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Abstract

Background: Although sleep deprivation is associated with neurobehavioral impairment that may underlie
significant risks to performance and safety, there is no reliable biomarker test to detect dangerous levels of
impairment from sleep loss in humans. This study employs microarrays and bioinformatics analyses to explore
candidate gene expression biomarkers associated with total sleep deprivation (TSD), and more specifically, the
phenotype of neurobehavioral impairment from TSD. Healthy adult volunteers were recruited to a sleep laboratory
for seven consecutive days (six nights). After two Baseline nights of 10 h time in bed, 11 subjects underwent an
Experimental phase of 62 h of continuous wakefulness, followed by two Recovery nights of 10 h time in bed. Another
six subjects underwent a well-rested Control condition of 10 h time in bed for all six nights. Blood was drawn for
measuring gene expression on days two, four, and six at 4 h intervals from 08:00 to 20:00 h, corresponding to 12
timepoints across one Baseline, one Experimental, and one Recovery day.

Results: Altogether 212 genes changed expression in response to the TSD Treatment, with most genes exhibiting
down-regulation during TSD. Also, 28 genes were associated with neurobehavioral impairment as measured by the
Psychomotor Vigilance Test. The results support previous findings associating TSD with the immune response and ion
signaling, and reveal novel candidate biomarkers such as the Speedy/RINGO family of cell cycle regulators.

Conclusions: This study serves as an important step toward understanding gene expression changes during sleep
deprivation. In addition to exploring potential biomarkers for TSD, this report presents novel candidate biomarkers
associated with lapses of attention during TSD. Although further work is required for biomarker validation, analysis of
these genes may aid fundamental understanding of the impact of TSD on neurobehavioral performance.
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Background

Sleep plays a key role in health, performance, and cogni-
tion [1-5]. Yet sleep deficiencies, be they from mistimed
sleep, insufficient sleep, or sleep disorders, are widespread
[4]. Neurobehavioral tests have revealed assorted forms of
performance deficits from sleep loss, including impair-
ment of learning and of responses to feedback in decision
making [3, 6, 7]. Since its introduction over 30 years ago,
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the Psychomotor Vigilance Test (PVT) is one of the most
commonly applied neurobehavioral assays of performance
impairment due to sleep loss [8, 9]. This test assays
stimulus-response time, with failure to respond within
500 ms recorded as a lapse. Sleep deprivation is associated
with increased variability in stimulus-response times, and
more lapses, on the PVT [10].

Besides neurobehavioral testing, efforts have been made
to identify molecular biomarkers such as differentially
expressed genes or metabolites affected by sleep loss
[11-17]. A biomarker has been defined as “a character-
istic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic

2018 Open Access This is a U.S. Government work and not under copyright protection in the US; foreign


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4664-3&domain=pdf
mailto:hilary.uyhelji@faa.gov
mailto:kupfer_doris@yahoo.com

Uyhelji et al. BMC Genomics (2018) 19:341

processes, or pharmacologic responses to a therapeutic
intervention” [18]. Beyond identifying the mere presence
of a process or response, many biomarkers such as differ-
entially expressed genes can provide mechanistic insights.
Humans are known to differ in their sensitivity to sleep
loss [19-21], and recent work has sought to identify bio-
markers distinguishing individuals as susceptible or resist-
ant to sleep deprivation [12, 22—24]. Yet surprisingly little
effort has been made to synthesize molecular biomarker
research with results from neurobehavioral assays.

This study tests the hypothesis that gene expression
not only responds to total sleep deprivation (TSD), but
also can be related to neurobehavioral impairment mea-
sured by PVT lapses. Healthy human adults acclimated to
the laboratory with two nights of Baseline sleep consisting
of 10 h time in bed (TIB). Then subjects in the TSD group
underwent 62 h continuous wakefulness during an Experi-
mental phase, followed by two Recovery nights of 10 h
TIB. In contrast, individuals in the Control (C) group
received 10 h TIB all six nights. Neurobehavioral impair-
ment was assessed with the PVT during scheduled wake-
fulness, and blood was drawn for whole-transcriptome
microarrays during day two, day four (hours 24-36 of
wakefulness for the TSD group), and day six. The analyt-
ical approach largely focused on biomarker discovery, as
defined by Mullington and colleagues [16]. Another aim
was advancing mechanistic insights into the impact of
sleep deprivation, as seen through a bioinformatics lens of
the predicted function and molecular networks associated
with the proposed biomarkers.

Methods

Sample collection and neurobehavioral data

Study design and population demographics, including
subjects’ prior sleep history, have been reported previously
[7]. All individuals provided written informed consent,
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and Institutional Review Board approval was obtained at
both Washington State University (WSU), and the Civil
Aerospace Medical Institute (CAMI) of the Federal
Aviation Administration. In brief, blood samples were ob-
tained from 17 healthy adults (ages 22—-37, 7 females) who
were not using drugs. Subjects remained in the sleep la-
boratory at the Sleep and Performance Research Center of
WSU (Spokane, WA) for six consecutive nights. Meals
were semi-standardized with selection from among a
limited number of menu options; blood draws were per-
formed immediately prior to meals. A two-night Baseline
phase for laboratory acclimation was followed by a two-
night Experimental phase, and the study concluded with
two Recovery nights. During both the Baseline and Recov-
ery phases all subjects received 10 h TIB for sleep each
night (22:00—08:00 h). For the Experimental phase, 11 ran-
domly selected subjects underwent TSD, consisting of
62 h of continued wakefulness. The remaining 6 C sub-
jects received the usual 10 h TIB nightly. Blood samples
were collected with an intravenous catheter approxi-
mately every 4 h during time awake on days two, four,
and six (Fig. 1), corresponding to 1 day each during the
Baseline, Experimental, and Recovery phases. At each
of the 12 timepoints (Fig. 1, Additional file 1: Table S1),
2.5 mL blood was collected in a PAXgene™ Blood RNA
tube, and the number of lapses per test bout was re-
corded from a 10 min PVT assay (Additional file 2:
Supplementary text).

RNA isolation and microarray data collection

Blood samples in PAXgene™ tubes were shipped to
CAMI for RNA extraction on a QIAcube robot. Each
total RNA sample was prepared for hybridization to
Affymetrix GeneChip Human Gene 1.0 ST arrays, and
scanned on an Affymetrix Scanner (Additional file 2:
Supplementary text).

