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Abstract: The oxidation process of samariumoxysulfide was studied in the temperature range
of 500–1000 ◦C. Our DTA investigation allowed for establishing the main thermodynamic
(∆H

o
exp = −654.6 kJ/mol) and kinetic characteristics of the process (Ea = 244 kJ/mol, A = 2 × 1010).

The enthalpy value of samarium oxysulfate (∆H
o
f (Sm2O2SO4(monocl)) = −2294.0 kJ/mol) formation

was calculated. The calculated process enthalpy value coincides with the value determined in the
experiment. It was established that samarium oxysulfate crystallizes in the monoclinic symmetry class
and its crystal structure belongs to space group C2/c with unit cell parameters a = 13.7442 (2), b = 4.20178
(4) and c = 8.16711 (8)Å, β = 107.224 (1)◦, V = 450.498 (9)Å3, Z = 4. The main elements of the crystalline
structure are obtained and the cation coordination environment is analyzed in detail. Vibrational
spectroscopy methods confirmed the structural model adequacy. The Sm2O2SO4luminescence spectra
exhibit three main bands easily assignable to the transitions from 4G5/2 state to 6H5/2, 6H7/2, and
6H9/2 multiplets.
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1. Introduction

The compounds of rare-earth elements (REEs) with tetrahedral anions, possessing a set of rather
valuable properties, have attracted the attention of researchers for recent years. In particular, rare earth
oxysulfates are used as precursors for the production of REE2O2S compounds [1–3]. The materials
containing oxysulfates are of practical importance as phosphorescent material components and they can
be used in X-ray computed tomography and the detection of radioactive radiation [4–7]. The structural
and chemical properties of REE2O2SO4oxysulfates make it possible to consider them as promising
materials for the chemical adsorption and storage of gaseous oxygen [8–11]. Commonly, oxysulfates
are formed upon the decomposition of REE compounds containing, at least, one sulfate group:
REE2(SO4)3 [12–15], REE2(OH)4SO4 [16,17]. Oxysulfates can also be obtained by the decomposition of
organic sulfonates of various structures [18]. A direct synthesis method consists of the temperature
treatment of oxides in the atmosphere of sulfur oxide (IV) and oxygen [19].

Usually, lanthanide ions, due to forbidden electronic f-f transitions, are doping components
in different materials and, in this form, they exhibit the properties of phosphors [20–25]. In many
cases; however, the unobvious crystallographic positions of doping ions in such compounds induce
certain difficulties in the observation of such materials [26,27]. Thermal decomposition methods
are a convenient tool for producing compounds and materials with desired properties. As it is
known from the reported results, the initial material granules, under certain conditions, are able to
maintain the original shape and size in the thermal decomposition process [28–30]. At the same time,
the compounds with the stoichiometric lanthanide ion content attract attention in order to find efficient
luminescent materials with low concentration quenching and to investigate specific mechanisms of
luminescence quenching in them [31–40]. At the same time, the consideration of lanthanide-containing
materials cannot be restricted only by their luminescent properties. The possibility of using lanthanide
compounds with simple and complex anions as paramagnetic, catalytic, scintillation and solid
oxide-fuel materials are being increasingly investigated [41–46]. The present study is aimed at the
samarium oxysulfatesynthesis in the high-temperature oxidative process and exploration of their
structural, thermal and spectroscopic properties.

2. Results and Discussion

2.1. Dynamic Oxidation of Sm2O2S and Thermal Stability of Sm2O2SO4

According to the differential thermal analysis (Figure 1a), the samarium oxysulfide oxidation
begins at the temperature of 550 ◦C, proceeds in one stage and ends at 775 ◦C. The mass gain corresponds
to the samarium oxysulfate (Sm2O2SO4) formation. The process is described by the reaction equation:

Sm2O2S + 2O2→ Sm2O2SO4 (1)

The resulting samarium oxysulfate is stable up to 1100 ◦C, and, then, it decomposes in one stage
with the Sm2O3formation.The process can be described by the equation:

Sm2O2SO4→ Sm2O3 + SO2 + 1/2O2 (2)

The certain enthalpies of the two reactions allow us to write thermochemical equations:

Sm2O2S (trig) + 2O2(gas)→ Sm2O2SO4(monocl); ∆H
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= −654.6 kJ/mol (3)

Sm2O2SO4(monocl)→ Sm2O3(cubic) + SO2(gas) + 1/2O2(gas); ∆H
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Using the data on the enthalpies of samarium oxide [47] and sulfur oxide (IV) [48] formation, the
enthalpy of samarium oxysulfate formation was calculated by the Hess law and the value is equal to
∆H
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f(Sm2O2S(trig)) = −1642.6 kJ/mol [49], we obtain the theoretical samarium oxysulfideoxidation
enthalpy equal to −652.4 kJ/mol, which is perfectly compatible with the value determined according to
the DTA measurements.

