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Background: Acute myeloid leukemia (AML) is the most common hematological malignancy in adult 
patients. Ferroptosis-related signatures have been shown to act as regulators of the progression of multiple 
cancer types, but the role of ferroptosis in AML remains to be elucidated. We performed the present study 
to preliminarily investigate the roles of ferroptosis-related genes (FRGs) in AML.
Methods: The transcriptome data of AML patients was downloaded from The Cancer Genome Atlas 
(TCGA) and the transcriptome data of normal samples was obtained from the Genotype-Tissue Expression 
(GTEx) database. FRGs were selected via public articles. Expression levels of FRGs between AML and 
normal samples were analyzed. The prognostic model based on FRGs was constructed via lasso regression. 
The expression levels and prognostic role of FRGs were identified from the risk model. We also performed 
validation experiments to verify the expression levels of the final selected genes via immunohistochemistry, 
polymerase chain reaction (PCR), and RNA-seq. Finally, we explored the associations between immune 
infiltration, drug sensitivity, and the selected FRGs.
Results: The transcriptome data of 151 AML samples were retrieved from TCGA and 70 bone marrow 
normal samples were retrieved from the GTEx database. Additionally, 23 FRGs were collected from the 
published articles. There were 22 differentially expressed FRGs, and among them, dipetidyl peptidase-4 
(DPP4) (P= 0.011, HR =1.504), GPX4 (P=0.055, HR =1.569), LPCAT3 (P<0.001, HR =2.243), SLC7A11 
(P=0.012, HR =2.243), and transferrin receptor  (TFRC) (P=0.029, 0.774) had a significant influence on 
the prognosis of AML patients via lasso regression. The area under the curve (AUC) values of the 1-, 
3-, and 5-year receiver operating characteristic (ROC) curves of the FRG signatures indicated that this 
model is novel and effective method for predicting the prognosis of AML patients. DPP4 (P<0.001) was 
overexpressed while LPCAT3 (P<0.001), TFRC (P<0.001), GPX4 (P<0.001), and SLC7A11 (P<0.001) were 
downregulated, further validation experiment results indicated that DPP4 was significantly downregulated 
but TFRC was upregulated in AML samples. Dysregulation of DPP4 and TFRC influence numbers of 
chemotherapy regimens sensitivity.
Conclusions: DPP4 and TFRC act as biomarkers for predicting and diagnosing AML, and their 
expression levels also have significant correlations with drug resistance in AML. 
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Introduction

Acute myeloid leukemia (AML) is characterized by a 
loss of control of myeloid precursor cell proliferation 
and undifferentiation (1). If AML patients do not 
undergo appropriate treatment, death can rapidly occur. 
Anthracycline and cytarabine have remained the standard 
therapy regimens for AML patients since the 1970s (2). 
Despite advances in diagnostic and therapeutic methods, the 
overall survival (OS) of AML patients has not significantly 
improved. Over the past decade, with the introduction 
of targeted therapy agents combined with traditional 
chemotherapy, the rates of complete remission (CR) have 
been improved, but the rate of relapse is still unchanged. 
Relapse of disease remains an obstacle for lengthening 
the OS of AML patients. For high-risk patients, the rate 
of disease relapse is more than 60% and results in a short 
median disease-free survival (DFS) of less than 1 year (range, 
4 to 11 months) (3). To date, several driver mutations 
have been observed in AML patients, and these mutations 
have deep influence on the prognosis of AML patients. 
Kishtagari et al. study summarizes the driver mutations 
in AML, based on the functions of driver genes, they are 
divided into signal transduction (FLT3, NRAS, KRAS, 
and KIT), splicing mutations (SF3B1, ZRSR2, U2AF1, 
and SRSF2), tumor suppressors (TP53, WT1, and TET2), 
AML licensing mutations (NMP1), epigenetic modifiers 
(IDH1, IDH2, TET2, SRSF2, BCOR, BCORL, TET2, 
ASXL1, and EHZ2), transcription factors (RUNX1, 
CEBPA, and GATA2), and chromatin modifiers (Cohesin, 
ASXL1, and EHZ2) (4). Patients with the mutated NMP1, 
RUNX1, and TP53 lead to poor prognosis, but biallelic 
mutated CEBPA indicate favorable prognosis (5). Several 
studies have also demonstrated the occurrence of targeted 
therapy resistance (6,7). The target regimens enasidenib 
and ivosidenib have been used to treat IDH mutated AML 
patients (8). Sorafenib was used to therapy the with FLT3-
ITD mutated AML patients (9). However, the resistance of 
these target therapy has been found (6,10). These indicated 
that some unique mutation can be sever as the diagnostic 
and prognostic biomarkers for AML patients, as well as 
assessing the drug resistance, relapse risk, and therapy 
targets markers. Drug resistance and disease relapse may 
be the main reasons leading to the poor outcomes of AML 
patients, but the underlying mechanisms are still unclear. 
It is therefore important to find novel biomarkers for 
diagnosis, assessing prognosis, monitoring drug resistance, 
and even supplementary therapy methods for AML patients.

