptive neurons of the peripheral nervous
system. It is responsible for the transfer of pain stimuli from
periphery to the central nervous system and thus it repre-

sents an emerging target for development of analgesics.[7]

Since the crystal structure of the receptor is not available,
current in silico work mainly focuses on ligand-based ap-
proaches.[8] Availability, variety and diversity of the informa-
tion on ligands in CHEMBL DB makes it an interesting use
case for exploring the usability of open data.

2 Methods

2.1 Preparation of the Datasets

The 2D structures of 2332 TRPV1 ligands were downloaded
from the ChEMBL DB release 13. Since the ChEMBL DB pro-
vides broad and diverse information on type and range of
activity and biological assays of the compounds, the de-
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rived structures consequently underwent a rigorous filter-
ing protocol. At the beginning, 1479 compounds with one
type of measured activity on the TRPV1 receptor (i.e. IC50

values) were chosen from the whole list (see Table 1). Next,
the dataset was filtered according to the assay type used.
For 1479 TRPV1 ligands the ChEMBL DB provided 78 differ-
ent assay descriptions, the whole list of which can be
found in Table SI-1 of the Supporting Information (SI). Fur-
ther, 374 compounds measured on CHO and 1321N cells
were removed. This led to dataset of 1105 compounds in
which 609 compounds were determined with the use of
several assays on HEK293 cells and for 496 compounds the
cell line was not mentioned in the assay description (see
Table 2 for details). Subsequently, assay type and cell line
was manually rechecked in the literature reference provid-
ed by ChEMBL.

Consequently, 531 compounds reported as blocking the
capsaicin-induced Ca2 + flux in HEK293 cells remained. Final-

ly, the dataset was cleaned from duplicates and from com-
pounds showing unclear activity values, which led to a set
of 408 TRPV1 antagonists being comparable between each
other. The final dataset thus contained only around 25 % of
the compounds reported as TRPV1 antagonists. This once
more stresses the need of standardized assays in order to
allow optimal use of the wealth of data available, as also
outlined recently for another use case.[9] The range of IC50

values in the dataset varied from 0.4 to 17490 nM. The ac-
tivity of capsazepine, a potent antagonist of the TRPV1 re-
ceptor measured in this assay type is 100 nM.[10] This value
thus served as threshold to divide the compounds into
active and inactive in their ability to block the receptor
after its activation induced by capsaicin. This led to a bal-
anced dataset with 201 active and 207 inactive com-
pounds, respectively. A full list of structures together with
the IC50 values and the class labels is provided as sdf-file in
the Supporting Information and on our web-page (phar-
minfo.univie.ac.at).

As descriptors we selected both a set of 2D- and 3D-de-
scriptors. As 2D-descriptors we compiled 32 Van der Waals
surface area (VSA)[11] descriptors implemented in MOE. Each
descriptor is computed as the sum of accessible atomic Van
der Waals surface areas in a specific range for a given prop-
erty. The properties usually described are partial atomic
charges (PEOE),[12] molar refractivity (SMR),[11] and water-oc-
tanol partitioning coefficient (SlogP).[11] For 3D-representa-
tion, we chose 76 i3D VolSurf (VSURF) descriptors,[13] which
reflect physico-chemical and pharmaco-kinetic properties in
a high dimensional space. The i3D descriptors are calculat-
ed based on 3D conformation of each molecule, but are in-
variant to translations and rotations of the entire conforma-
tion. Both VSA and VSURF descriptors have been success-
fully applied for the analysis of large databases, as well as
for QSAR/QSPR analysis.[13,14] Composition of each set of de-
scriptors is given in Table SI-2. The 3D conformations of the
compounds for calculation of VSURF descriptors were gen-
erated in the Molecular Operation Environment version
2010.10 (MOE)[15] and minimized using the MMFF94x force
field.

The obtained descriptor values for 408 compounds were
subjected to Z-Score normalization (script is provided in SI)
separately for VSA and VSURF descriptor sets. In order to
evaluate the robustness of the models obtained, we pre-
pared 100 different collections of training (TR) and test (TS)
sets. Each set comprised 80 % (325 compounds) for training
and 20 % (83 compounds) for testing. The split was ob-
tained by using different random seeds as implemented in
KNIME v.2.3.4.[16]

In addition, so-called “overall” models were built for the
dataset without separation on TR and TS.

2.2 Classification Algorithms

Machine learning methods used comprise 12 different clas-
sification algorithms which are implemented in WEKA.[17] As

Table 1. Different activity types provided by ChEMBL13 for TRPV1
ligands and number of compounds for which corresponding activi-
ty was measured.