To study the kinetics of the Sm2O2SO4formation and decomposition processes, the thermal
analysis of the samples was carried out at selected heating rates of 3, 5, 10, 15 ◦C/min (Figure 1b).
Based on the DTA data at the pointed heating rates, the kinetic parameters of the processwere
calculated.The temperature dependence of the oxidation rate of Sm2O2S to Sm2O2SO4 is characterized
by relatively moderate parameters for such processes: Ea = 244 kJ/mol, A = 2 × 1010.The activation
energy of the Sm2O2SO4decomposition to Sm2O3 is much higher and it is equalto 357 kJ/mol, but
the preexponential factor is an order of magnitude lower and is equal to 1 × 109. If we compare
the parameters with those known for Eu2O2SO4 [14] (400 kJ/mol and 1 × 1012, respectively), this
corresponds to wider peaks in the DTA curves for the Eu2O2SO4decomposition, which indicates
its higher kinetic stability, as compared to that of Sm2O2SO4. In addition, the significantly higher
preexponential factor for the Eu2O2SO4decomposition, in comparison with that of Sm2O2SO4, suggests
that the Sm2O2SO4 symmetry is, at least, not higher than that of Eu2O2SO4. The reduced kinetic
stability of Sm2O2SO4, in comparison with that of Eu2O2SO4, is in a good agreement with the enthalpy
values of compound decomposition.

Molecules 2020, 25, x FOR PEER REVIEW 3 of 15 

 

∆Hºf(Sm2O2SO4 (monocl)) = −2294.0 kJ/mol.Substituting the enthalpy of Sm2O2SO4 formation in the 

equation for calculating the enthalpy of reaction 4 and using the samarium oxysulfide formation 

enthalpy ∆Hºf(Sm2O2S(trig)) = −1642.6 kJ/mol [49], we obtain the theoretical samarium 

oxysulfideoxidation enthalpy equal to −652.4 kJ/mol, which is perfectly compatible with the value 

determined according to the DTA measurements. 

To study the kinetics of the Sm2O2SO4formation and decomposition processes, the thermal 

analysis of the samples was carried out at selected heating rates of 3, 5, 10, 15 °C/min (Figure 1b). 

Based on the DTA data at the pointed heating rates, the kinetic parameters of the processwere 

calculated.The temperature dependence of the oxidation rate of Sm2O2S to Sm2O2SO4 is characterized 

by relatively moderate parameters for such processes: Ea = 244 kJ/mol, A = 2 × 1010.The activation 

energy of the Sm2O2SO4decomposition to Sm2O3 is much higher and it is equalto 357 kJ/mol, but the 

preexponential factor is an order of magnitude lower and is equal to 1 × 109. If we compare the 

parameters with those known for Eu2O2SO4 [14] (400 kJ/mol and 1 × 1012, respectively), this 

corresponds to wider peaks in the DTA curves for the Eu2O2SO4decomposition, which indicates its 

higher kinetic stability, as compared to that of Sm2O2SO4. In addition, the significantly higher 

preexponential factor for the Eu2O2SO4decomposition, in comparison with that of Sm2O2SO4, 

suggests that the Sm2O2SO4 symmetry is, at least, not higher than that of Eu2O2SO4. The reduced 

kinetic stability of Sm2O2SO4, in comparison with that of Eu2O2SO4, is in a good agreement with the 

enthalpy values of compound decomposition. 

 

Figure 1. DTA/TGof Sm2O2S in synthetic air (a) and the shift of the peaks of thermal effects 

depending on the heating rate (b). 