Iron is a fundamental inorganic nutrient which has a 
critical role in multiple biological processes such as DNA and 
RNA synthesis, cellular respiration, immune responses, and 
detoxification processes, among others (11). Ferroptosis was 
introduced in 2012 and is defined as a unique iron-dependent 
form of cell death. The features of ferroptosis include 
smaller mitochondria with increased membrane density, 
and decreased mitochondrial cristae (12). Ferroptosis strike 
the death balance  in common cells and tissues (13). Several 
studies have demonstrated that ferroptosis is a significant 
regulator of tumor progression (14-16). Ferroptosis is 
regulated via several factors, and ferroptosis-related genes 
(FRGs) may be the most significant regulators among them. 
FRGs have been observed to be differentially expressed and 
play key roles in the prognosis of various cancer types such 
as pancreatic cancer, glioma, and hepatocellular carcinoma 
(17-20). From these findings, it is clear that FRGs have 
been well investigated in solid tumors. In regards to AML, 
several studies have explored the mechanism of drug-
induced ferroptosis (21-23). Du et al.’s study indicated that 
DHA can inhibit leukemia cell proliferation via inducing 
ferroptosis (21). Furthermore, Du et al. revealed that 
inhibition of ferroptosis can promote ATPR-induced AML 
cell differentiation by regulating the ROS-autophagy-
lysosomal pathway (22). Zhu et al. showed that typhaneoside 
inhibited leukemia cell proliferation via inducing ferroptosis-
related autophagy (23). These findings indicate that inducing 
ferroptosis may be a novel potential anticancer method 
for AML. However, there have been no studies that have 
investigated FRG expression levels, their prognostic role, and 
their association with the tumor microenvironment (TME) 
and drug resistance in AML patients. In the present study, 
we used bioinformatics to analyze FRG expression levels, 
their prognostic role, and their association with immune 
infiltration and drug sensitivity. Furthermore, we collected 
normal samples and AML patient samples to validate the 
gene expression levels via immunohistochemistry, polymerase 
chain reaction (PCR), and next-generation sequencing 
(NGS). We present the following article in accordance 
with the REMARK reporting checklist (https://dx.doi.
org/10.21037/atm-21-3368).

Methods

Raw data

The transcriptome data and clinical data of 151 AML 
samples from The Cancer Genome Atlas (TCGA) database 
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and 70 bone marrow normal samples from the Genotype-
Tissue Expression (GTEx) database were collected from 
the University of California Santa Cruz database (UCSC 
Xena, https://xenabrowser.net/datapages/). Subsequently, 
log2 (FPKM+1) normalization was performed on the 
transcriptome data. We searched and extracted 23 FRGs 
from PubMed (24-26).

Screening differentially expressed FRGs 

We screened differentially expressed FRGs between the 
TCGA-LAML cohort (tumor) and the GTEx cohort 
(normal) for further analysis. Differential analysis was 
carried out with the Wilcoxon test in R software. A heatmap 
plot of differentially expressed genes was generated via 
the ggplot2 package. P<0.05 was considered statistically 
significant.

Construction of the ferroptosis-related prognostic signature

We obtained prognostic FRGs via univariate cox regression 
based on differential expression of FRGs, then used 
lasso regression to obtain a more refined signature by 
constructing a penalty function. Multivariate cox regression 
(stepwise) was used to construct the final prognostic 
signature. KM survival analysis was used to generate 
the survival curves based on median values, and log-
rank P<0.05 was considered statistically significant. The 
receiver operating characteristic (ROC) curves, nomogram, 
and calibration curve of the prognostic signature were 
generated via the R packages survivalROC, survminer, and 
rms, respectively. P<0.05 was considered as statistically 
significant.

Tumor immune infiltration analysis

We used the CIBERSORT algorithm of tumor immune cell 
infiltration to calculate the abundance of 22 immune cells 
in the TCGA-LAML cohort. The correlation analysis of 
immune cells was carried out via the Spearman method. 