Activity type Number of compounds

IC50 1479
Ki 146
EC50 147
Activity 106
Inhibition 61
Other[a] 393

[a] Potency, Emax, Hill coefficient, efficacy, response, pKb
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Table 2. The assay descriptions available in CHEMBL13 for TRPV1
ligands and number of compounds measured with the correspond-
ing assay. AA: antagonistic activity

Assay description HEK293 N/A

AA at hTRPV1 assessed as inhibition of capsaicin-in-
duced calcium influx

406 274

AA at hTRPV1 assessed as inhibition of acid-induced
calcium influx

95 32

AA at hTRPV1 assessed as inhibition of capsazepine-
induced calcium mobilization

16 –

AA at hTRPV1 assessed as inhibition of capsaicin-in-
duced effect at pH 5.5

3 –

AA at hTRPV1 as decrease in intracellular calcium
levels

29 84

AA at hTRPV1 assessed as inhibition of N-arachido-
noyl-dopamine-induced effect

1 1

AA at hTRPV1 assessed as inhibition of PMA-induced
activation

12 6

AA at hTRPV1 assessed as inhibition of agonist-in-
duced increases in intracellular [Ca2 +] levels

40 –

Inhibition of anandamide activated hTRPV1 receptor
in [Ca2 +] influx assay

– 13

Inhibition of hTRPV1 7 53
Inhibition of binding to hTRPV1 – 20
hTRPV1 blocker – 13
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decision trees NBTree (Naive-Bayes Decision Tree[18]) and
BFTree (Best-first Decision Tree[19]) were chosen. They repre-
sent data in a tree-like structure, so that on each node the
value of a certain descriptor is taken into account, conse-
quently leading to a splitting of the data. The Random
Forest (RF)[20] algorithm in which a family of trees built from
random data subsets and random subsets of features is ob-
tained, was also used in the study because this type of clas-
sification is especially useful for fast and robust manage-
ment of highly variable data. Instance-based learning algo-
rithms used comprised IB1 and IBk.[21] These similarity
searching algorithms evaluate the remoteness of a given
new instance from the nearest one or from several neigh-
bors. Probability methods based on Bayesian statistics in-
cluded Bayesian Logistic Regression (BLR)[5] and Bayesian
Network (BayesNet).[22] Combination of different outputs
into a single prediction (model) was performed using the
following: Bagging,[23] Multiboost (MBoost),[24,25] Dagging,[26]

Decorate[27] and Ensemble Selection (Ensemble).[28] In Bag-
ging training data was splitted into several datasets, then
a REPTree[17] was applied to each dataset independently. In
MBoost the models for the splitted data were built using
Decision stump[29] and further the vote was assigned to
each of the models for combining them into one model. In
Dagging the data were divided into several disjoint folds
and each basin of data was treated with an SVM (SMO[30]

with polykernel and default parameters as implemented in
WEKA). During the Decorate one ensemble of several J48
classifiers were built by constructing special artificial exam-
ples for training data. In Ensemble forward selection was
used to add the next best tree to an ensemble of REPTrees.
For all the above mentioned ensemble techniques the pre-
diction was obtained by averaging the predictions ob-
tained from each model in the ensemble with the excep-
tion of MBoost, where the weighted average was comput-
ed for final prediction.

2.3 3D QSAR. GRID Independent Molecular Descriptor
Analysis

3D QSAR analysis was performed using alignment-inde-
pendent 3D-descriptors in Molecular Discovery software
Pentacle version 1.0.6.[31] The input 3D conformations were
generated using the software package Corina v.3.2.[32] Four
types of probes: DRY (descriptor of hydrophobic interac-
tion), O (H-bond acceptor group descriptor), N1 (H-bond
donor group descriptor) and TIP (shape descriptor) with
a default Grid Step of 0.5 � were used for computation of
Molecular Interaction Fields (MIFs). The discretization of
MIFs was performed using the AMANDA algorithm[33] with
default values of probe cutoffs (DRY =�0.5, O =�2.6, N1 =
�4.2, TIP =�0.75) and a scale factor of 0.55. For MIF encod-
ing, the CLACC algorithm with “Remove non-consistent
couples” set to “True” and other parameters to default
values was used.

2.4 Evaluation of Models

Several standard parameters based on a confusion matrix
built on true positives (TP), true negatives (TN), false posi-
tives (FP) and false negatives (FN) were used to estimate
the quality of the obtained models. Values of sensitivity,
specificity, accuracy and Matthews correlation coefficient
(MCC)[34] were obtained for each model applying 10-fold
cross-validation of the TR and prediction of TS (see Equa-
tions 1–4 in SI).