Day 3, 08:00

wakefulness

TSD subjects begin 62 h of

Day 5, 22:00
TSD subjects end 62 h
wakefulness

k=

o

Q

£

i= t01 t02 t03 t04 t05 t07 t08 t09 t10 t11 t12
[ [ [ [ [l [l [l [ [ [ [

= T T T T T T T T T T T T

T P O O P O P P ® O PP O

cDU RPN ,LQ.Q RN ,LQ,Q RIS ,LQ.Q

S Baseline Experimental Recovery

g Day 2 Day 4 Day 6

=

Fig. 1 Overview of the study design, consisting of 7 days (six nights) in the sleep laboratory. During the Baseline and Recovery phases, all 17
subjects received 10 h Time in Bed (TIB) for sleep each night. During the Experimental phase, the 11 Total Sleep Deprivation (TSD) persons
underwent a 62 h period of continuous wakefulness, whereas the 6 Control subjects continued to have 10 h TIB each night. Vertical lines indicate
the 12 timepoints with blood collection and Psychomotor Vigilance Test data analyzed here
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Differential gene expression: Treatment and PVT effects
Quality assessment was performed and Transcript
Cluster-level expression values from microarrays were fil-
tered for low expression (Additional file 2: Supplementary
text). Affymetrix expression data are archived at the NCBI
GEO online repository, accession GSE98582. Tests for dif-
ferential expression were conducted for biomarker discov-
ery with R/limma v. 3.24.15 using linear models [25].
Visual examination of the PVT data indicated that three
of the 11 TSD subjects were fatigue resistant, in terms of
neurobehavioral impairment detectable by the PVT
(Additional file 2: Supplementary text — Figure S1), and
these were excluded from the RMA expression file for
Treatment effect analyses. Models with all 17 subjects
were explored but found substantially fewer genes
(Additional file 2: Supplementary text). Thus the reported
Treatment effect analysis tested for a significant difference
in gene expression between the 8 TSD (not fatigue resist-
ant) and 6 C subjects at the Experimental or Recovery
phase, but not at Baseline. Linear models also were run in
limma to test for a significant relation of PVT lapses to
gene expression, with inclusion of data for all 17 subjects.
Finally, Ingenuity Pathway Analysis® biomarker filtering
was done to test whether Transcript Clusters significantly
related to Treatment and PVT have been found in human
blood previously.

Co-expression and temporal networks

Weighted Gene Co-expression Network Analysis (WGCNA)
was performed using data from all 17 subjects with the soft-
ware R/WGCNA v. 147 [26], which grouped Transcript
Clusters based on similarity of expression across samples
(Additional file 2: Supplementary text). Each group of co-
expressed Transcript Clusters was termed a module, and
designated by a color. Pearson correlations were computed
separately between each module and each of three variables:
Treatment, PVT lapses, and Time of Day. The WGCNA
software also allowed identification of the top hub Transcript
Cluster for each module, namely, the most highly connected
Transcript Cluster within the module.

A second, temporal clustering approach was per-
formed using R/Mfuzz v. 2.28.0 [27] to visualize gene
expression shifts over time in response to TSD, for
those not fatigue resistant. Thus, Mfuzz was used to
cluster and plot the mean expression of differentially
expressed Treatment Transcript Clusters in the 8 TSD
subjects across the 12 timepoints (Additional file 2:
Supplementary text). The same Mfuzz clustering strat-
egy was employed a second time on the Transcript
Clusters associated with PVT lapses, again based on the
average data from the 8 TSD subjects. Subsequently,
Mfuzz clustering was re-run on the Treatment and
PVT Transcript Clusters based on data from the
Control subjects.

Page 3 of 17

Transcription factor regulators

Regulatory Impact Factor (RIF) scores were assigned to
known human transcription factors as a means of rank-
ing potential regulators of the differentially expressed
genes. The RIF analysis tests for a difference between
the correlation of expression levels of known transcrip-
tion factors, to the expression levels of a given gene list
in each of two conditions (Additional file 2: Supplemen-
tary text) [28, 29]. Results are reported as z-scores, and a
larger absolute value of the z-score is interpreted as
greater evidence that the transcription factor has a regu-
latory role distinguishing the conditions. The RIF
analysis was run twice, once using the Treatment effect
Transcript Clusters as the input gene list, and once with
the PVT effect Transcript Clusters. In each run the two
conditions consisted of C and TSD.

In addition to the RIF differential co-expression ana-
lysis, the BIOBASE F-match tool (http://www.biobase-
international.com) was utilized to search for regulatory
transcription factors based on the promoter sequence of
differentially expressed genes. The tool scanned for
over-represented binding sites in the Treatment effect
and in the PVT Transcript Clusters (Additional file 2:
Supplementary text).

Functional enrichment and pathway analysis

Affymetrix’s online tool NetAffx™ [30] was used to anno-
tate the Transcript Clusters, and functional enrichment
of Transcript Clusters was assessed with the DAVID v.
6.7 bioinformatics tool [31]. The Ingenuity Pathway
Analysis® (IPA°, QIAGEN Redwood City, http://www.
qiagen.com/ingenuity) Core Analysis tool was used to
explore molecular pathways and networks based on previ-
ously published interactions among genes. The IPA° Causal
Network pathways [32] were reviewed for connections be-
tween differentially expressed genes and upstream regula-
tory molecules (Additional file 2: Supplementary text).

microRNA quantitative PCR

A 300 ng aliquot of total RNA from each sample was
used for the analysis of microRNA (miRNA) expression
with 30 TagMan® assays according to the recommenda-
tions from Fluidigm® for miRNA analysis on the
BioMark system. Normalized, efficiency-corrected gene
expression values were analyzed via linear mixed-effects
models with the R package nlme v. 3.1-126 (Additional
file 2: Supplementary text).

Results

Statistical models confirmed a significant effect of the
TSD Treatment on PVT lapses (Figs. 1 and 2, Additional
file 2: Supplementary text). Model selection by the lowest
AIC and BIC scores preferred models including a Treat-
ment by Phase interaction (x*>=21, df=2, P =2.58E-05;
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Fig. 2 Mean (+ 1 SE) Psychomotor Vigilance Test (PVT) lapses. Results represent the 11 Total Sleep Deprivation and 6 Control subjects from three
of the seven consecutive study days, consisting of 1 day each during the Baseline, Experimental, and Recovery phases
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AIC =783 and BIC =819) over models with just the
individual terms of Treatment, Time of Day, and Phase
(AIC =800 and BIC=830), where Phase distinguishes
Baseline, Experimental, and Recovery periods.