Immunohistochemistry

Bone marrow smears of AML and normal cases were 
collected, fixed with 10% neutral formalin, dehydrated 
with gradient alcohol, and stained with hematoxylin 
and eosin (HE). The following antibodies were used for 
immunostaining: dipetidyl peptidase-4 (DPP4) (Abcam, 

ab187048), GPX4 (Proteintech, 14432-1-AP), LPCAT3 
(Abcam, ab239585), SLC7A11 (Proteintech, 26864-1-
AP), and transferrin receptor  (TFRC) (Proteintech, 
10084-2-AP).

PCR 

EDTA anticoagulant tubes were used to collect the 
peripheral blood of healthy adults and AML patients, 
and Trizol (Invitrogen, China) was used to extract total 
RNA. Then, the concentration of total RNA was detected 
by a nucleic acid analyzer. GeneRuler DNA Ladder Mix 
and Maxima Reverse Transcriptase were used to reverse 
transcribe RNA into cDNA, and gene expression levels 
were detected according to the 2X SG Fast qPCR Master 
Mix (High Rox, B639273, BBI, ABI) kit instructions. 
GAPDH was used as an internal reference, and the results 
were calculated using the 2−∆∆Ct method. 

RNA-sequence (RNA-seq)

EDTA anticoagulant tubes were used to collect the 
peripheral blood of healthy adults and AML patients, and 
Trizol (Invitrogen, China) was used to extract total RNA. 
RNA samples were used to perform NGS. The library 
construction and transcriptome sequencing were completed 
by Shenggong Bioengineering (Shanghai) Co., Ltd.

Drug sensitivity analysis based on risk score 

The R package pRRophetic was used to perform the drug 
sensitivity analysis.

Statistical analysis 

The differential FRGs were screened through the Wilcoxon 
method. Kaplan-Meier (KM) plots were used to analyze the 
differential survival between groups, and log-rank P<0.05 
was considered statistically significant. Univariate cox 
regression, lasso regression, and multivariate (stepwise) cox 
regression were used to construct the prognostic signature. 
Wilcoxon and Spearman tests were used for difference 
analysis and correlation analysis, respectively. P<0.05 was 
considered statistically significant.

Ethical statement

The study was conducted in accordance with the 
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Declaration of Helsinki (as revised in 2013).

Results

Differential expression of FRGs in AML patients

We retrieved 23 FRGs from PubMed and analyzed the 
differential expression of FRGs between AML (n=151) 
and normal bone marrow (n=70). The heatmap plot 
showed that there were 22 differentially expressed FRGs 
(Figure 1).

Establishment of the FRG prognostic signature for AML

We obtained 7 FRGs that affected the OS of AML patients 
via univariate cox regression of differentially expressed 
FRGs. The results of lasso regression indicated that λ=−4.4 
was the optimal value, then 6 FRGs were obtained for 
further analysis (Figure 2A,2B). Finally, a 5-FRG prognostic 
signature was established for AML (Figure 2C). 

A heatmap was generated showing the FRG signature’s 
gene expression in low-risk and high-risk samples 
(Figure 3A). The risk score curve and survival status plot 

Figure 1 Differential expression of ferroptosis-related genes in acute myeloid leukemia patients. Red represents genes with high expression, 
and green represents genes with low expression. *, *** represent P<0.05, and P<0.001, respectively.

Figure 2 Construction of the FRG prognostic signature for acute myeloid leukemia. (A,B) Selection of the optimal λ threshold for lasso 
regression. (C) The forest graph of the FRG prognostic signature. FRG, ferroptosis-related gene.
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indicated that low and high-risk could well distinguish 
between surviving and dead patients (Figure 3B,3C). The 
nomogram and calibration curves demonstrated that the 
FRG prognostic signature had perfect predictive ability 
(Figure 3D-3G). 

KM survival analysis and ROC curve of the FRG signature

The area under curve (AUC) values of the 1-, 3-, and 5-year 
ROC curves of the FRG signature were 0.804, 0.785, 
and 0.930, respectively (Figure 4A). KM survival analysis 

indicated that patients with low risk had a better OS for 
AML (log-rank P<0.001) (Figure 4B).

