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Abstract

Introduction

Patients with sickle cell anemia (SCA) may present chronic hemolytic anemia, vaso-occlu-

sion and respiratory tract infection (RTI) episodes. Galectin-3 (GAL-3) is a multifunctional

protein involved in inflammation, apoptosis, adhesion and resistance to reactive oxygen

species. Studies point to a dual role for GAL-3 as both a circulation damage-associated

molecular pattern and a cell membrane associated pattern recognition receptor.

Objective

To investigate associations between the SNPs of GAL-3 gene (LGALS3) and serum levels

with RTI and vaso-occlusive crisis (VOC) in children with SCA.

Materials and Methods

SNPs +191 and +292 in LGALS3 were studied using the TaqMan real-time PCR system;

GAL-3 serum levels were measured by ELISA. The study included 79 children with SCA

ranging from 2 to 12 years old.
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Results

GAL-3 serum levels were associated with LGALS3 +191 and +292 genotypes (p <0.0001; p
= 0.0169, respectively). LGALS3 +191, AA genotype was associated with low and CC with

higher levels of GAL-3. For LGALS3 +292, the CC genotype was associated with lower

GAL-3 and AA with higher levels. Patients with Frequency of RTI (FRTI)�1 presented

higher frequency of +191AA (p = 0.0263) and +292AC/CC genotypes (p = 0.0320). SNP

+292 was associated with Frequency of VOC (FVOC) (p = 0.0347), whereas no association

was shown with SNP +191 and FVOC. However, CA/AC and AA/CC genotypes with lower

GAL-3 levels showed a higher frequency in patients with FRTI�1 (p = 0.0170; p = 0.0138,

respectively). Also, patients with FVOC�1 presented association with CA/AC (p = 0.0228).

LGALS3 +191 and +292 combined genotypes related to low (p = 0.0263) and intermediate

expression (p = 0.0245) were associated with FRTI�1. Lower GAL-3 serum levels were

associated with FRTI�1 (p = 0.0426) and FVOC�1 (p = 0.0012).

Conclusion

Variation of GAL-3 serum levels related to SNPs at +191 and +292 may constitute a sus-

ceptibility factor for RTI and VOC frequency.

Introduction
Sickle-cell anemia (SCA) is a monogenic hemolytic anemia with high phenotypically variable
outcome and multisystem pathology [1,2]. Complications are related to polymerization of the
abnormal hemoglobin S (HbS), leading to erythrocyte sickling, exposure of membrane pro-
teins, cell adhesion receptors, hemolytic anemia and recurrent ischemia-reperfusion events [3].
The vaso-occlusion corresponds to the most important stimulus for the inflammatory process,
due to endothelial dysfunction, increased vascular inflammation, coagulation activation and
oxidative stress caused by reinstatement of blood flow [4].

SCA is characterized by painful vaso-occlusive episodes and susceptibility to infections of
bacterial, fungal or viral origin [5]. In SCA, inflammation may occur in acute or chronic forms,
involving a series of cellular interactions mediated by inflammatory cytokines [6].

Galectin-3 (GAL-3) is one of the most studied members of the galectin family with approxi-
mately 30 kDa, characterized by specific binding to β-galactosides [7]. Besides its carbohy-
drate-recognition domain (CRD), GAL-3 also contains a proline and glycine-rich N-terminal
domain, which is able to form oligomers [7–9]. GAL-3 is expressed in a variety of cells and tis-
sues. It can be found both in the nucleus and cytoplasm, at the cell surface or secreted in the
extracellular space [7].

GAL-3 is encoded by the LGALS3 gene, localized on chromosome 14, locus q21–q22.
Human LGALS3 gene is composed of 6 exons and 5 introns [10,11]. The single nucleotide
polymorphisms (SNPs) rs4644, LGALS3 +191 leads to histidine! proline change at residue
64, whereas rs4652 +292 leads to threonine! proline change at residue 98 of GAL-3 [12]. The
LGALS3 +292 C allele carries proline and was associated with lower serum GAL-3 levels in
rheumatoid arthritis (RA) [12], since the proline at GAL-3 residue 98 is located in a critical
protein transport determination region [13,14]. Studies on hamsters GAL-3 showed that the
short segment of N-terminal sequence residues 89–96 (YPSAPGAY) is critical for the secretion
of this lectin. In human GAL-3, the residues 94–101 of N-terminal sequence (YPSAPGAY) is
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highly homologous to the hamsters GAL-3 and may also be involved in human GAL-3 secre-
tion [15]. Therefore, SNPs in this region could be involved with the production of different
serum levels of GAL-3.