3 Results and Discussion

3.1 Overview of the Results – Overall Trends

In total, 2400 models for 100 collections of TR and TS sets
with 2 descriptor sets and 12 classification methods have
been built and their parameters are summarized in Table SI-
3. Table SI-4 provides the sensitivity, specificity, accuracy
and MCC values for the prediction of the test sets. General-
ly, the accuracies of the models obtained for our dataset
were in the range from 0.5 to 0.9 (see Figure 1).

Unfortunately, none of the methods showed consistently
high performance (i.e. according to the results no algorithm
could be selected with which the models obtained would
always show high values of sensitivity and specificity for all
the datasets). However, the accuracy shown in cross-valida-
tion was at least 0.6 for 98.04 % of the models, 0.7 for
80.04 %, 0.75 for 48.08 % and 0.8 for 9.20 %. The distribu-
tion of values of accuracies obtained for 2400 classification
models is shown on Figure 2a.

Distribution of values of accuracies for prediction of TS
sets based on the corresponding cross-validated models is

Figure 1. Mean values of accuracy obtained for cross-validation of
100TRs (grey) and prediction of 100 TSs (black) with various classifi-
cation algorithms. Whiskers stand for standard deviations.
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shown on Figure 2b. The range of accuracies obtained for
TS prediction was broader and there were more cases
(7.75 % in prediction to 1.96 % in cross-validation) when
compounds were almost randomly classified with the
model (i.e. total accuracy<0.6). But nevertheless, prediction
of TS was higher than 0.7 for 47.75 % of cases compared to
48.08 % for CV models meaning that half of the models
built could produce reliable predictions.

We have also collected and analyzed the accuracies ob-
tained for the TR and TS sets depending on the descriptor
set used. Slightly higher values were obtained in the
models based on VSA descriptors both for cross-validation
and prediction of TS (see Figure 3). This might be due to
the general concept of the VSURF descriptors. They are in-
cremental 3D descriptors (distinguished from VSA, which
are 2D), thus the descriptor values depend on the confor-
mation of the studied molecules. Though we have used
the energy minimized conformation it might not relate to
the bioactive one, which renders it difficult to capture the
genuine relation between biological activity and VSURF de-
scriptor values in the models.

3.2 Overall Models

Table 3 provides a short overview of the parameters ob-
tained for the overall models. The tendency of VSA descrip-
tors to outperform VSURF descriptors was also observed in
the overall models for each classification algorithm. This is
exemplified by the values obtained for the MCC, which was
always higher than 0.4 in case of VSA descriptors.[35]

Analyzing the models in more detail, we identified 27
and 13 cpds which were constantly wrong classified by
every method using the VSA and VSURF descriptor set, re-
spectively. Furthermore, 4 of these compounds were con-
stantly ’misbehaving’ regardless of the classification
method and the descriptor set used, i.e. they were con-
stantly misclassified by every overall model obtained. These
instances are marked by circles in the PCA plot (Figure 4)
and are discussed in detail below.

3 cpds are false positives (FP) and are marked as yellow
triangles on Figure 4. Their chemical structures are given in
Figures 5a, 6a and 7a. Compound 5a, as well as its nearest
neighbors in the VSA descriptor space (5b–5d (Figure 5)
comprise indazole derivatives developed by Brown et al.[36]

They share the same chemical scaffold and differ solely in
the substitution pattern at the pyridine ring. While the FP
5a shows a methyl- and morpholine-substituent in posi-
tions 1 and 5 of the pyridine ring, the TPs 5b–5d exhibit tri-
flouromethyl- and alkyl-substituents. This minor differences
in the structure obviously could not be grasped by the clas-
sification algorithms because the values of descriptors are
very close and therefore the compounds are assigned to
the same class (see Table SI-6). A GRIND model built for 20
indazole derivatives (pIC50 : 8.456–6.735) (sdf-file with the
structures is provided in SI) showed a satisfactory Q2

LOO

Figure 2. Distribution of values of accuracies a) for 2400 models built with 10-fold cross-validation of training sets; b) for prediction of 100
test sets with every model.