FRG expression levels and their association with prognosis

There were 5 genes in the FRG signature, namely DPP4, 
LPCAT3, TFRC, GPX4, and SLC7A11. DPP4 was highly 
expressed in tumors compared with normal samples 
(Figure 5A), while LPCAT3, TFRC, GPX4, and SLC7A11 
were lowly expressed in tumor samples (Figure 5B-5E). In 
terms of prognosis, high expression of DPP4, LPCAT3, 

Figure 3 The expression of the signature genes, risk score curve, survival status, nomogram, and calibration curve of the FRG  prognostic 
signature. (A) Heatmap of the expression of FRG signature genes in low- and high-risk samples. Red represents high expression and green 
represents low expression. (B) Risk score curve of the FRG prognostic signature. Dotted lines represent the boundaries between high- and 
low-risk groupings. (C) Survival status plot of the FRG prognostic signature. (D) Nomogram of the FRG prognostic signature. The 1-year 
(E), 3-year (F), and 5-year (G) calibration curves of the nomogram. X-axis and Y-axis represent the predicted survival and actual survival 
probability of patients’ overall survival, respectively. FRG, ferroptosis-related gene. FRG, ferroptosis-related gene.
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Figure 4 KM survival analysis and ROC curve of the FRG signature. (A) The ROC curves of the FRG signature. Green, blue, and red 
represent 1-year, 3-year, and 5-year ROC curves, respectively. (B) KM survival analysis of high and low risk of FRG signature. KM, Kaplan-
Meier; ROC, receiver operating characteristic; AUC, area under curve; FRG, ferroptosis-related gene.

GPX4, and SLC7A11 resulted in a shorter OS, while high 
expression of TFRC resulted in a better OS in AML 
patients (Figure 5F-5J).

The relative abundance and correlation of 22 immune cells 
in the TCGA-LAML cohort

The histogram shows the relative abundance of 22 immune 
cells in the TCGA-LAML cohort (Figure 6A). The heatmap 
of correlations between the 22 immune cells indicated 
that M2 macrophages were negatively correlated with 
other immune cells, and resting mast cells were positively 
correlated with other immune cells (Figure 6B).

Prognostic immune cells in AML patients

KM survival analysis indicated that high infiltration 
of resting mast cells resulted in a better OS in AML 
patients (Figure 7A). Nevertheless, high infiltration of M2 
macrophages resulted in a poor prognosis (Figure 7B).

Correlation between the FRG signature biomarker and the 
abundance of resting mast cells and M2 macrophages 

Spearman correlation analysis demonstrated that DPP4 
was negatively correlated with resting mast cells and M2 
macrophages (Figure 8A). GPX4 was positively correlated 
with resting mast cells but negatively correlated with 
M2 macrophages (Figure 8B). LPCAT3 was positively 
correlated with resting mast cells but negatively correlated 

with M2 macrophages (Figure 8C). SLC7A11 was positively 
correlated with resting mast cells but negatively correlated 
with M2 macrophages (Figure 8D). TFRC was negatively 
correlated with resting mast cells but positively correlated 
with M2 macrophages (Figure 8E). 

The results of validation experiments 

The results of immunohistochemistry indicated that 
DPP4, GPX4, LPCAT3, SLC7A11, and TFRC had higher 
expression in AML bone marrow samples (Figure 9).  
Furthermore, PCR results showed that TFRC (P<0.01) 
was significantly overexpressed, but DPP4 (P <0.01), GPX4 
(P<0.01), LPCAT3 (P<0.01), and SLC7A11 (P<0.01) were 
significantly downregulated in AML samples (Figure 10). To 
further validate these selected gene expression levels between 
normal and AML samples, RNA-seq  was performed, and the 
results showed that TFRC was significantly overexpressed 
in AML samples (P=2.13E-6), while DPP4 (P=0.016) was 
significantly downregulated in AML samples (https://cdn.
amegroups.cn/static/public/atm-21-3368-1.xls).

Drug sensitivity 

The ultimate goal of cancer research is finding novel or 
complementary therapy regimens for cancer patients. We 
used TFRC and DPP4 to divide AML patients into high- 
and low-risk score groups, and explored the association 
between risk score and drug sensitivity. The results showed 
that patients with downregulation of TFRC were resistant 
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Figure 5 FRG expression levels and their association with prognosis. Expression levels of (A) DPP4, (B) LPCAT3, (C) TFRC, (D) GPX4, 
and (E) SLC7A11 in tumor and normal samples. Kaplan-Meier survival analysis of expression levels and overall survival based on (F) DPP4, 
(G) LPCAT3, (H) TFRC, (I) GPX4, and (J) SLC7A11. FRG, ferroptosis-related gene.
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Figure 6 The relative abundance and correlation of 22 immune cells in the TCGA-LAML cohort. (A) Histogram of the relative abundance 
of 22 immune cells. (B) Heatmap of correlations between the 22 immune cells. Blue and red represent positive and negative correlation, 
respectively. 