GAL-3 is involved in a variety of biological processes including cellular adhesion, activation,
chemotaxis, growth and differentiation, resistance to oxygen and nitrogen radicals damage and
apoptosis [16–22]. Moreover, GAL-3 is part of the innate immune response [9,23,24].

Farnworth et al. (2008) [25] suggested that the GAL-3 increased activity could enhance the
inflammatory response, since it promotes neutrophil longevity or its bacteriostatic activity,
improving clinical outcomes after severe pneumococcal infection.

Recent studies point to a dual role for GAL-3 as circulating damage-associated molecular
pattern and cell membrane-associated pattern recognition receptor [26]. Thus, our aim was to
investigate the association of SNPs at LGALS3 and serum GAL-3 levels with Frequency of
Respiratory Tract Infection (FRTI) and Frequency of Vaso-occlusive Crisis (VOC) in patients
with SCA.

Material and Methods

Patients
Seventy-nine children with SCA, aged 2 to 12 years with a median of 5 years (52% males) were
studied. The patients enrolled in this study were attended in an ambulatory for hemoglobin
disorders and neonatal screening, from 2002 until 2014, diagnosed at the Blood Center of Per-
nambuco (Hemope Foudation), using electrophoresis of Hemoglobin and High Pressure Liq-
uid Chromatography (HPLC) (BioRad, Hercules, CA, USA). All children were vaccinated
against pneumococcus (7 Pneumo-Wyeth Pharmaceuticals Inc. USA) and meningococcus
(Meningitec-Wyeth Pharmaceuticals, UK) and used penicillin (4000 U dose/kg/day) prophy-
lactically according to the national protocol.

Epidemiological, clinical and laboratory data were obtained from standardized medical rec-
ords provided by the Hemope Foundation. Clinical data were considered before initiating
treatment with hydroxyurea (HU). For assessment of the GAL-3 serum concentration, children
who received a transfusion in the last 3 months were excluded.

The clinical events evaluated were RTI and VOC. The dactylitis and pain crisis (episodes of
pain) associated with SCA were designated as VOC. Tonsillitis, bronchitis, pneumonia and
bronchopneumonia were designated as RTI. The patients were classified in two groups accord-
ing to the FVOC and FRTI [27], both determined by the total events observed in the clinical
records divided by the age of the child at the end of the study. Patients with frequency�1 had
one or more events per year (group with severe disease), and those with frequency<1 had less
than one event per year (group with mild disease). This project was approved by the Research
Ethics Committee of the HEMOPE Foundation, Recife, Pernambuco (registration Nr. 005/
2013) and written informed consent was obtained from parents or relatives.

Samples
Peripheral blood samples were collected into tubes containing 5% ethylenediaminetetraacetic
acid (EDTA) as anticoagulant for DNA extraction and tubes without anticoagulant for mea-
surement of GAL-3 serum levels. The biological samples were collected from October 2013 to
October 2014. Hematological analysis was performed using an electronic cell counter (STKS,
Coulter Corporation, FL, USA), and biochemical analysis was performed using a Roche Cobas
Mira Plus Chemistry Analyzer (Roche Diagnostics Corporation, Indianapolis, IN, USA).
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Detection of galectin-3 level by enzyme immunoassay
GAL-3 concentrations were measured in 79 children with SCA using a commercial enzyme-
linked immunosorbent assay (ELISA) kit, Human LGALS3/Galectin-3 (Sigma Aldrich, USA),
according to the manufacturer's instructions. An Epoch microplate reader (Biotek Instruments
Inc.) was utilized as apparatus and the Gen5 ELISA program (Biotek1) was used to calculate
the GAL-3 serum concentrations.

DNA extraction and LGALS3 genotyping
The extraction of genomic DNA was performed from peripheral blood using a modified phe-
nol-chloroform technique [28]. Genotyping for SNPs of LGALS3 gene was performed by real-
time PCR using a Rotor Gene 6000 system (Corbett Research Mortlake, Sydney, Australia).
The determination of SNPs in regions +191 (rs4644) and +292 (rs4652) of LGALS3 were
performed using the Taqman1 Genotyping methodology assays C___7593635_1_ and
C___7593636_30, respectively.