Differential gene expression: Treatment and PVT effects

In the Treatment effect analysis, 225 Transcript Clusters,
corresponding to 212 genes with annotated gene symbols
or mRNA assignments (Additional file 3: Table S2;
Additional file 2: Supplementary text — Figure S2), exhib-
ited a significant difference between TSD and C subjects
in the Experimental but not Baseline phase. Of these, 91
genes passed the IPA° human blood biomarker filter
(Additional file 3: Table S2). Most of the Treatment Tran-
script Clusters (~88%) were down-regulated in TSD
relative to C subjects during the Experimental phase. Only
two Transcript Clusters, Cathelicidin Antimicrobial
Peptide (CAMP, with False Discovery Rate (FDR) =3.56E-

03 and log, fold change of - 0.57), as well as Defensin,
Alpha 4, Corticostatin (DEFA4, FDR =0.033, log, fold
change of —1.00), were differentially expressed between
TSD and C subjects in the Recovery phase but not Base-
line. These Transcript Clusters also were differentially
expressed in the Experimental phase (Additional file 3:
Table S2). Overlap of Transcript Clusters from this study
with lists of genes responding to TSD in a handful of pub-
lished datasets [15, 17, 22] was low, but this was not en-
tirely unexpected considering differences in study design,
models, and even microarray platforms (Additional file 2:
Supplementary text, Additional file 4: Table S3).
Thirty-four Transcript Clusters, representing 28 anno-
tated genes (Additional file 5: Table S4, Additional file 2:
Supplementary Text — Figure S3), were associated with
PVT lapses. Of these, 13 genes passed the IPA° human
blood biomarker filter (Additional file 5: Table S4).
There were 29 Transcript Clusters down-regulated and
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five up-regulated as PVT lapses increased during TSD.
One of the up-regulated Transcript Clusters was Outer
Dense Fiber Of Sperm Tails 2-Like (ODF2L), and the
remaining four belonged to the Speedy/RINGO (SPDY)
cell cycle regulator gene family. There were 15 Transcript
Clusters corresponding to 13 distinct genes in the PVT list
not found in the Treatment list (Additional file 3: Table
S2, Additional file 5: Table S4), including EF-Hand Do-
main Family, Member D2 (EFHD2); Ankyrin Domain
Family (POTE); Growth Factor Receptor-Bound Protein 2
(GRB2); Potassium Inwardly-Rectifying Channel, Subfam-
ily J, Member 15 (KCNJ15); and Flotillin 1 (FLOT1). Speci-
ficity of these 15 Transcript Clusters to the PVT list was
robust to inclusion or exclusion of the three fatigue
resistant subjects in tests of differential gene expression
(Additional file 2: Supplementary text).

Co-expression and temporal networks

Weighted Gene Co-expression Network Analysis
(WGCNA) was used to group Transcript Clusters with
similar expression levels across samples into modules.
Analyses focused on modules associated with PVT
lapses. A total of 23 modules of co-expressed Transcript
Clusters were constructed, along with a group of three
remaining Transcript Clusters not exhibiting co-
expression (Grey “module”). Each module was tested for
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an association with each of the key variables (Time of
Day, Treatment, PVT). Some modules correlated with
Time of Day, but analyses focused on the association of
modules with PVT. At a Bonferroni-corrected Type I
error threshold of 0.0167 to account for multiple com-
parisons in the Pearson tests on the three variables, the
White and Darkturquoise modules were significantly
correlated with PVT lapses (Fig. 3, Additional file 6:
Table S5), and Darkturquoise also was significantly cor-
related with Treatment. The genes represented in the
Darkturquoise module primarily were involved in the
immune response, with a large number of immunoglob-
ulins including its top hub Transcript Cluster Immuno-
globulin Kappa Constant (IGKC) (Table 1). In the White
module, several Transcript Clusters represented mem-
bers of the SPDY gene family, including the top hub
Transcript Cluster (Table 1). The tests of correlations of
modules to key variables were run separately in contrast
to the multi-factor models in limma, and the multiple
testing correction was less stringent as compared to a
EDR for testing thousands of Transcript Clusters. Thus,
results of WGCNA were anticipated to complement
limma models of differential expression, but not always
be confirmatory.

A second clustering approach with Mfuzz aided
visualization of changes across timepoints. Running Mfuzz
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Fig. 3 Matrix of Pearson correlations from Weighted Gene Co-expression Network Analysis. Co-expression modules (rows) are separately
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shown in red, and occur when gene expression was higher in samples from Total Sleep Deprivation relative to Control subjects, in samples with
higher PVT lapses, and in samples at later times of day. Negative correlations are blue. Correlation coefficients are depicted for the correlation of
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Table 1 Summary of Weighted Gene Co-expression Network Analysis modules

Module PVT Transcript Treatment Transcript Total Transcript Top Hub Transcript Top Hub Gene
Clusters Clusters Clusters Cluster ID Symbol

Lightgreen 0 0 83 8031277 KIR2DS4

Royalblue 0 8 69 7940287 MS4AT

Greenyellow 0 5 980 7972069 MYCBP2

Lightcyan 0 0 125 7994559 LOC101929910

Pink 0 2 395 7987405 RASGRP1

Black 1 3 1090 7974483 KTN1

Blue 0 3 957 8127526 RPL39P5

Green 0 4 540 8086148 RPL29P11

Darkgrey 0 0 51 8019631 RNU2-1

Darkturquoise 0 0 54 8043459 IGKC

Purple 0 0 345 7995320 -

Darkred 0 0 60 8133896 -

Lightyellow 0 0 74 8089038 -

Cyan 0 0 581 8030470 AP2A1

Orange 0 0 49 8149927 CLU

Grey60 0 3 125 8040080 RSAD2

Darkorange 0 1 43 8019716 LOC101060376

Darkgreen 0 1 58 7919412 NBPF19

White 4 6 39 8133600 SPDYESP

Brown 7 56 1060 7986010 IQGAP1

Turquoise 21 127 1420 7960518 TNFRSFTA

Midnightblue 1 5 160 7989037 CCPG1

Skyblue 0 0 36 7896742 LOC101928706

clustering of the Treatment effect Transcript Clusters
in TSD subjects resulted in a single group of 26 Tran-
script Clusters up-regulated during the Experimental
phase (Mfuzz Treatment Group 2), whereas Transcript
Clusters in the other two Mfuzz groups were down-
regulated (Fig. 4, Additional file 3: Table S2, Additional
file 2: Supplementary text). Down-regulated Mfuzz
Treatment Group 1 contained 104 Transcript Clusters,
and DAVID analysis revealed functional enrichment of
ion binding and cell adhesion. Genes represented in
Mfuzz Treatment Group 1 included Argonaute RISC Cata-
Iytic Component 4 (AGO4), Prostaglandin-Endoperoxide Syn-
thase 2 (PTGS2), Casein Kinase 1, Alpha 1-Like CSNKIAIL,
Protein Kinase C, Beta (PRKCB), Lipopolysaccharide-
Induced TNF Factor (LITAF), Interleukin 1B (IL1B),
Eukaryotic Translation Initiation Factor 4E Family
Member 3 (EIF4E3), and Glycogen Synthase Kinase 3 Beta
(GSK3B). The up-regulated Mfuzz Treatment Group 2 was
smaller and lacked significantly enriched functional
clusters in DAVID; members included Transcript Clusters
associated with B cell signaling, and genes in the SPDY
family. Down-regulated Mfuzz Treatment Group 3

contained 94 Transcript Clusters, with functional enrich-
ment of immunoglobulins, cell motility, and the inflam-
matory response. Among the genes in this group were
Hypoxia Inducible Factor 1, Alpha Subunit (Basic Helix-
Loop-Helix Transcription Factor) (HIF1A), Chemokine (C-
X-C motif) Receptor 2 (CXCR2), Solute Carrier Family 11
(Proton-Coupled Divalent Metal Ion Transporter), Mem-
ber 1 (SLC11A1), Chemokine (C-X-C motif) Receptor 1
(CXCR1), Interleukin 17 Receptor A (IL17A), Cytoplasmic
Polyadenylation Element Binding Protein 4 (CPEB4), and
Immediate Early Response 3 (IER3).

