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Neurological dysfunction provoked by traumatic brain injury (TBI) makes a huge impact on
individual learning ability, memory level, social participation, and quality of life. Pyroptosis,
the caspase-1-dependent cell death, which is associated with the release of numerous
pro-inflammatory factors, plays a major role in the pathological process after TBI. Inhibition
of pyroptosis has been shown to be an attractive strategy for the treatment of various
neurological disorders. Here, we found that Rhein, an anthraquinone derived from the
medicinal plant rhubarb, attenuated TBI-induced upregulation of pro-inflammatory
cytokines, blood lactate dehydrogenase (LDH), and pyroptosis-related proteins, as well
as reduced neurological dysfunction in a mouse TBI model. Consistently, Rhein inhibitd
equiaxial stretch-induced neuron pyroptosis, LDH release, and upregulation of pro-
inflammatory factors in vitro. Thus, our study suggested that Rhein protected against
neurological deficits after TBI via inhibiting neuronal pyroptosis.
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INTRODUCTION

Traumatic brain injury (TBI), occurs when the brain is exposed to external forces, has become the
main cause of death and disability in young adults with an increasingly year-prevalence. As the
epidemiological investigation suggested, TBI will be a critical global health issue and a major cause
of disabilities by 2020 (Peeters et al., 2015; Brazinova et al., 2018). Neurological dysfunction caused
by TBI shows great impact on individual learning ability, memory level, social participation, and
quality of life (Chen et al., 2018). Despite the considerable researches on TBI, there still lacks of
effective therapeutic treatments in the clinic. Therefore, further delineating the pathogenic
mechanism underlying TBI is essential for the development of new therapeutic strategies.

Inflammatory response was reported to plays an important role in the pathological process after
TBI, including neuronal death, oxygen-free radical formation, calcium release, and mitochondrial
dysfunction (Angeloni et al., 2015; Hiebert et al., 2015; Corrigan et al., 2016; Russo and McGavern,
2016; Esterov and Greenwald, 2017). The chemical neurotoxicity can also induce cortical neuron
Abbreviations: TBI, traumatic brain injury; TLR4, Toll-like receptor 4; MyD88, myeloid differentiation factor 88; IFN-g,
Interferon-gamma; IL-1b, Interleukin-1b; IL-18, Interleukin-18.
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reduction (Li et al., 2017). Besides, previous researches indicated
that neuronal cells would lost after TBI (Liu et al., 2018).
Proinflammatory factors can cause pyroptosis, which is
characterized by the swelling, dissolution of cells and the
release of proinflammatory cytokines and intracellular
contents. This specific type of necrosis is involved in the
myocardial ischemia, lung and kidney damage, and stroke
(Zhao et al., 2011; Meng et al., 2013; Zeng et al., 2013). Recent
studies found pyroptosis was not only in macrophages but also in
dendritic cells and other types of cells. Cellular pyroptosis is
mediated by two cysteine-containing aspartate proteolytic
enzymes (caspase), including caspase-1, 4, 5, 11 (4, 5 presents
in humans). These proteolytic enzymes belong to inflammatory
protein, playing a key role in the immune response and serving as
an important component of the “inflammasome”. Activation of
these caspases induces cell pyroptosis and inflammasome
activation, which has an important role in endotoxic shock
and Gram-negative bacterial-induced sepsis (Shi et al., 2014).
Evidence shows that gene gasderminD is a key substrate for
caspases (Shi J. et al., 2015). The amino terminal peptide of
caspases cleaved by gasdermin D can provoke cell death and
secretion of inflammatory factors, revealing the key molecular
of pyroptosis.

Rhein (1.8-dihydroxy-3-carboxy-anthraquinone) is an anti-
inflammatory active ingredient enriched in rhubarb. It is widely
used to treat various inflammatory diseases in the clinical (Zeng
et al., 2014). As a precursor of Rhein, the oral drug Diacerein
shows it therapeutic effects on disease like by metabolizing into
Rhein. Through blocking TLR-related signaling pathways,
Diacerein commits the anti-inflammatory function of Rhein
(Yu et al., 2015; Zhang et al., 2015). Compared with most non-
steroidal anti-inflammatory drugs, Diacerein possesses
gastrointestinal protection for it does not affect the production
of prostaglandin E2 (PGE2) (Fernand et al., 2011; Dhaneshwar
et al., 2013).