Statistical analysis
To compare categorical variables between the groups, we used a chi-square test (χ2) with Yates
correction or Fisher's exact test when necessary. The association between the variables was esti-
mated by the odds ratio (OR) with a 95% confidence interval (CI), considering significant p
<0.05. The D'Agostino-Pearson test was used to assess the normal distribution of quantitative
variables. For comparison of these variables between two groups, a Student’s t test or nonpara-
metric Mann-Whitney test were applied. For three or more groups, the Kruskal-Wallis test or
ANOVA were applied when appropriate. GraphPad PRISM software Version 5.0) for Win-
dows (GraphPad Software, San Diego, California, USA) was used for these analyses. Haploview
software (version 4.2) was used to test the Hardy-Weinberg equilibrium.

Results

LGALS3 SNPs
Regarding patient’s characteristic and the frequency distribution of LGALS3 +191 and +292
SNPs genotypes, no difference was observed (p>0.05) (Table 1). The frequency of the ABO
blood group didn’t differ in relation to the genotypes of LGALS3 +191 and +292 SNPs. Besides,
the distribution of the ABO group showed no difference concerning the FRTI or FVOC
(Table A and B in S1 File).

Genotypes and allele frequencies of LGALS3 +191 and +292 SNPs in children with SCA are
shown in Table 2. Children with SCA were in Hardy–Weinberg equilibrium. The FTRI and
FVOC were evaluated in relation to frequencies of LGALS3 SNPs (Table 2). A positive associa-
tion was found between children with FRTI>1 and +191AA genotype (lower serum GAL-3
level), when compared to +191CC genotype (higher serum GAL-3 levels) (p = 0.026,
OR = 7.50, CI = 1.25 to 44.90). There was also an association with +191 A allele and FRTI�1
(p = 0.018, OR = 2.39, CI = 1.81 to 4.85). However, +191 SNP showed no association with
FVOC. For +292 SNP, an association between FRTI�1 and +292 AC (p = 0.023 OR = 4.22,
CI = 1.32 to 13.8) or +292 AC+CC genotypes (intermediate/low serum GAL-3 levels)
(p = 0.032, OR = 4.17, CI = 1.10 to 15.78) was observed, when compared to +292 AA genotype
(higher serum GAL-3 levels). Thus, genotypes of GAL-3 related to low or intermediate serum
levels seem to be associated to RIT and VOC in children with SCA.

The combination of SNPs +191 and +292 generated six possible LGALS3 diplotypes. The
distribution of the CA/AC and AA/CC diplotypes were significantly higher in the FRTI�1
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Table 1. Clinical data of children with sickle cell anemia attended in Hemope Foundation—Recife/Brazil.

LGALS3 +191 LGALS3 +292

CC AC AA AA AC CC

(N = 40) (N = 32) (N = 07) p-value (N = 20) (N = 36) (N = 23) p-value

Gender—n (%)

Male 18 (67.9) 17 (43.1) 06 (43.1) - 11 (60.5) 16 (41.7) 14 (41.7) -

Female 22 (32.1) 15 (56.9) 11 (56.9) 0.4834 09 (39.5) 20 (58.3) 09 (58.3) 0.4449

Age—Years

Median (Min–Max) 05 (02–10) 06 (03–11) 05 (03–11) 0.6910 05 (02–11) 07 (02–12) 05 (03–11) 0.0840

Laboratory Data

Median (Min–Max)

Leukocytes (x103/mm3) 15.3 (5.8–21.7) 14.3 (1.8–48.2) 12.7 (6.3–22.6) 0.3699 15.6 (7.2–21.4) 14.3 (5.8–21.7) 14.3 (5.8–21.7) 0.3385

Platelets (x103/mm3) 441 (169–785) 431 (206–670) 343 (190–618) 0.3700 441 (169–764) 431 (231–785) 367 (190–670) 0.4673

Hb (g/dL) 7.6 (5.4–12.0) 8.2 (6.5–10.6) 7.6 (6.8–8.8) 0.4811 8.0 (5.4–10.0) 7.5 (6.1–12.0) 8.0 (6.5–10.6) 0.9306