2.2. Isothermal Oxidation of Sm2O2S 

At the temperature of 500 °C for 10 h, according to the results of X-ray phase analysis, there is 

no phase composition change of the Sm2O2S sample (Figure 2a). However, starting from 600 °C, the 

phase composition of the sample changes rapidly and, after only two hours, approximatelyhalf of 

Sm2O2S enters into the reaction (Figure 2b). After five hours, only about 20% of samarium oxysulfide 

remains in the sample (Figure 2c). In 7 h of the process, the sample contains only pure samarium 

oxysulfate (Figure 2d). The temperature increase to 700 °C leads to a sharp increase in the reaction 

rate, and the complete oxidation of the sample is reached for one hour. Such behavior differs 

significantly from the EuS oxidation process [35] where such pronounced rate temperature 

dependence is not observed. This effect is obviously related to the fact that only one reaction occurs 

during the Sm2O2S oxidation, in contrast to the EuS oxidation process, in which several parallel 

competing processes are realized. The samarium oxysulfide samples oxidation at 800, 900 and 1000 

°C leads to the production of Sm2O2SO4 samples for one hour. An increase in the exposure time at 

these temperatures does not lead to a further change in the phase composition of the samples. 

Figure 1. DTA/TGof Sm2O2S in synthetic air (a) and the shift of the peaks of thermal effects depending
on the heating rate (b).

2.2. Isothermal Oxidation of Sm2O2S

At the temperature of 500 ◦C for 10 h, according to the results of X-ray phase analysis, there is
no phase composition change of the Sm2O2S sample (Figure 2a). However, starting from 600 ◦C, the
phase composition of the sample changes rapidly and, after only two hours, approximatelyhalf of
Sm2O2S enters into the reaction (Figure 2b). After five hours, only about 20% of samarium oxysulfide
remains in the sample (Figure 2c). In 7 h of the process, the sample contains only pure samarium
oxysulfate (Figure 2d). The temperature increase to 700 ◦C leads to a sharp increase in the reaction rate,
and the complete oxidation of the sample is reached for one hour. Such behavior differs significantly
from the EuS oxidation process [35] where such pronounced rate temperature dependence is not
observed. This effect is obviously related to the fact that only one reaction occurs during the Sm2O2S
oxidation, in contrast to the EuS oxidation process, in which several parallel competing processes are
realized. The samarium oxysulfide samples oxidation at 800, 900 and 1000 ◦C leads to the production
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of Sm2O2SO4 samples for one hour. An increase in the exposure time at these temperatures does not
lead to a further change in the phase composition of the samples.Molecules 2020, 25, x FOR PEER REVIEW 4 of 15 
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According to scanning electron microscopy, the samarium oxysulfide powder is formed by
agglomerates sized 2–3 µm. The agglomerates have a clear granule structure. The initial granules
have a size of about 50–100 nm (Figure 3a). Carrying out the oxidation process at 600 ◦C practically
does not affect the change in the microstructure of the obtained Sm2O2SO4 samples (Figure 3b).
A further increase in the process temperature leads to the agglomeration of the initial granules while
maintaining the overall structure of the agglomerates (Figure 3c,d). In the Sm2O2SO4 sample obtained
at 1000 ◦C, the initial granules have sizes from 250 nm to 0.5 µm. It should be pointed that the
particlemicrostructure preservation is an important effect determining the possibility of applying the
oxidation process to the synthesis of biocompatible materials based on rare earth oxysulfates [28–30].



Molecules 2020, 25, 1330 5 of 15
Molecules 2020, 25, x FOR PEER REVIEW 5 of 15 

 

 

Figure 3. SEM images of Sm2O2S (a) and of Sm2O2SO4 samples obtained at temperatures of 600 °C (b), 

800 °C (c) and 1000 °C (d). 

Based on the analysis of available experimental data on the phase composition of the samples 

obtained in isothermal processes, a kinetic diagram was built for the chemical composition changes 

during the samarium oxysulfide oxidation with air oxygen (Figure 4). In the diagram, threephase 

statefields can be observed. Two single-phase fields related to the stability conditions for 

compounds Sm2O2S (blue) and Sm2O2SO4 (pink), and the intermediate two-phase field of Sm2O2S + 

Sm2O2SO4 (orange), whichboundaries are clearly governed by the thermodynamic and kinetic 

parameters of the process, are determined. As it is seen, the pure Sm2O2SO4 phase can be synthesized 

at temperatures ≥700 °C for the reaction time 60–480 min. The phase fieldposition in the diagram 

allows one to determine the conditions for the targeted preparation of the samples with specified 

phase compositions. 