Although members of both Mfuzz Treatment Groups
1 and 3 based on TSD subject data exhibited down-
regulation during the Experimental phase, the temporal
patterns differed slightly. Mfuzz Treatment Group 1
showed highest expression at midday in Recovery and a
weak trend toward highest expression around noon in
Baseline, which was disrupted by down-regulation in
the Experimental phase. Overall, Mfuzz Treatment
Group 3 Transcript Clusters had their highest expres-
sion during Baseline at 08:00 h and decreased expres-
sion to 20:00 h. Not only was this pattern disrupted
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during the Experimental phase similar to Mfuzz
Treatment Group 1, but also there was a delay in the
maximum expression until 12:00 h in the Recovery
phase.

When Transcript Clusters associated with PVT lapses
were temporally clustered based on data from TSD sub-
jects, there again were two Mfuzz down-regulated groups
and one up-regulated group during the Experimental
phase (Fig. 5, Additional file 5: Table S4, Additional file 2:
Supplementary text). For down-regulated Mfuzz PVT
Group 1 with 15 Transcript Clusters, cell motility was the
only significantly enriched functional cluster found in DA-
VID. Members of Mfuzz PVT Group 1 included Aquapo-
rin 9 (AQP9), chemokine receptors CXCRI and CXCR2,
and HIFIA. In down-regulated Mfuzz PVT Group 2 with
14 Transcript Clusters, only an ion transport group was
significantly enriched. Included in Mfuzz PVT Cluster 2
were LITAE KCNJ15, and FLOTI. There were no signifi-
cant enrichment terms for Mfuzz PVT Group 3, which
consisted of four Transcript Clusters representing the
SPDY family (red and pink lines in Fig. 5), plus OD2FL.

Similar to Group 3 of the Mfuzz Treatment results on
TSD subjects, the Mfuzz PVT Group 1 for TSD subjects
showed a pattern of decreasing expression from 08:00 to
20:00 at Baseline that shifted to overall low expression
in the Experimental phase, with continuing distortion
during the Recovery phase. The Mfuzz PVT Group 2
was roughly similar in expression pattern to Mfuzz
Treatment Group 1 in having a circadian maximum
midday in the Baseline and Recovery phases, which was

depressed during the Experimental phase. Mfuzz PVT
Group 3 exhibited a roughly similar expression pattern
to Treatment Group 2, with up-regulation during the
Experimental phase.

Overall, Mfuzz clustering of Treatment and PVT
Transcript Clusters based on expression values from
Control subjects showed differences from plots made on
TSD subject data (Additional file 2: Supplementary text,
Additional file 2: Supplementary text — Figs. S4 and S5).
However, clustering resulted in Transcript Clusters
sorting themselves out differently in runs of TSD and C
subject data. Individual Transcript Clusters in Group 1
of the Mfuzz cluster from TSD subjects’ data are not all
found in Group 1 of the Mfuzz results for Control sub-
jects, and so on. There was roughly 75% overlap of
Transcript Clusters associating with the same group in
runs of Mfuzz on the Treatment list for C and TSD sub-
jects. For PVT there was a reasonable amount of overlap
for Mfuzz Group 3, but very poor relation of Transcript
Cluster membership for the other two groups between C
and TSD plots. Transcript Clusters in Mfuzz Group 2
for Control subjects, were roughly evenly split between
Mfuzz Group 1 and 2 for the TSD subjects. Therefore,
caution is needed when comparing specific groups be-
tween plots of TSD and C subjects’ data.

Transcription factor regulators

Regulatory Impact Factor z-scores were used to rank hu-
man transcription factors as potential regulators of the
differentially expressed Transcript Clusters, first for the
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Treatment list and second for PVT Transcript Clusters.
For the Treatment list, no transcription factors had RIF
z-scores > 2, whereas 41 had z-scores <- 2. The smallest
RIF value corresponded to the ELK3, ETS-Domain
Protein - SRF Accessory Protein 2 (ELK3), with RIF z-
score = — 7.40. From the PVT list, 7 Transcript Clusters
had z-scores >2 including the Basic Helix-Loop-Helix
Family Member 40 (BHLHE40, RIF z-score = 2.64), and
25 had z-scores <—2. The largest absolute value of the
RIF score again was for ELK3, with RIF z-score = — 6.36.

To further characterize potential regulators of the
response to TSD, the BIOBASE F-match algorithm
was used to assess potential transcription factor bind-
ing sites in the promoters of Transcript Clusters from
the Treatment and PVT lists. Seven transcription fac-
tor matrices were predicted to regulate genes that
respond to Treatment: c-Myb, E2A, Ets, GKLF, E-box,
GLI, and myogenin. Only Hicl met the screening
criteria for the PVT list.

Two matrices, Ets and E-box, were identified by F-
match for the Treatment list, and associated with tran-
scription factors having an RIF z-score>2 or<-2. The
Ets and E-box binding matrices were found in many Treat-
ment Transcript Clusters by F-match, and among tran-
scription factors known to bind these matrices were four
genes with high RIF z-scores: Upstream Transcription
Factor 1 (USF1) with an E-box binding site; Transcription
Factor 4 (TCF4) with an E-box binding site; GA Binding
Protein Transcription Factor, Alpha Subunit 60 kDa
(GABPA) with an Ets binding site; and ELK3 with an Ets
binding site (Table 2). Three of these transcription factors,
ELK3, TCF4, and USFI1, had an RIF z-score< -2 in the
PVT list; however, F-match PVT results only identified the
Ets matrix as over-represented against three background
sets, and the E-box motif against two backgrounds sets.
Expression levels of the gene Hypermethylated in Cancer 1
(HIC1) did not meet the low-expression filter (Methods),
and thus it was excluded from the RIF analysis.
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Table 2 Transcript Clusters with evidence of regulatory roles from Regulatory Impact Factor and Biobase F-match analysis

Transcript Treatment RIF Z-score PVT RIF Z-score Gene Symbol Binding Matrix Treatment F-match PVT F-match
Cluster Over-representation Over-representation
7957665 —740 —6.36 ELK3 Ets 10 3

8133030 -3.01 -0.82 GABPA Ets 10 3

8023415 -2.07 =213 TCF4 E-box 9 2

7921738 —544 -335 USF1 E-box 9 2

Footnote: F-match over-representation was reported as the number of times out of 10 runs that the binding matrix was over-represented

Functional enrichment and pathway analysis

Functional enrichment in DAVID was similar for both
the Treatment and PVT effects, albeit with fewer find-
ings for the much smaller list of differentially expressed
PVT Transcript Clusters (Tables 3 and 4). Several
enriched functional categories were related to the im-
mune response and motility, including immunoglobu-
lins, components of the inflammatory response, cell
adhesion, and calcium ion binding. There were no
significantly enriched functional clusters for the up-
regulated Transcript Clusters of the Treatment list
(Mfuzz Treatment Group 2, Fig. 4) or PVT list (Mfuzz
PVT Group 3, Fig. 5), likely due to the small number of
up-regulated Transcript Clusters. Most Transcript
Clusters were down-regulated.