LDH (U/L) 897 (211–2999) 746 (404–1499) 1285 (727–1415) 0.3127 754 (211–2999) 907 (401–2058) 786 (409–1491) 0.8673

TB (μmol/L) 1.7 (0.4–5.6) 1.5 (0.4–4.5) 1.7 (1.4–2.0) 0.9795 1.6 (0.9–3.2) 1.8 (0.4–4.5) 1.5 (0.6–5.6) 0.5611

UB (μmol/L) 1.3 (0.3–4.9) 1.1 (0.2–4.3) 1.3 (1.0–1.6) 0.9762 1.2 (0.7–3.2) 1.4 (0.2–4.3) 1.1 (0.4–4.9) 0;5915

Ret (%) 9.4 (1.1–18.3) 9.4 (4.4–22.4) 10.4 (6.4–15.9) 0.5450 12.5 (4.2–18.3) 8.1 (1.1–22.2) 10.1 (5.1–17.6) 0.0557

LGALS3 +191: C = reference alelle; A = variant allele; LGALS3 +292: A = reference allele; C = variant allele; SCA = sickle cell anemia; Age, Leukocytes,

Hemoglobin (Hb), Platelets, Percent of Reticulocytes (Ret) Lactate Dehydrogenase (LDH), Total Bilirubin (TB), Unconjugated Bilirubin (UB). Mann-Whitney

tests.

doi:10.1371/journal.pone.0162297.t001

Table 2. LGALS3 +191 and +292 with vaso-occlusive crisis and respiratory tract infection in children with sickle cell anemia attended in Hemope
Foundation—Recife/Brazil.

LGALS3 +191 SCA FRTI�1 FRTI <1 FVOC�1 FVOC <1

Genotype (N = 79) (N = 28) (N = 51) p-value (N = 43) (N = 36) p-value

CC 40 (0.51) 10 (0.36) 30 (0.59) - 21 (0.49) 19 (0.53) -

CA 32 (0.40) 13 (0.46) 19 (0.37) 0.206 17 (0.39) 15 (0.42) 1.000

AA 07 (0.09) 05 (0.18) 02 (0.04) 0.026 05 (0.12) 02 (0.05) 0.436

CA+AA 39 (0.49) 18 (0.64) 21 (0.41) 0.062 22 (0.51) 17 (0.47) 0.882

Alelle

C 112 (0.71) 33 (0.59) 79 (0.77) - 59 (0.69) 53 (0.74) -

A 46 (0.29) 23 (0.41) 23 (0.23) 0.018 27 (0.31) 19 (0.26) 0.598

LGALS3 +292

Genotype

AA 20 (0.25) 03 (0.11) 17 (0.33) - 07 (0.16) 13 (0.36) -

AC 36 (0.46) 16 (0.57) 20 (0.39) 0.039 25 (0.58) 11 (0.31) 0.023

CC 23 (0.29) 09 (0.32) 14 (0.28) 0.099 11 (0.26) 12 (0.33) 0.537

AC+CC 59 (0.75) 25 (0.89) 34 (0.67) 0.032 36 (0.84) 23 (0.64) 0.068

Alelle

A 76 (0.48) 22 (0.39) 54 (0.53) - 39 (0.45) 37 (0.51) -

C 82 (0.52) 34 (0.61) 48 (0.47) 0.134 47 (0.55) 35 (0.49) 0.523

LGALS3 +191: C = reference allele; A = variant allele; LGALS3 +292: A = reference allele; C = variant allele; SCA = sickle cell anemia; FRTI = Frequency of

Tract Respiratory Infection; FVOC = Frequency of vaso-occlusive crisis. Chi-squared test with the Yates correction (OR CI 95%).

doi:10.1371/journal.pone.0162297.t002
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group, when compared to the CC/AA diplotype (p = 0.0170, OR = 6.67, CI = 1.42 to 31.24;
p = 0.0138, OR = 13.33, CI = 1.71 to 103.80, respectively). On the other hand, the FVOC�1
group showed an association with the CA/AC diplotype, in comparison to CC/AA (p = 0.0489,
OR = 4.45, CI = 1.11 to 17.90) (Table 3).

We then grouped the combined genotypes according to the serum GAL-3 levels, establish-
ing a high (CC/AA), an intermediate (CC/AC; CA/AC; CC/CC) and a low (AA/CC; CA/CC)
diplotype. A positive association was found between FRTI�1 and intermediate genotypes of
GAL-3 levels compared to genotypes of higher levels (p = 0.0438, OR = 4.12, CI = 1.03 to
16.49). Also, intermediate GAL-3 levels genotypes where more frequent in the group with
FVOC�1 compared to genotypes of higher levels (p = 0.0250, OR = 3.86, CI = 1.22 to 12.23)
(Table 4).