to many drugs such as ATRA, axitinib, and vinorelbine, 
among others, but sensitive to dasatinib, bryostatin.1, and so 
on (Figure 11). According to DPP4, the sensitivity analysis 
revealed that patients with scores based on the DPP4 group 
were resistant to CMK and cytarabine, and among others, 

but sensitive to dasatinib Figure 12).
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Figure 7 Immune cells that affected the overall survival in AML patients. Kaplan-Meier survival analysis of (A) resting mast cells and (B) M2 
macrophages. AML, acute myeloid leukemia.

tumorigenesis, therapy response, drug resistance in various 
cancer types. FRGs have been shown to be important 
factors that significantly influence tumor progression in 
multiple cancer types such as hepatocellular carcinoma, 
clear cell renal cell carcinoma, and breast cancer (27-29). 
AML, as the most common hematological malignancy 
in adult patients, is still an incurable disease and poses a 
big challenge for public health. A number of studies have 
shown that ferroptosis-related signatures take part in 
several important processes in solid cancer, but no study 
has revealed the underlying mechanism and role of FRGs 
in AML. We therefore attempted to investigate their 
expression levels, prognostic role, influence on the TME, 
and the effect of drug resistance in AML.

The transcriptome data of AML patients was downloaded 
from TCGA and the transcriptome data of normal samples 
was obtained from the GTEx database, and FRGs were 
selected via public articles. We analyzed the expression 
levels of FRGs between AML and normal samples. A 
prognostic model based on FRGs was constructed via lasso 
regression. Among the genes, SLC7A11, GPX4, TFRC, 
LPCAT3, and DPP4 were further investigated in terms 
of their expression levels and prognostic role in AML. 
We performed validation experiments to verify the final 
selected gene expression levels via immunohistochemistry, 
PCR, and RNA-seq. Finally, we explored whether there 
was an association between immune infiltration and drug 
sensitivity, and finally selected FRGs. 

Recently, more and more studies have revealed the 

significant role of ferroptosis in cancer. Apart from being a 
unique form of cell death, ferroptosis has been shown to play 
important roles in cancer stem cells and the TME (30-32).  
As the most important regulators in the ferroptosis process, 
FRGs have been confirmed to play critical roles in the 
prognosis and resistance of glioma (33,34). In our study, 
DPP4 was overexpressed, while LPCAT3, TFRC, GPX4, 
and SLC7A11 were downregulated in AML samples 
compared to normal samples. Interestingly, several gene 
expression levels were inconsistent in the public dataset 
analysis. DPP4, GPX4, LPCAT3, SLC7A11, and TFRC 
all had higher expression in AML bone marrow samples. 
TFRC was significantly overexpressed, but DPP4, GPX4, 
LPCAT3, and SLC7A11 were significantly downregulated 
in AML samples via PCR analysis. RNA-seq results showed 
that TFRC was significantly overexpressed while DPP4 
was significantly downregulated in AML samples. The 
prognostic model showed that SLC7A11, GPX4, TFRC, 
LPCAT3, and DPP4 significantly influenced the prognosis 
of AML patients. DPP4, LPCAT3, GPX4, and SLC7A11 
may act as adverse biomarkers, while controversially, TFRC 
may act as a protective factor for AML patients. DPP4 acts 
as an adverse signature for breast, prostate, and pancreatic 
cancer, and inhibition of DPP4 can improve the prognosis 
of these patients (35). Zhang et al.’s study indicated that 
overexpression of glutathione peroxidase 4 (GPX4) could 
enhance cisplatin resistance in vitro (36). Guerriero et al. 
revealed that GPX4 was significantly overexpressed in 
human hepatocellular carcinoma, further indicating that 
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Figure 8 Correlation between the FRG signature biomarker and the abundance of resting mast cells and M2 macrophages. (A) DPP4, (B) 
GPX4, (C) LPCAT3, (D) SLC7A11, and (E) TFRC. FRG, ferroptosis-related gene.
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Figure 9 Immunohistochemistry findings of DPP4, GPX4, LPCAT3, SLC7A11, and TFRC expression.

expression levels may be impacted by cancer status (37). 
Ma et al. revealed that SLC7A11 was overexpressed in 
laryngeal squamous cell carcinoma, and the upregulation of 