 

Figure 4. Kinetic scheme of changes in the chemical composition during the samarium oxysulfide oxidation. 

  

Figure 3. SEM images of Sm2O2S (a) and of Sm2O2SO4 samples obtained at temperatures of 600 ◦C (b),
800 ◦C (c) and 1000 ◦C (d).

Based on the analysis of available experimental data on the phase composition of the samples
obtained in isothermal processes, a kinetic diagram was built for the chemical composition changes
during the samarium oxysulfide oxidation with air oxygen (Figure 4). In the diagram, threephase
statefields can be observed. Two single-phase fields related to the stability conditions for compounds
Sm2O2S (blue) and Sm2O2SO4 (pink), and the intermediate two-phase field of Sm2O2S + Sm2O2SO4

(orange), whichboundaries are clearly governed by the thermodynamic and kinetic parameters of the
process, are determined. As it is seen, the pure Sm2O2SO4 phase can be synthesized at temperatures
≥700 ◦C for the reaction time 60–480 min. The phase fieldposition in the diagram allows one to determine
the conditions for the targeted preparation of the samples with specified phase compositions.
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2.3. Structural Properties of Sm2O2SO4

A sample of Sm2O2SO4 for structural analysis was obtained by oxidizing samarium oxysulfide in
the air at 900 ◦C for 10 h. The Rietveld refinement was carried out by using TOPAS 4.2 [50] which
accounts the esd’s of each point by a special weight scheme. All peaks were indexed by a monoclinic
cell (C2/c) with the parameters close to those of Eu2O2SO4 [35] and; therefore, the crystal structure of
Eu2O2SO4was taken as a starting model for Rietveld refinement. The Eu3+ site in the Eu2O2SO4 structure
was considered as occupied by the Sm3+ ion. In order to reduce the number of refined parameters, only
one thermal parameter was refined for all O atoms. The refinement was stable and gave low R-factors
(Table 1, Figure 5). The atom coordinates and main bond lengths obtained in Sm2O2SO4aresummarized
in Tables 2 and 3, respectively. The cif and checkcif files are given in Supplementary Materials.
The crystallographic data are deposited in the Cambridge Crystallographic Data Centre (CSD #
1968636). The data can be downloaded from the site (www.ccdc.cam.ac.uk/data_request/cif).

Table 1. Main parameters of processing and refinement of the Sm2O2SO4 sample.

Compound Sm2O2SO4

Space group C2/c
a, Å 13.7442 (2)
b, Å 4.20178 (4)
c, Å 8.16711 (8)
β,
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Table 2. Fractional atomic coordinates and isotropic displacement parameters (Å2) of Sm2O2SO4.

x y z Biso

Sm1 0.16930 (3) 0.5015 (4) 0.0850 (3) 0.45 (2)
S1 0 0.0339 (15) 0.25 1.63 (8)
O3 0.0904 (4) 0.8717 (12) 0.2840 (19) 0.75 (7)
O2 0.9996 (8) 0.2711 (12) 0.0985 (8) 0.75 (7)
O1 0.2474 (3) 0.022 (2) 0.120 (3) 0.75 (7)

Biso—isotropic thermal parameter.

Table 3. Main bond lengths (Å) of Sm2O2SO4.

Sm1-O3 2.698 (9) Sm1-O1 v 2.417 (10)
Sm1-O3 i 2.846 (13) Sm1-O1 vi 2.291 (14)
Sm1-O3 ii 3.202 (3) Sm1-O1 vii 2.346 (19)
Sm1-O2 iii 2.558 (9) S1-O3 viii 1.372 (5)
Sm1-O2 iv 2.547 (8) S1-O2 iii 1.588 (7)
Sm1-O1 2.259 (9)

Symmetry codes: (i) x, -y+1, z-1/2; (ii) 1/2-x, -1/2+y, 1/2-z; (iii) x-1, y, z; (iv) -x+1, -y+1, -z; (v) x, y+1, z; (vi) -x+1/2,
-y+1/2, -z; (vii) -x+1/2, y+1/2, -z+1/2; (viii) x, y-1, z.