Serum Galectin-3 levels and LGALS3 +191 and +292 SNPs
Serum GAL-3 levels were associated to LGALS3 +191 and +292 genotypes (p<0.0001;
p = 0.0169, respectively). LGALS3 +191 CC was associated with high levels (6.56 [0.60 to 23.52]
ng/ml, n = 40), followed by CA (2.66 [0.60 to 8.83] ng/ml, n = 32) and finally the AA genotype
with lower GAL-3 levels (0.60 [0.60 to 1.48] ng/m, n = 07) (Fig 1A). LGALS3 +292 AA geno-
type was associated with high levels (6.33 [0.86 to 18.83] ng/ml, n = 20), followed by AC (4.69
[0.60 to 23.52] ng/m, n = 36) and CC genotype (2.58 [0.60 to 17.73] ng/ml, n = 23) was associ-
ated to lower GAL-3 levels (Fig 1B).

There was a significant difference in the serum GAL-3 levels between the combined
LGALS3 genotypes, which were categorized into three groups associated with high (6.33 [0.86
to 18.83] ng/ml, n = 19), intermediate (4.77 [0.60 to 23.52] ng/ml, n = 37) and low (1.48 [0.60
to 11.02] ng/ml, n = 22) serum GAL-3 levels (p = 0.00027) (Fig 2).

There was an association between lower serum GAL-3 levels and the FRTI�1 group [3.20
(0.60 to 20.86) ng/ml; n = 28], when compared with the FRTI<1 group [5.55 (0.60 to 23.53)
ng/ml; n = 51], (p = 0.0426). Likewise, there was an association between lower levels of GAL-3
and the FVOC�1 group [2.0 (1.0 to 11.0) ng/ml; n = 43], when compared to the FVOC<1
group [4.85 (0.60 to 23.52) ng/ml; n = 36], (p = 0.0012) (Fig 3).

Discussion
The contribution of a set of genetic variations such as SNPs can be an explanation for the clini-
cal diversity presented in different populations. In this study, we found an association between
the LGALS3 SNPS related to intermediate serum GAL-3 levels and FRTI and FVOC in children
with SCA. Also, low and intermediate serum GAL-3 levels were associated with FRTI and
FVOC.

Serum GAL-3 levels in children with SCA varied according to LGALS3 SNPs (Figs 1 and 2).
This is the first study to our knowledge that evaluated the association of serum GAL-3 levels
with LGALS3 SNPs in SCA.

Since the population in Brazil has mixed-race ancestry (European, African and Amerindian
contribution [29]), the patients in our study were matched by age, gender and geographical
region to minimize stratification bias (Table 1). Epidemiological and clinical parameters were
not different when the population was grouped by +191 and +292 LGALS3 SNPs genotypes
(Table 1). This finding may reflect the patients’ basal clinical status at blood sample collection,
showing no active crisis. ABO blood group also didn’t differ when analyzed in relation to the
genotypes and FRTI or FVOC, that could influence the levels since the GAL-3 binds to the N-
acetylgalactosamine, whereas this residue is present in the erythrocytes of the A group.
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Regarding all population, +191 SNP presented allelic frequency of 0.71 C and 0.29 A; for the
+292 SNP it was 0.52 C and 0.48 A (Table 2). The allelic frequency at +191C, herein reported
for patients with SCA, was similar to that observed for subjects with RA (0.82) and controls
(0.84) in Taiwan population [12].

In regards to the +191 and +292 combined genotypes it was found a higher frequency of
intermediate/low serum levels genotypes with FRTI and FVOC (Tables 3 and 4). Hu et al.
(2011) [12], analyzing GAL-3 in patients with RA, reported that patients with LGALS3 +292
CC/CA genotypes had decreased serum GAL-3 levels, compared to AA genotype (p = 0.006).
Increase of intracellular GAL-3 expression is involved in angiogenesis, cytokines and chemo-
kines fibroblast expression and apoptosis inhibition of inflammatory cells. Those authors sug-
gested that the presence of +292 C allele related to intermediate/low GAL-3 levels would be a
factor for susceptibility to RA. They hypothesized that low serum GAL-3 levels may influence
the persistence of T cell and macrophage at RA synovium inflammatory site [12].