Figure 3. Mean values of accuracy for 100TR-TS sets depending on
the descriptor set used for building the model (TR (grey) and TS
(black) sets). Whiskers stand for standard deviations.
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value of 0.52 and an R2 value of 0.87. However, the first
two principal components explained only 19 % of the var-
iance. Nevertheless, the FP compound 5a could be distin-
guished from its neighbors. The distance between the H-
bond acceptor and the H-bond donor probes (O-N1) of
14.4–14.8 A is shown to be important for the decrease of
activity. This distance is present between the NH-group of
the indazole moiety (O-probe) and the center of the mor-
pholine ring (nitrogen and oxygen atoms, i.e. N1 probe) in
the false positive 5a, but not in its near neighbors 5b–5d.
Alternatively, the IC50 value of cpd 5a is with 125 nM very
close to the chosen threshold.

Cpd 6a is an outstanding example of misclassification in
our overall models (see Figure 6). Though it is extremely
similar to its nearest neighbors in the VSA descriptor space

there is 1000-fold difference in activity between cpds 6a
and 6d. According to the corresponding SAR studies[37,38]

great improvement of potency of TRPV1 antagonists is ach-
ieved through introduction of an acceptor N into positions
5 and 8 of the central quinazoline ring. This is also in ac-
cordance with the relative high potency of cpd 6b, which
has S and N in these positions.[38] Therefore, introduction of
the N into the 6th position of quinazoline presumably
should not cost such a dramatic loss in activity. It could not
be captured by classification methods since descriptor
values are very similar for these four cpds (see SI-6). We
supposed that interaction of free electron pairs of pyridine
N and N in the 6th position of quinazoline ring of com-
pound 6a could be unfavorable and cause stabilization of
a conformation different from cpds 6b–6d. It would lead to

Table 3. Parameters of the overall models obtained for 12 classification methods with VSA (I) and VSURF (II) descriptor sets.

Method Sensitivity Specificity Accuracy MCC

I II I II I II I II

BLR 0.72 0.70 0.71 0.62 0.72 0.66 0.43 0.33
BayesNet 0.78 0.65 0.69 0.61 0.73 0.63 0.47 0.27
IBk 0.73 0.63 0.66 0.67 0.69 0.65 0.38 0.30
IB1 0.73 0.63 0.66 0.67 0.69 0.65 0.38 0.30
Dagging 0.82 0.76 0.66 0.54 0.74 0.65 0.48 0.30
Bagging 0.77 0.66 0.72 0.71 0.74 0.68 0.49 0.36
MBoost 0.91 0.66 0.57 0.51 0.73 0.59 0.50 0.18
Decorate 0.75 0.69 0.70 0.63 0.72 0.66 0.44 0.32
Ensemble 0.78 0.67 0.71 0.71 0.74 0.69 0.48 0.37
BFTree 0.75 0.58 0.68 0.68 0.71 0.63 0.43 0.26
NBTree 0.77 0.67 0.75 0.61 0.76 0.64 0.52 0.28
RF 0.78 0.7 0.71 0.63 0.75 0.66 0.49 0.33

Figure 4. PCA plot of instances which were always predicted as TP, TN, FP and FN by 12 classification methods in VSA (a) and VSURF (b)
descriptor space. TP and TN instances are represented as green and red diamonds, FP and FN instances are yellow and cyan triangles, re-
spectively.
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different active conformation of cpd 6a and therefore loss
of valuable interactions with the target and drop of poten-
cy compared to its neighbors. To further elaborate this, we
performed 3D QSAR studies for these compounds. A GRIND
model was built for a dataset of 54 quinazoline derivatives
comprised from compounds used in the original SAR
study[37] (sdf-file with the structures is provided in SI). The
three-latent variable model had an R2 of 0.84 (Q2

LOO of 0.50).

The model was not excellent but it could distinguish com-
pound 6a from its neighbors 6c and 6d. Distances of 1.6–
2 � between shape probes (TIP-TIP) and of 11.2–11.6 � be-
tween H-bond acceptor and shape probes (O-TIP) were
shown to be important for the increase of activity and are
present in compound 6d. In contrast, distances of 9.2–9.6 �
between hydrophobic and shape probes (DRY-TIP) and of
6–6.4 � between hydrophobic and H-bond acceptor probes
(DRY-O) responsible for the decrease in activity are present
only in FP compound 6a. The interaction between free
electron pairs of nitrogens in pyridine and quinazoline
rings, namely distances between H-bond acceptor probes,
was not shown to influence the activity. Nevertheless, con-
formation of compound 6a was different from those of
compounds 6c and 6d and different distribution of N1 mo-
lecular interaction fields for these structures was observed.
This demonstrates that the activity cliffs observed can well
be captured by 3D-QSAR studies.