The 28 genes associated with PVT lapses were part of
multiple upstream Causal Networks in IPA®, 25 of which
were connected to at least 10 of the differentially
expressed PVT genes. One had similarity to a network
from the Treatment list in that the Bradykinin Receptor
(BDKR) was a master regulator in both (Additional file 2:
Supplementary text — Figure S6, Network B). This net-
work was significantly enriched for both the Treatment

Table 3 Functional enrichment for DAVID clusters with scores
> 1.3 (P<0.05) for the Treatment effect list

Cluster Enrichment Number Description

Number Score of Genes

1 443 99 membrane

2 282 14 immunoglobulin

3 2.74 16 cell adhesion

4 234 38 cell motility; inflammatory
response

5 224 13 cell junction

6 2.03 12 coagulation

7 1.96 21 cell fraction

8 1.76 3 metal ion-binding site:
calcium

9 144 15 vesicle

10 143 3 sushi; complement control
module

11 1.33 13 lipoprotein

analysis (P =8.75E-04) and PVT analysis (P =4.22E-03).
Both Treatment and PVT Causal Networks provided evi-
dence for purinergic activity, but with different purine
type receptors as the master regulator: P2RX4 for Treat-
ment (P=9.16E-04), and P2RX7 for PVT (P = 2.46E-03)
(Additional file 2: Supplementary text — Figure S7,
Network P). A PVT Causal Network of interest (P=1.
72E-03) that contained evidence of ion channel activity
had Adenylate Cyclase (ADCY) as its master regulator
(Fig. 6, Network A). Also, a PVT Causal Network pathway
with the master regulator DnaJ Heat Shock Protein Family
(HSP40), known as DNA]J (Additional file 2: Supplementary
text — Figure S8, Network D), predicted up-regulation of
several heat shock proteins (P =4.09E-03). These include
DNAJ, Heat Shock Protein 70 (HSP70) and Heat Shock
Protein 90 (HSP90). However, there were no corresponding
Treatment Causal Networks with ADCY or DNA]J as the
master regulator. The P-values reported above for causal
networks are raw P-values of overlap; the network bias-
corrected P-values likewise fall below a P-value threshold of
0.05 for the BDKR and P2RX4 networks from the Treat-
ment dataset, as do those for ADCY, BDKR, P2RX7, and
DNAJ networks from the PVT dataset (Additional file 7:
Table S6, Additional File 8: Table S7).

microRNA gPCR

None of the tested miRNAs were significantly (FDR <O0.
05) associated with Treatment, but three were signifi-
cantly related to PVT lapses: microRNA 152 (MIR152),
microRNA 27b (MIR27B), and microRNA 24 (MIR24)
(Additional file 9: Table S8). Evidence is slightly weaker
for MIR27B based on visual inspection of plots, with

Table 4 Functional enrichment for DAVID clusters with scores
> 1.3 (P<0.05) for the Psychomotor Vigilance Test (PVT) list

Cluster Enrichment Number Description

Number Score of Genes

1 1.65 9 cell motility; inflammatory
response

2 137 9 vesicle-mediated transport;
intracellular signaling cascade

3 1.37 19 membrane

4 1.35 5 calcium-binding EF-hand
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separation during the final Baseline timepoint of mean
(+1 SE) expression between C and TSD fatigue suscep-
tible subjects (Additional file 2: Supplementary text —
Figure S9).

Discussion

This study identifies candidate biomarkers for acute
total sleep deprivation in humans, as well as promising
candidates for a biomarker test of neurobehavioral im-
pairment caused by TSD. Moreover, functional enrich-
ment analyses and prediction of molecular networks
advanced mechanistic insights into the impact of sleep
deprivation. Some of the difficulty identifying bio-
markers for sleep deprivation [16] may be caused by
the large inter-individual variability in responses to
sleep loss. In particular, the greater ability of some per-
sons to resist performance degradation during sleep
loss has been recognized for over a decade [19]. In the
present study three out of 11 TSD subjects were
identified as fatigue resistant in terms of PVT lapses
(Additional file 2: Supplementary Text — Figure S1).
By testing for the relationship of gene expression in
blood to PVT lapses that encompass some of this
variability, additional biomarkers were found that
were not identified by assessment of a simple sleep
deprivation Treatment effect. Of course the same was
true in reverse, as we identified 212 Treatment effect
genes in blood (Additional file 3: Table S2) and a

mere 28 genes associated with PVT lapses (Additional
file 5: Table S4). Detecting a relationship of gene ex-
pression with PVT lapses may be more difficult, con-
sidering the added complexity, greater outcome
specificity [33], and perhaps narrower suite of associ-
ated genes for neurobehavioral traits.

While identifying genes associated with a sleep loss
Treatment has value, biomarkers for neurobehavioral im-
pairment such as our list of genes associated with PVT
may aid fundamental understanding of the relationship
between sleep and cognition. Shifting the focus from sleep
deprivation biomarkers, to biomarkers for impairment
from sleep deprivation, strengthens characterization of the
molecular basis of the phenotype. By directly assaying the
molecular changes associated with neurobehavioral per-
formance, and drawing predictions of associated impacts
on function, this research enhances understanding of the
relation between sleep loss and capacity for sustained
attention.

Most genes identified in this study exhibited down-
regulation in TSD relative to C during the Experimental
phase, a pattern consistent with prior studies in humans
such as [15]. As reviewed by Mackiewicz et al. [34], sleep
is associated with macromolecule biosynthesis, and pro-
longed wakefulness leads to down-regulation of genes
associated with multiple metabolic processes. The
current study indicates potential effects on translation in
the down-regulation of Cytoplasmic Polyadenylation
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Element Binding Protein 4 (CPEB4, Treatment and PVT
effect lists) and Eukaryotic Translation Initiation Factor
4E Family Member 3 (EIF4E3, Treatment list only). The
CPEB4 gene is one of four vertebrate cytoplasmic polya-
denylation binding proteins that regulates translation via
effects on poly(A) elongation [35, 36]. The phosphory-
lated form of the CPEB protein promotes translation of
mRNAs with roles in learning, memory, and synaptic
plasticity [36, 37], which may explain its relation to
PVT lapses. Grenli and colleagues report that sleep
deprivation leads to reduced phosphorylation of Cpeb
in the hippocampus and Eif4e in the dentate gyrus of
rats [37]. Although the EIF4E gene was not signifi-
cantly related to PVT lapses in the present study, it
was down-regulated in response to the TSD Treat-
ment. The protein EIF4E is a component of the trans-
lation initiation complex [38]; decreased levels of this
protein would be detrimental to synthesis of new pro-
tein and could contribute to the known effects of
sleep loss on macromolecular biosynthesis.