Additionally, GAL-3 seems to play a critical role in phagocytosis of opsonized erythrocytes
[30]. Sano et al. (2003) [30] found that GAL-3 is essential for effective phagocytosis for IgG-
opsonized erythrocytes and apoptotic cells in vitro and in vivo.

An interesting study to be conducted could be the investigation of GAL-3 binding prefer-
ence to ABO blood group in relation to clinical outcome in SCA, since the N-acetylgalactosa-
mine is the principal antigen on erythrocytes of A blood group. Therefore, the sickled cell of A
blood group would be removed with more efficiency than others. On the other hand, GAL-3
could agglutinate more the A blood group erythrocytes, compared to B and O groups, worsen-
ing the inflammation and favouring the VOC. Our data showed that serum GAL-3 levels were

Table 3. LGALS3 +191 and +292 combined genotype distribution with vaso-occlusive crisis and respiratory tract infection in children with sickle
cell anemia attended in Hemope Foundation—Recife/Brazil.

LGALS3 SCA FRTI�1 FRTI <1 FVOC�1 FVOC <1

+191/+292 (N = 79) (N = 28) (N = 51) p-value (N = 43) (N = 36) p-value

CC/AA 19 (0.24) 03 (0.11) 16 (0.31) - 07 (0.16) 12 (0.33) -

CC/AC 19 (0.24) 06 (0.21) 13 (0.25) 0.447 12 (0.28) 07 (0.19) 0.194

CC/CC 02 (0.03) 01 (0.04) 01 (0.02) 0.352 02 (0.05) 00 (0.00) 0.171

CA/AC 18 (0.23) 10 (0.35) 08 (0.16) 0.017 13 (0.30) 05 (0.14) 0.049

CA/CC 14 (0.18) 03 (0.11) 11 (0.22) 1.000 04 (0.09) 10 (0.28) 0.719

AA/CC 07 (0.08) 05 (0.18) 02 (0.04) 0.014 05 (0.12) 02 (0.06) 0.190

LGALS3 +191: C = reference allele; A = variant allele; LGALS3 +292: A = reference allele; C = variant allele; SCA = sickle cell anemia; FRTI = Frequency of

Tract Respiratory Infection; FVOC = Frequency of vaso-occlusive crisis. Chi-squared test with Yates correction (OR CI 95%).

doi:10.1371/journal.pone.0162297.t003

Table 4. LGALS3 +191 and +292 diplotype of serum levels with vaso-occlusive crisis and respiratory tract infection in children with sickle cell ane-
mia attended in Hemope Foundation—Recife/Brazil.

LGALS3 SCA FRTI�1 FRTI <1 FVOC�1 FVOC <1

(N = 79) (N = 28) (N = 51) p-value (N = 43) (N = 36) p-value

High 19 (0.24) 03 (0.11) 16 (0.31) - 07 (0.16) 12 (0.34) -

Intermediate 39 (0.49) 17 (0.61) 22 (0.43) 0.044 27 (0.63) 12 (0.33) 0.025

Low 21 (0.26) 08 (0.28) 13 (0.26) 0.163 09 (0.21) 12 (0.33) 0.755

Intermediate/Low 60 (0.76) 25 (0.89) 35 (0.69) 0.054 36 (0.84) 24 (0.66) 0.113

Diplotype according to the serum GAL-3 level: high (CC/AA), intermediate (CC/AC; CA/AC; CC/CC), low (AA/CC; CA/CC). SCA = sickle cell anemia;

FRTI = Frequency of Tract Respiratory Infection; FVOC = Frequency of vaso-occlusive crisis. Chi-squared test with Yates correction (OR CI 95%).

doi:10.1371/journal.pone.0162297.t004
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Fig 1. Serum galectin-3 levels associated with LGALS3 +191 (A) and +292 (B) genotypes in children
with SCA. LGALS3 +191: C = reference allele; A = variant allele; LGALS3 +292: A = reference allele;
C = variant allele; +191 genotypes: CC vs. CA: p <0.0001; CC vs. AA: p <0.0001; CC vs. AA+CA: p <0.0001.
+292 genotypes: AA vs. AC: p = 0.1684; AA vs. CC: p = 0.0046; AA vs. CC+AC: p = 0.0136. Mann-Whitney
tests.