The 3rd example of FP-classification is cpd 7a and its 2
nearest neighbors 7b and 7c (Figure 7). Though the com-
pounds are structurally quite different the values of 2D de-
scriptors for them are very similar and consequently the
compounds are assigned to the same class by the classifica-
tion algorithms.

Commonly most of the data in public compound deposi-
tories is compiled from local SAR-studies coming from dif-
ferent research groups. In addition, there is always a cross-
laboratory variation in the assay performed, Related to this,
the last particular example, 125 nM for 7a is very close to
the chosen threshold (100 nM) for the separation of active
and inactive instances in our study and the compound
could be active in measurements performed by a different
group. Furthermore, at least for the compounds of series 7,
GRIND analysis provides a hypothesis for the misclassifica-
tions. Since this 3D QSAR method is alignment independ-
ent, compounds with different scaffolds and activity values
but sharing the same binding mode could be compared ac-
cording to the molecular Interaction Field (MIF) maps. The
properties of the specific substituents are captured pairwise
according to their influence on activity. For example, poten-
tial protonation of N in the piperazine (7b) and morpholine
(7c) rings (Figure 7) leads to changes in the molecular inter-
action fields in comparison to 7a.

The last always incorrectly classified compound is 8a
(Figure 8). It was a FN in all overall models and is depicted
as a cyan triangle in Figure 4. All five compounds presented
in Figure 8 come from one broad SAR-study.[39] The four
neighbors comprise three TN- and one TP-classified com-
pounds. Derivatives 8b and 8c share a very similar scaffold
with 8a, the only difference is in the methyloxy substitution
of the indole ring which leads to a decrease of potency
compared to hydroxyl derivatives. This change in the struc-
ture is reflected by slight differences in descriptor values,
but could not be captured by the classification algorithms.
Additionally, the original SAR indicated that conformational
restriction is important for improvement of the activity, e.g.

Figure 5. FP-classified compound and its TP-classified nearest
neighbors in VSA descriptor space. For each nearest neighbor the
Euclidean distance from the misclassified compound in the VSA de-
scriptor space is given.

Figure 6. FP-classified compound 5 and its TP-classified nearest
neighbors in VSA descriptor space. For each nearest neighbor the
Euclidean distance from the misclassified compound in the VSA de-
scriptor space is given.
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presence of a cyclohexyl moiety in 8d (960 nM) compared
to an indole ring in 8c (400 nM) and a naphthalene ring in
8e (14 nM), decreased activity.

The same main trends were observed for VSURF descrip-
tors, although the descriptor values are obtained from 3D
MIFs. The respective PCA plot is provided in Figure 4b.
Chemical structures and the nearest neighbors of the most
prominent outliers are presented on Figures SI-5–8 (Sup-
porting Information).

4 Conclusions and Outlook

Recent initiatives for publicly sharing large data sets such
as the Open PHACTS initiative (www.openphacts.org)[40] re-
markably increased the chemical space available for build-
ing computational models. However, one need to be aware
of the fact that data in the public domain are derived from
numerous sources and thus vary in quality. In this contribu-
tion we chose one target (TRPV1) and systematically ana-
lyzed the suitability of a large data set derived from
ChEMBL DB for classification studies. By constructing more
than 2400 models with different splits into training and test
sets, we can conclude that in 99 % of the cases the model
built possess an accuracy of more than 60 %.

The analysis of the outliers in the overall models indicat-
ed several trends. (1) Minor changes in the structures shar-
ing the same or similar scaffolds could not be captured by
the classification algorithms since the descriptor values in-
volved in building the models have very close values for
these compounds. (2) The selection of the threshold for as-
signing active/inactive should be done very carefully and
checked during the validation of the model, since removal
of false classified instances on the border of the threshold
will significantly influence (either improve or decrease the
quality) the model. (3) 3D-QSAR, such as GRIND-analysis,
could capture these small structural differences and led to
satisfactory local models.

Generally, the quality of the obtained classification
models strongly depends on the data distribution and the
diversity inside the studied data sets. Since these datasets
comprise compounds collected from local SAR-studies, data
were unevenly distributed, e.g. compounds with similar
scaffolds coming from several different studies were overre-
presented compared to those investigated in a single
study. This has to be considered as a general property of
datasets extracted from public sources. Moreover, biologi-
cal activity measures are derived from functionally different
assays, performed in different cell lines. This makes it diffi-
cult to compile all data available into one large set and
might lead to a drastic reduction of the size of final training
set.[41] Thus, the provenance of the data will be of vital im-
portance for utilizing the full power of open data.
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