Sleep deprivation biomarkers and immunity

Cytokine and stress-associated networks frequently are
associated with sleep deficits [15, 39], and results here
further support the association of TSD with the immune
system. Ingenuity Pathway Analysis® Causal Networks
detected in both Treatment and PVT analyses have
BDKR as the master regulator (Additional file 2: Supple-
mentary Text — Figure S6, Network B). Bradykinin re-
ceptors are mediators of the inflammatory response [40],
as indicated by inclusion of differentially expressed genes
such as the chemokine CXCRI and transcription factor
LITAF in the PVT network. The LITAF gene is a key
mediator of the inflammatory cytokine response to lipo-
polysaccharides [41]. Multiple genes related to the im-
mune system were down-regulated in both Treatment
and PVT lists, including LITAF, CXCRI1, and CXCR2.
The genes ILI7RA and IL1B were down-regulated for
Treatment only.

In contrast, several reviews suggest that sleep loss
results in increased levels of cytokines such as ILI
[39, 42—44]. While many reports are based on protein
assays, studies reviewed by Krueger [42] have shown that
in brain, LI mRNA increases during sleep deprivation.
However, results in the present study are based on blood
rather than brain samples. Also, much of the /L1 data in
the reviews are derived from studies of animals, particu-
larly rodents, and results may differ in humans. Details of
the experimental design such as the time of measurement
also may influence results. For example, in human blood
higher mRNA levels of IL1B are found in day vs. nighttime
samples [17].

Nonetheless, findings in the current study do indicate
that specific aspects of the immune system were up-
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regulated. For example, an up-regulated group of Treat-
ment effect genes (Mfuzz Treatment Group 2 — TSD
subjects’ data, Fig. 4) contains members associated with
B cell signaling. This is consistent with the study by Aho
and colleagues [45] of leukocyte gene expression in
humans following partial sleep restriction, in which B
cell activation is among the top up-regulated Gene
Ontology pathways. Besides cytokines, the immune
genes CAMP and DEFA4 are of interest. These mole-
cules were significantly down-regulated in TSD subjects
in both Experimental and Recovery phases. Their con-
tinuing down-regulation suggest the need for more than
one Recovery night of sleep to restore molecular homeo-
stasis. This idea is further supported by the Mfuzz plots
for TSD subjects showing potential circadian disruption
in the Recovery phase, with gene expression patterns
from morning to evening differing from the temporal pat-
terns observed at Baseline (Figs. 4 and 5). Nevertheless,
there appear to be some potential differences during Base-
line between Mfuzz TSD and C clusters (Additional file 2:
Supplementary text — Figs. S4—S5), warranting some cau-
tion in over-interpreting circadian trends from Mfuzz. Yet
as aforementioned, care is needed in comparing results of
Mfuzz for C and TSD subjects due to differences in Tran-
script Cluster membership among Mfuzz groups (Results,
Additional file 2: Supplementary text).

Besides immunity, sleep deprivation typically is asso-
ciated with evidence of a stress response including in-
duction of heat shock proteins [34, 39, 46, 47]. One of
the PVT Causal Networks predicts up-regulation of
stress response genes including HSP70 and HSP90
(Network D, Additional file 2: Supplementary Text —
Figure S8). Differentially expressed genes in this net-
work included cytokine receptors CXCRI and CXCR2,
as well as the transcription factors HIFIA and LITAF.
While HIFIA is known for its role in activating hypoxic
response genes, recent work suggests that HIFIA in-
duction from hypoxia caused by obstructive sleep apnea
may disrupt circadian rhythms [48]. Overall stress re-
sponse networks and cytokines may eventually contrib-
ute to a larger biomarker panel for diagnosing TSD, but
by themselves such genes may be too variable or too
pleiotropic to discriminate between sleep loss and other
phenotypes such as illness.

Homeostatic and circadian clock genes

Overlap between the circadian and homeostatic sleep
processes is increasingly documented [49, 50], and re-
sults here further suggest a link with neurobehavioral
function. Among the high-scoring transcription factors
in the RIF analysis was BHLHE40 (also known as DECI),
which together with Basic Helix-Loop-Helix Family
Member 41 (BHLHE41, also known as DEC2) acts as a
transcriptional repressor of the Circadian Locomoter
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Output Cycles Kaput (CLOCK)/Brain and Muscle
ARNT-Like 1 (BMAL1) promoter [51, 52]. Mutations of
BHLHE41 have been associated with resisting effects of
sleep loss in humans [53]. Interestingly 62 of the
genes identified by Moller-Levet et al. as rhythmic in
a well-rested condition [17], were identified in our
Treatment list, and six were found in the PVT list
(Additional file 4: Table S3).

Additionally, expression profiles of three miRNAs
were significantly related to PVT lapses: MIR24, MIR27
B, and MIR152 (Additional file 9: Table S8). MicroRNAs
are known for their roles in regulating gene expression
[54], and have been associated with sleep and neurode-
generative disease [55]. Due to their relation to PVT
lapses in the current study, these three miRNAs are in-
triguing candidates for regulating the molecular mech-
anism linking sleep deprivation and sustained attention.
In mice Mir27 b regulates the clock gene Bmall at the
posttranscriptional level [56]. Although not part of the
ADCY Causal Network A generated with IPA° (Fig. 6),
bioinformatics analyses suggest that Mir27 b interacts
with the Adenylate cyclase 6 (Adcy6) gene [57]. It has
been proposed that Mir24 plays a role in regulating the
period genes in mice [58], and based on sequence ana-
lysis in humans, MIR24 is predicted to interact with
Cryptochrome Circadian Clock 2 (CRY2) and Period
Circadian Regulator 2 (PER2) [59]. Finally we note that
microRNAs themselves can exhibit circadian rhythm in
their expression. For example, Mirl52 exhibits diurnal
oscillations in mice [60]. Plasma samples in humans re-
vealed diurnal oscillations in MIR24 [59], although evi-
dence is mixed for such rhythmicity in MIR27 B [57, 59].