The main difference of Eu2O2SO4 and Sm2O2SO4 structures is observed in their cell parameters
and cell volumes. The former crystal has a = 13.65826(27), b = 4.188744(73), c = 8.14400(14)
Å, β = 107.2819(21)◦, V = 444.892(15) Å3, and the compound under investigation Sm2O2SO4 is
characterized by a = 13.7442 (2), b = 4.20178 (4), c = 8.16711 (8) Å, β = 107.224 (1)◦, V = 450.498 (9) Å3.
It is clearly seen that the cell parameters and cell volume of Eu2O2SO4 are smaller than those of
Sm2O2SO4, and it is consistent with the fact that ion radius IR(Eu, CN=9) = 1.12 Å is smaller than
IR(Sm, CN=9) = 1.132 Å.

As shown in Figure 6, the structure is represented by the alternation of cationic layers [Sm2O2
2+]n

with the anionic layers consisting of isolated [SO4]2− tetrahedra. Both layers are parallel to (100)
(Figure 6a). All samarium atoms occupy identical crystallographic positions and are coordinated
by nine oxygen atoms: five oxygen atoms belong to monodentate-bound sulfate groups, and the
remaining oxygen atoms are bridging (Figure 6c). Thus, the samarium atom in the structure forms
a coordination environment shaped as a three-cap trigonal prism. Two caps of the coordination
polyhedron, connected along the edge at the angle of 180◦, form a plane of four oxygen atoms.
The trigonal prism and caps in the coordination polyhedron are deformed due to the difference in the
Sm-O bond lengths. One Sm-O bond is much longer than the others. As a result, the coordination
number of samarium is classified as 8 + 1. The SmO9 polyhedra join with each other forming an
infinite chain along the c-axis (Figure 6b). The oxygen atoms of SO4 groups are coordinated by sulfur
and samarium atoms. The sulfate tetrahedron is surrounded by eight samarium atoms, resulting in the
formation of sphere-shaped coordination as almost a perfect cube (Figure 6d). Each bridging oxygen
atom is coordinated by four samarium atoms, and it results in the formation of [OSm4] tetrahedra.
These tetrahedra, sequentially pair wise connected with each other, form unlimited zigzag chains.
The interconnected chains form continuous layers (Figure 7).

2.4. Vibrational Spectra of Sm2O2SO4

Raman and Infrared spectra of Sm2O2SO4 are shown in Figure 8. The irreducible vibrational
representations for the monoclinic structure of Sm2O2SO4 at the center of the Brillouin zone is
Γvibr = 13Ag + 13Au + 14Bg + 14Bu, where Au + 2Bu are acoustic modes and 13Ag + 14Bg are
Raman-active modes, while the 12Au + 12Bu modes are active in IR spectra. The free tetrahedral
[SO4]2− ion of the Td symmetry exhibits four internal vibrations. All four vibrations are Raman-active,
whereas only ν3 and ν4 are Infrared-active. In the solid state, ν3 and ν4 may split into two or three
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bands because of the site effect [51]. The correlation diagram of internal vibrations between the free
[SO4]2− ions of the Tdsymmetry, its site symmetry (C2) and the factor group symmetry (C2h) of a unit
cell is given in Table 4.
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Table 4. Correlation diagram of internal vibrations of the [SO4]2− ions in the Sm2O2SO4.

Wavenumber (cm−1)
[51]

Td
Point Group

C2
Site Symmetry

C2h
Factor Group Symmetry

983 A1 (ν1) A Ag+ Au
450 E (ν2) 2A 2Ag + 2Au
1105 E (ν3) A + 2B Ag + Au+ 2Bg+ 2Bu
611 E (ν4) A+ 2B Ag+ Au+ 2Bg+ 2Bu

From the correlation diagram, we can conclude that four spectral bands should be observed in the
range of stretching vibrations of the SO4 tetrahedra (975–1225 cm−1) in the Raman spectrum. The IR
spectrum of the Sm2O2SO4 structure should contain four bands in the range of stretching vibrations of
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[SO4]2− ions, too. Three of them are ν3 antisymmetric stretching and one is related to ν1 symmetric
stretching vibration. The ν4 bending vibrations locate in the range of 575–675 cm−1. The relevant
spectral bands can be seen in Figure S1 (Supplementary Materials) and Figure 8. The Raman bands
associated with the ν4 bending vibrations of SO4tetrahedra are overlapped with bands related to Sm-O
vibrations, and these vibrations locate in the range of 300–500 cm−1. The low-intensity bands in Raman
spectra around 250 cm−1 should correspond to rotational vibrations of [SO4]2− ions [52]. The remaining
spectral bands below 200 cm-1 are translational vibrations of SmO9polyhedra, SO4tetrahedra and
Sm3+ ions.