SLC7A11 promoted tumor progression (38). From these 
findings, we can conclude that DPP4, LPCAT3, GPX4, and 
SLC7A11 have essential biological functions in multiple 
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cancer types, and most of them act as tumor promoters. In 
regards to AML, only GPX4 has been investigated in terms 
of its expression and prognostic role. Wei et al. showed that 
GPX4 was significantly downregulated in AML patient 
samples, and overexpression of GPX4 indicated a better 
outcome (39). In regards to TFRC, Huang et al. revealed 
that TFRC accelerated the progression of epithelial ovarian 
cancer via upregulating AXIN2 expression (40). In another 
study, TFRC also acted as a promoter of liver cancer cells, 
and inhibition of TFRC could suppress cancer cell growth 
and survival (41). From these findings, TFRC may be an 
oncogene for liver cancer and epithelial ovarian cancer, 
which is inconsistent with its prognostic role in AML 
patients. There has been no study that has explored the role 
of TFRC in AML. 

Based on the fundamental function of ferroptosis in 
immune responses, we also performed an analysis of the 
relationship between final selected FRGs and immune cell 
infiltration. Based on the validation experiment results, 
we finally selected DPP4 and TFRC for this analysis. The 
results showed that TFRC and DPP4 were negatively 
correlated with resting mast cells but positively correlated 
with M2 macrophages. The TME is one of the critical 
regulators of immunotherapy, chemotherapy response, and 
tumor progression (42-44). Research on the TME in solid 
tumors has been prosperous, but the underlying mechanisms 
of the TME in therapy response, prognosis, and tumor 
progression are still unclear. Based on the complexity of 
the microenvironment of AML, only a few studies have 
preliminarily investigated the TME of AML (45-48). Carter 

et al. revealed that the TME can significantly influence 
the drug sensitivity of AML (45). Furthermore, our results 
showed that resting mast cell infiltration resulted in a better 
OS, but high infiltration of M2 macrophages resulted in 
a poor prognosis for AML patients. Lan et al. revealed 
that M2 macrophage-derived exosomes promoted the 
invasion and migration ability of colon cancer cells (49). M2 
macrophages also served as promoters of multiple cancer 
types such as breast, gastric, and bladder cancer (50,51). 
The fundamental biological function of resting mast cells 
in cancer still remains to be elucidated, but several studies 
have shown that they may have a strong influence on cancer 
(52-54). Xu et al. indicated that M2 macrophages were 
enriched in AML, and led to poor outcomes (55). The 
other type of macrophages, M1 macrophages, may serve as 
protective factors in AML (56). These results also highlight 
the important role of the TME in AML, but there is still a 
long way to go.

The ultimate goal of the present study was to find a 
reasonable novel or complimentary therapy regimen for 
AML patients. We analyzed the association between DPP4, 
TFRC, and drug sensitivity in AML patients. The results 
showed that patients with downregulation of TFRC lead 
to resistant to ATRA, AZD.2281, CMK, and metformin, 
and upregulated TFRC induce resistant to bexarotene, 
bicalutamide, and dasatinib.  According to DPP4, 
patients with high-risk scores were resistant to CMK and 
cytarabine, and among others, but sensitive to dasatinib. 
The dysregulated expression of DPP4 can influence the 
sensitivity to cytarabine, and cytarabine is one of the first-
line therapy regimens in AML. Therefore, more reasonable 
chemotherapy regimens can be selected via this analysis. 

Conclusions

In our study, we found that FRGs can serve as diagnostic 
and prognostic biomarkers for AML patients. FRGs not 
only have a strong influence on the TME of AML, but 
also drug resistance. The findings of this study provide 
useful information for clinicians to select therapy regimens 
based on FRG expression levels, and pave the way for 
future fundamental research to understand the underlying 
mechanisms of ferroptosis in AML.

Figure 10 The PCR results of DPP4, GPX4, LPCAT3, SLC7A11, 
and TFRC expression. **, P<0.01. PCR, polymerase chain reaction.

Normal
Tumor

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n

4

3

2

1

0
**

GPX4 TFRC LPCAT3 DPP4 SLC7A11

**

**

** **



Annals of Translational Medicine, Vol 9, No 17 September 2021 Page 13 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(17):1381 | https://dx.doi.org/10.21037/atm-21-3368

Figure 11 Relationship between risk score and drug sensitivity via the R package pRRophetic (TFRC). 
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Figure 12 Relationship between risk score and drug sensitivity via the R package pRRophetic (DPP4).
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