Transcription factor analyses highlight further regula-
tors with possible roles in both homeostatic and circa-
dian processes, such as USFI. In mammals, the CLOCK/
BMAL1 protein heterodimer binds E-boxes in the
promoters of the Period (PER1 and PER2) and Crypto-
chrome (CRY1 and CRY2) genes leading to their activa-
tion, and the protein products of these genes repress the
CLOCK/BMALI complex and in turn their own expres-
sion, until degradation of PER and CRY products
releases CLOCK/BMALI1 [61-63]. Oscillations in this
molecular clock contribute to initiating circadian
rhythms. USF1, like the CLOCK/BMALIL heterodimer,
binds E-box regulatory sites but with peak binding at
night, antiphase to CLOCK/BMALL1 [61]. It has been
proposed that USF1 may help generate circadian
rhythms by maintaining an open chromatin state, enhan-
cing the ability of CLOCK/BMALL binding to the E-
boxes on the next circadian cycle [61]. In the current
study, not only was there a strong prediction of a regula-
tory role for USFI in the RIF analysis, but also the
Biobase F-match tool revealed over-representation of E-
box binding sites in the differentially expressed genes.
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Other genes with regulatory roles supported by both
RIF and F-match analyses were GABPA, TCF4, and ELK3.
The protein encoded by the GABPA gene is a transcrip-
tion factor that may function in human cognition [64].
Previous research on chronic sleep restriction in humans
suggested a possible association between GABPA and
gene down-regulation [45], but more work is needed to
elucidate the relation of TCF4 and ELK3 to sleep
deprivation. It is noted that RIF and F-match test for regu-
latory effects in distinctly different ways (Additional file 2:
Supplementary text) and should be considered comple-
mentary, not necessarily confirmatory.

Novel biomarkers and genes specific to neurobehavioral
impairment

Altogether 13 genes represented by 15 Transcript Clus-
ters were associated with PVT lapses but not with Treat-
ment (Additional file 2: Supplementary text; Additional
file 5: Table S4), including FLOTI. In mice, flotillins are
up-regulated with sleep and down-regulated with sleep
deprivation [47], which in the present study would be
seen as a Treatment effect. Due to their association with
lipid rafts, flotillins may have a role in neurotransmitter
signaling [34, 47]. In contrast to the results of Mackie-
wicz et al. [47], lack of a Treatment effect in the current
study could reflect a difference between mice and
humans. Confirming the absence of a Treatment effect
for the 13 genes specific to the PVT analysis will require
additional studies with more individuals. Nevertheless, a
tantalizing hypothesis is that these 13 genes are specific-
ally related to the mechanism by which TSD affects the
capacity for sustained attention.

Another down-regulated gene specifically associated
with PVT was KCNJ15, an inward rectifying potassium
channel proposed to be a key component of the potas-
sium circadian cycle [65]. It has been suggested that
cycling of sodium and potassium currents is an evolu-
tionarily conserved mechanism of governing clock neu-
rons in the brain [66]. Recent work points to the role of
neuromodulators influencing extracellular ion concen-
trations in the brain, in turn impacting sleep/wake activ-
ity [67]. Further evidence linking PVT lapses and ion
channels exists in the IPA° Causal Network A (Fig. 6).
The direction of change of the differentially expressed
genes within this network was consistent with inhibition
of an L-type calcium channel complex and activation of
Potassium Calcium-Activated Channel Subfamily N
Member 4 (KCCN4). In mice, knockouts of Kccn4 lead
to reduced sleep duration [68].

Beyond suggesting a role of ion signaling in TSD and
the resulting neurobehavioral deficits, Network A (Fig. 6)
was intriguing due to the implications for cyclic adenosine
monophosphate (cCAMP) signaling. In general, activation
of adenylate cyclase leads to production of cAMP [69].
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Here it was predicted that ADCY was down-regulated,
which in turn would reduce cAMP levels. Other compo-
nents of Network A include predicted down-regulation of
complexes for protein kinase A (PKA) and phospho-
cAMP response element binding protein (CREB), which
are implicated in memory storage [70]. A study in mice
demonstrated that increasing cAMP in hippocampal neu-
rons can rescue the typical memory consolidation impair-
ment caused by sleep deprivation [71]. Via its impact on
cAMD, this network also implicates the immune system.

Narasimamurthy and colleagues [72] proposed a
model in which Cryptochrome 1 (CRY1) inhibits adenyl-
ate cyclase, reducing levels of cAMP and ultimately of
IL6. In this study the IL6 gene was excluded from ana-
lyses due to its low expression across multiple samples,
but reduction of this cytokine would be consistent with
the predictions of inhibition of the immune system.
Additional Causal Networks contained purine type 2X7
(PVT) and 2X4 (Treatment) receptors (Additional file 2:
Supplementary text — Figure S7, Network P). Binding of
ATP to P2X4 receptors is known to promote REM sleep,
whereas binding to P2X7 receptors promotes non-REM
sleep [43]. As reviewed previously [73, 74], adenosine
binding to P2X7 receptors has been implicated in effect-
ing the cumulative deficits in PVT performance due to
chronic sleep loss, but these receptors also can act inde-
pendently of adenosine to promote the release of sleep
regulatory substances. Adenosine itself is a sleep regula-
tory substance as stated in reviews [43, 74], although
causal roles for the molecule in sleep homeostasis are
debated [74].

Genes within the SPDY family constitute a new group
of candidate biomarkers for the effects of TSD. In differ-
ential expression analysis of both Treatment and PVT
lapses, Transcript Clusters for SPDY genes were up-
regulated (Figs. 4 and 5), and WGCNA grouped several
members of the SPDY family in a co-expression module
(White) correlated with PVT lapses (Fig. 3, Additional
file 6: Table S5). The SPDY members can activate cyclin-
dependent kinases independent of cyclin activity, and
they function in cell cycle progression, meiotic matur-
ation, and the DNA damage response [75, 76]. To the
authors’ knowledge the SPDY gene family has not previ-
ously been associated with sleep deprivation, although
Cyclin A has been linked to sleep-wake transitions and
the sleep homeostat in Drosophila [77]. The best known
member of this family, SpdyA (also known as SpyI), was
shown to be expressed in the lumbar spinal cord of adult
rats and may function in nerve regeneration [78, 79].
Meanwhile, a growing body of research points to effects
of sleep deprivation on adult neurogenesis, albeit results
seem to vary among studies and may depend on the ex-
tent of sleep deprivation [80]. Combining these findings
one can hypothesize that sleep deprivation induces the
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SPDY family, thereby altering cell cycle progression and
neurogenesis. However, this gene family has high se-
quence homology making unambiguous identification of
the relevant family members difficult.