2.5. Luminescent Properties of Sm2O2SO4

The Sm2O2SO4 luminescence spectrum was recorded using the excitation by theGaN laser diode
with the central wavelength 410 nm (24400 cm−1) falling into three closely-spaced Sm3+ transitions
from the ground state 6H5/2 to 6P5/2, 4M19/2 and 4L13/2 excited states. The obtained spectrum is
presented in Figure 9 in comparison with the luminescence spectrum of another highly-concentrated
samarium-containing BaSm2(MoO4)4 crystal [39]. The structure of luminescence spectra of both
Sm2O2SO4 and the reference crystal is rather similar and exhibits three main bands easily assignable
to the transitions from the4G5/2 state to 6H5/2, 6H7/2 and 6H9/2multiplets. However, the distribution
of the intensities between three mentioned channels in Sm2O2SO4 is slightly different from that of
the reference crystal, while the red transition to the6H9/2 state dominates in the reference crystal, the
orange transition to the 6H7/2 state prevails in Sm2O2SO4. This difference demonstrates the possibility
of controlling the samarium ion emission chromaticity via the crystal field engineering that allows
certain variation of Judd–Ofelt intensity parameters. We must note that the reference crystal spectrum
was divided by 10 for a better comparison of the shapes. Therefore, we must deduce that concentration
quenching of the luminescence in Sm2O2SO4 is rather high in comparison with (e.g., molybdate
crystalline lattices).
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3. Materials and Methods

3.1. Synthesis Methods

Samarium oxysulfide was obtained by the reduction of samarium sulfate Sm2(SO4)3 (99.9%,
Merck Ltd., Germany) in the hydrogen atmosphere at the temperature of 700 ◦C. The installation
scheme for carrying out the high-temperature recovery processes is shown in Figure S2 (Supplementary
Materials). High-purity hydrogen was obtained by the electrolytic method in a SPECTR-6M hydrogen
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generator (Spectr, Moscow, Russia). The temperature control and regulation were carried out using a
microprocessor controller (Thermoceramics, Moscow, Russia). The temperature measurement in the
reaction zone was provided by a chromel–alumel thermocouple. A weighed amount of dry Sm2(SO4)3

was placed in a quartz reactor, and it was purged with hydrogen from the generator for 30 min at the
rate of 6 L/h. After that, the reactor was placed in a heated vertical furnace and kept for 5 h. After the
completion of the recovery process, the reactor was removed from the furnace and cooled to room
temperature. The process proceeding during the recovery is described by the equation:

Sm2(SO4)3 + 12H2→ Sm2O2S + 2H2S↑ + 10H2O↑ (5)

To study the samarium oxysulfide oxidation with air oxygen, 0.5 g of Sm2O2S sample was
uniformly distributed as a thin layer over a ceramic boat bottom with the area of 3 × 5 cm2. In order to
prevent the tight layer formation during the oxidation process, all samarium oxysulfide samples were
crushed in an agate mortar with acetone addition. After the filling, the ceramic boat was placed in a
horizontal furnace (Thermoceramics, Moscow, Russia) heated to the required temperature and the
processing was carried out in a continuous air flow. After the required time, the boat was removed
from the oven and cooled to room temperature in a desiccator with the silica gel to avoid surface
hydration. A study of the phase composition of obtained oxidized sample was carried out by the X-ray
diffraction method. The isothermal oxidation experiments were carried out at the temperatures of 500,
600, 700, 800, 900 and 1000 ◦C. The total time of the oxidation process at each temperature did not
exceed 10 h.