doi:10.1371/journal.pone.0162297.g001
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Fig 2. Serum galectin-3 levels are associated with LGALS3 +191 and +292 combined genotypes in children with SCA. Statistical analysis of
LGALS3 combined genotype related of galectin-3 levels (high, intermediate and low) in which the serum concentrations in ng/ml were compared using
Kruskal-Wallis test. High vs. intermediate: p = 0.1687; high vs. low: p = 0.0002; high vs. intermediate+low: p = 0.0098.

doi:10.1371/journal.pone.0162297.g002
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lower in patients of A blood group compared to AB, B or O (p = 0.0205). Nevertheless, the
present study wasn’t designed to investigate this aspect. Thus, we can’t rule out a sinergic effect
of the ABO blood group in the SNPs +191 and +292 of GAL-3 and SCA pathogenesis.

Patients with SCA have a chronic inflammation, characterized by ischemic condition and
recurrent reperfusion, leading to the generation of oxidative burst and endothelial activation,

Fig 3. Serum galectin-3 levels associated with frequency of respiratory tract infection (FRTI) and vaso-occlusive crisis (FVOC) in children with
SCA. FRTI�1 vs. FRTI <1: p = 0.0426. FVOC�1 vs. FVOC <1: p = 0.0012. Mann-Whitney tests.

doi:10.1371/journal.pone.0162297.g003
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as well as upregulation of adhesion molecules [31–33]. Therefore, GAL-3 may be important to
SS erythrocyte removal and adhesion inhibition of those sickled erythrocytes in postcapillary
venules protecting from VOC processes [30]. Regarding our findings for +292 C, this allele and
genotypes AC/CC were more frequent in children with FRTI and FVOC (p = 0.032, p = 0.023,
respectively). Therefore, the same could be reasoned to patients with SCA, since RTI and VOC
present an important inflammatory feature, which may involve GAL-3.

Besides its role in regulation of inflammation, GAL-3 may also influence the adaptative
immune response. Secreted GAL-3 can cross-link surface glycoproteins and activate pathways
involved in several innate immune responses, such as the oxidative burst in neutrophils [34].
GAL-3 (-/-) mice develop more severe pneumonia after infection with Streptococcus pneumo-
niae, showing bacteremia and lung damage compared to wild-type mice [25].

Further, it was found that GAL-3 reduces the severity of pneumococcal pneumonia, among
others by increasing the neutrophil function [25]. These authors showed that the GAL-3
directly acts as a neutrophil-activating agent and potentiates the effect of formyl-methionil-leu-
cyl-phenylalanine; the exogenous GAL-3 enhances neutrophil phagocytosis of bacteria and
delays neutrophil apoptosis. Moreover, GAL-3 (-/-) macrophages have less efficient phagocyto-
sis of apoptotic neutrophils compared to wild type. Then, GAL-3 is a key molecule in the host
defense against pneumococcal infection [25].

Although all patients in this study had received penicillin and conjugated vaccines as rou-
tine prophylaxis against S. pneumoniae, the success of this procedure depend upon cellular
effector mechanisms such as phagocytosis. Therefore, our results suggest that children with
SCA and low serum GAL-3 levels or carrying LGALS3 intermediate/low serum genotypes may
have disvantages in the defense against pneumococcal infections reflected by the higher FRTI
in the children with SCA.

Conclusion
This study demonstrated an association between LGALS3 related to intermediate/low serum
GAL-3 levels with higher FRTI and FVOC in children with SCA, as well as the serum GAL-3
levels directly. Therefore, the polymorphism of LGALS3 could be considered as genetic marker
for predisposition of RTI and VOC. However, the genetic frequencies of SNPs should be limi-
tated to the studied population due to the small sample size. Nevertheless, the combined analy-
sis of SNPs and serum levels strongly suggests that these SNPs could be of great importance in
the variation of serum levels and consequently influencing the pathogenesis of SCA.

Furthermore, studies designed to investigate the influence on the increase of GAL-3 expres-
sion and/or its levels are needed and could support the development of new treatments, modu-
lating severity of the SCA. Another important aspect would be to elucidate the interaction of
GAL-3 with sickled erythrocytes and its ability to modulate inflammation in patients with SCA.

Supporting Information
S1 File. Table A. Distribution of the ABO group regarding to the FRTI and FVOC. Table B.
Genotypes of LGALS3 +191 and +292 and blood group distribuition.
(DOCX)
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