Future directions

The present investigation was aimed at biomarker dis-
covery, and preliminary analysis of biomarker function
and associated molecular networks. As with any such
project, further work is required for biomarker valid-
ation [16]. This should include additional comparisons
with published datasets, and collection of new data from
more subjects. Collecting nighttime blood samples from
control individuals without disturbing their sleep would
be helpful for refining the association of biomarkers with
neurobehavioral impairment across the circadian cycle.
Also, many of the genes associated with neurobehavioral
impairment from TSD in this study are connected to
several different regulatory pathways, suggesting the po-
tential for pleiotropic roles. For example, Networks A, B,
D, and P for PVT all contain six of the 28 differentially
expressed PVT genes, Aquaporin 9 (AQP9), Arrestin Do-
main Containing 3 (ARRDC3), CPEB4, ELOVL Fatty
Acid Elongase 5 (ELOVLS), HIFIA, and Lymphocyte
Cytosolic Protein 1 (LCP1) (Fig. 6, Additional File 2:
Supplementary text — Figs. S6—S8). Moreover, these four
networks all contain two ligand-dependent transcription
factors, Nuclear Receptor Subfamily 3, Group C, Member
1 (NR3C1), and Peroxisome Proliferator Activated Recep-
tor Alpha (PPARA). While all four networks clearly pre-
dict down-regulation of PPARA, for the glucocorticoid
receptor NR3C1I evidence of down-regulation is stronger
in networks A and P. The PPARA protein is important
to coordinating rhythmic gene expression, and it inter-
acts with the period gene PER2 [81]. Ultimately, con-
firmation of predicted pathway networks and regulatory
molecules will require targeted laboratory studies, and a
different approach will be needed to test for causation
and verify mechanistic insights (e.g., gene knockout or
silencing assays).

In this study (Additional file 3: Table S2, Additional
file 5: Table S4), as in prior research on sleep and gene
expression [22], fold change values typically were low.
Validation of biomarker panels will require additional
data collection from more subjects to increase power,
and to adequately represent the continuum of sleep
deprivation responses. However, identification of similar
themes in multiple different analyses increases confi-
dence in the results presented here. For example, the
WGCNA co-expression module most strongly correlated
with PVT lapses contains several SPDY genes, congruent
with identification of SPDY members in the PVT differ-
ential expression list. Of course findings here are specific
for measurements in blood. Gene expression may vary
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across fluid and tissue types, although concordance as
high as 80% has been reported between the transcrip-
tome of blood and major tissues [82, 83].

In the future, separate analyses of fatigue resistant in-
dividuals to determine any gene expression patterns
unique to them could advance understanding of the abil-
ity to maintain neurobehavioral functioning during sleep
deprivation. Because the current study only included
three fatigue resistant subjects, this is left to future stud-
ies with a larger sample size.

Conclusion

In this study, gene expression was associated with not
only total sleep deprivation, but also PVT lapses of at-
tention following sleep loss. The 13 genes unique to the
PVT analysis may be particularly promising candidates
for exploring the relationship between TSD and the cap-
acity for sustained attention at a molecular level. This
has added relevance in light of findings that sleep
deprivation affects multiple distinct aspects of cognition
differentially [7, 33, 84]. Although the PVT is perhaps
the most widely used neurobehavioral assay in sleep
deprivation research, tests are available for other compo-
nents of cognition, and gene expression patterns associ-
ated with other processes such as decision making
should be examined. These comparisons may yield new
biomarker panels or identify genes that overlap with the
PVT list here, providing novel insights regarding the
molecular changes associated with the response of di-
verse aspects of neurobehavioral performance to sleep
loss. Other fields such as proteomics and metabolomics
may yield further biomarker candidates and capture add-
itional phenomena, such as post-translational effects.

Additional files

Additional file 1: Table S1. Description of the samples. Values of N/A
for the RNA integrity number correspond to three samples where this
could not be calculated. No RNA was collected for five timepoints with
unsuccessful blood draws. (XLSX 20 kb)

Additional file 2: Supplementary text and figures. Detailed study
methods, results, and supplementary Figures S1-S9. (PDF 1546 kb)

Additional file 3: Table S2. List of Treatment effect Transcript Clusters
with fold change, P-value, and FDR for the Treatment effect at the
Experimental phase, Mfuzz Treatment group, and annotations from the
NetAffx™ batch annotation tool. Notes on gene family, comments, and
mRNA assignment are from review of the Affymetrix annotation package
(HuGene-1_0-st-v1.na35.hg19.probeset.csv) for Transcript Cluster IDs
without gene level (e.g, title) annotation or with mixed hybridization
targets. Mixed hybridization targets suggest the potential for the
Transcript Cluster to be associated with more than one gene. Three
slashes designate multiple annotations associated with the same
Transcript Cluster. Column human blood designates whether or not the
gene was found in an IPA® biomarker screen for genes detectable in
human blood. (XLSX 88 kb)

Additional file 4: Table S3. Comparison of Treatment and PVT lists,
based on the first gene symbol listed for each Transcript Cluster, with
datasets from literature. Worksheet tab “Summary” presents the numbers
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of genes found in common between the Treatment and PVT lists with
published datasets. Subsequent worksheet tabs provide detailed
comparisons for individual published datasets. Identification of a match
required finding the exact same gene symbol in published datasets as
the first listed gene symbol in the Treatment and PVT list. Thus, overlap
may be underestimated if different annotations were given to the same
gene. (XLSX 96 kb)

Additional file 5: Table S4. List of Psychomotor Vigilance Test (PVT)
effect Transcript Clusters with P-value and FDR for the PVT effect, Mfuzz
PVT group, and annotations from the NetAffx™ batch annotation tool.
Notes on gene family, comments, and mRNA assignment are from review of
Affymetrix annotation package (HuGene-1_0-st-v1.na35.hg19.probeset.csv)
for Transcript Cluster IDs without gene level (e.g, title) annotation or with
mixed hybridization targets. Mixed hybridization targets suggest the
potential for the Transcript Cluster to be associated with more than one
gene. Three slashes designate multiple annotations associated with the
same Transcript Cluster. Genes also found in the Treatment list are noted.
Column human blood designates whether or not the gene was found in an
IPA® biomarker screen for genes detectable in human blood. (XLSX 24 kb)

Additional file 6: Table S5. WGCNA module membership for all
Transcript Clusters passing the low-expression threshold. Correlation
coefficients (r) and P-values are given for the Pearson correlation between
each Transcript Cluster and each of three variables: Treatment, PVT lapses,
and Time of Day. Annotations are taken from the Affymetrix batch NetAffx™
tool, with /// separating multiple annotations given to the same Transcript
Cluster. (XLSX 2732 kb)

Additional File 7: Table S6. Results of Ingenuity Pathway Analysis®
Causal Networks as run on the Treatment list. (XLSX 33 kb)
Additional File 8: Table S7. Results of Ingenuity Pathway Analysis®
Causal Networks as run on the PVT list. (XLSX 20 kb)

Additional file 9: Table S8. Results of linear mixed-effects models on
microRNA gPCR data, including tests for a relation to Treatment,
Psychomotor Vigilance Test (PVT), and Time of Day. (XLSX 12 kb)
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