3.2. Methods of Physico-Chemical Analysis

The thermal analysis in the synthetic air (80% Ar-20% O2) flow was carried out on a Simultaneous
Thermal Analysis (STA) equipment 499 F5 Jupiter NETZSCH (Netzsch, Selb, Germany). The powder
samples were inserted into alumina crucibles. The heating rate was 3 ◦C/min. For the enthalpy
determination, the equipment was calibrated with the use of standard metal substances, such as In,
Sn, Bi, Zn, Al, Ag, Au and Ni. The heat effect peaks were determined with the package «Proteus
6 2012» (Netzsch, Selb, Germany). The peak temperature and area in parallel experiments were
reproduced at an inaccuracy lower than 3%. The kinetic parameters determination was based on
Kissinger formula [53] in the linearized form:

1
T

=
R
E

ln
AR
E
−

1
E

Rln
b

T2 (6)

where T is the temperature with a maximum reaction rate; b—heating rate; E—activation energy and
A—preexponential factor. The representative examples of using the formula in topochemical processes
can be found elsewhere [54–56].

To determine the phase composition of the samples at various oxidation stages, we used a BRUKER
D2 PHASER X-ray diffractometer (Bruker, Billerica, MA, USA) with a linear detector LYNXEYE (CuKα

radiation, Ni-filter, Bruker, Billerica, MA, USA). The crystal structure was refined using the Rietveld
method in the TOPAS 4.2 program [50]. The powder diffraction data of Sm2O2SO4 for Rietveld analysis
were collected at room temperature with a Bruker D8 ADVANCE powder diffractometer (Cu-Kα

radiation, Bruker, USA) equipped with a linear detector VANTEC (Bruker, Billerica, MA, USA). The step
size of 2θ was 0.016◦, and the counting time was 5 s per step. The particle morphology analysis was
carried out on an electron microscope JEOL JSM-6510LV (Japan). The X-ray energy-dispersive analyzer
(Oxford Instruments, Abington, UK) was used to register the X-ray signal at recording the element
spectrum in the selected regions of the sample surface. The possible inaccuracy of elemental content
determination by this method was equal to ±0.2%. The Fourier-transform infrared spectroscopy (FTIR)
analysis was carried out with the use of Fourier-Transform Infrared Spectrometer FSM 1201 (Infraspec,
Moscow, Russia). The sample for the investigation was prepared in the tablet shape with the addition
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of annealed KBr. The Raman scattering spectra of Sm2O2SO4 were collected in backscattering geometry,
using a triple monochromator Horiba JobinYvon T64000 Raman spectrometer (JobinYvon, France)
operating in subtractive mode. The spectral resolution for the recorded Stokes side Raman spectra
was about 1 cm−1 (this resolution was achieved by using gratings with 1800 grooves mm−1 and 100
micrometer slits). Single-mode krypton 647.1 nm of Lexel Kr+ laser of 3 mW on the sample was used
as an excitation light source. The luminescence spectra at room temperature were recorded using a
Horiba-Jobin-Yvon T64000 spectrometer (JobinYvon, France) and GaN laser diode with the central
wavelength 410 nm. Spectral resolution of the measurement channel of the spectrometer was 2.7 cm−1.

4. Conclusions

A comprehensive study of the samariumoxysulfide oxidation process was carried out. The kinetic
and thermodynamic characteristics of the process were established. The effect of oxidation temperature
on the morphology of samarium oxysulfate samples was evaluated. The main structural and
spectroscopic characteristics of samarium oxysulfatewere determined. According to the X-ray powder
diffraction data, the monoclinic symmetrywasestablished.The main structural elements and their
influence on the properties of the compound were analyzed. The theoretical calculations of vibration
spectra confirm the adequacy of the structural model, which is important for such complex structures
with the ambiguity in the choice of the structural model. The Sm2O2SO4luminescent-spectral
characteristics were determined. The luminescence spectrum consists of three main luminescent
bands originating from the 4G5/2 state, the transition to 6H7/2 in the orange part of the spectrum
being dominant.

Supplementary Materials: The following are available online. The cif and checkcif files. Figure S1: Decomposition
of the Sm2O2SO4 Raman spectrum in the range of ν4 vibrations of [SO4]2− ions, Figure S2: Installation scheme of
processing substances in a stream of hydrogen: 1—a hydrogen generator; 2—power control unit of electricity
supplied to the furnace; 3—Thermocouple; 4—electric heating furnace; 5—reactor with the processed substance.
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