In the present study, we applied an in vivo mouse model of
TBI and in vitro cellular models of mechanical stress to
investigate the protection of Rhein on TBI neurological
function and its inhibitory effect on TBI-induced neuronal
burnout. We indicated that Rhein can relieve neurological
deficits in TBI mice by reducing the death of neurons. It is a
promising finding that may further our current understanding of
the brain-protective role of Rhein. Together, our study showed a
new protective effect of Rhein and revealed the potential of Rhein
in the clinical treatment of TBI.
MATERIALS AND METHODS

Establishment of the TBI Models
Animal experiments were conducted in accordance with the
National Institutes of Health guide for the care and use of
laboratory animals (NIH Publications No. 8023, revised 1978).
This study was approved by Ethics Committee of Medical
College of Xi’an Peihua University. Male C57BL/6 mice aged 8
weeks were purchased from the model animal research center of
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Xijing Hospital. These mice were housed in the specific
pathogen-free (SPF) conditions with the standard temperature
(22 ± 1°C), humidity (50–60%), and light conditions (12 h light/
dark cycle). Mouse model of TBI was adopted from a previous
study (Liu et al., 2018). Briefly, Mice were anesthetized with the
intraperitoneal injection of 5% chloral hydrate (0.08 ml/10g),
then fixed in a stereotaxic device, shaved and cleaned the scalp
with iodophor, and exposed the left lateral aspect of skull. TBI
models were established by fall a 200-g steel weight with a flat
end from a height of 5 cm into the left lateral skull.

According to a previous reports (Shi H. et al., 2015; Dong et al.,
2018), 15 min after TBI, mice received an intraperitoneal injection
of Rhein. And the dose of Rhein (100 mg/kg) was determined in the
preliminary experiment (Supplementary Figure). Mice were
basically assigned to 4 groups: (1) Sham: PBS injection, n = 8 in
group; (2) Rhein: mice receiving Rhein, n = 12 in group; (3) TBI: n =
12 in group; and (4) Rhein/TBI: mice were injected with Rhein
15 min after TBI, n = 12 in group. After experiment completion,
mice were euthanized by CO2 inhalation (the flow rate of CO2

displaced 20% of the chamber volume per minute) and mouse
brains were stored at -80°C for further analysis.

Neurobehavioral Training and Evaluation
Modified neurological severity scoring (mNSS), open-field, and
Rotarod testing were used to assess neurological deficits 8, 24, and
48 h after TBI (Liu et al., 2018). The mNSS trial composed of ten
different tasks that can evaluate the motor (muscle status and
abnormal movement), sensory (visual, tactile, and proprioceptive),
balance, and reflex functions of mice. Neurological deficits was
graded from 0 to 18 (0 = normal; 18 = maximal deficit). One point
was scored for each abnormal behavior or for the lack of a tested
reflex. The open-field trial based on the pattern of exploration
(center vs. periphery) was used to assess anxiety-like behavior. Mice
were tracked under moderate lighting for 15 min in a 40-cm2 open
field using software (ANY-Maze, Stoelting, USA). General activity
was assessed by fixing the total of distance traveled. Rotarod trial
were used to assess motor coordination and learning. On testing
day, the mice were given four 300-s accelerating Rotarod tests with
an intertrial interval of 30 min. The average latency to the first fall
off the rod was recorded. All experimenters were blinded to four
group mice.

Primary Neuronal Culture and Injury
Models
Mice (embryo 13–14 days BALB/c) were decapitated, and the
meninges were removed. Then the cortex was cut with
ophthalmic scissors and then digested with papayotin at 37°C
for 20 min. Then flocs were deal with DNase I (Sigma) after
centrifugation at 1000×g for 3 min. The cells were plated on a
poly-L-lysine––coated petri dish at a density of 1 × 106 cells.
After 4 hours, the medium was changed to neuronal basal
medium, and the cultured cells on the 7th–14th day were used
for the experiment. Subsequently, primary neurons were
examined neuronal purity by NeuN staining.

We then examined the effects of mechanical stress on neurons in
vitro: In the stretch model, neurons were seeded in 6-well plates
September 2020 | Volume 11 | Article 564367
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(BioFLEX®). The equiaxial stretch (12% strain, 1.0 Hz frequency)
was applied to the cultured neurons for 12 h via a Flexcell®FX-
5000™ tension system (Flexcell, USA). Neurons were treated with
Rhein (10 µg/ml) 1 h before stretch. Cells were used for
immunofluorescence and protein or RNA extraction.

Terminal Deoxynucleotidyl Transferase-
Mediated dUTP Nick End Labeling
The cerebral cortex was collected, and apoptosis was determined by
terminal deoxynucleotidyl transferase-mediated dutp nick end
labeling (TUNEL) staining. TUNEL staining was performed with
fluorescein-dUTP for apoptotic cell nuclei and 4′,6- diamidino-2-
phenylindole (DAPI) to stain all cell nuclei by using TUNEL
Apoptosis Assay Kit (R&D, Switzerland).

Western Blotting
Proteins were drawn from the tissues and cells and quantified by
using a BCA protein kit (Thermo Scientific). Proteins (50 mg) were
loaded on SDS-PAGE gels per lane and transferred to PVDF
membranes after electrophoresis. Then blocking membranes with
5% BSA at 2 h room temperature and incubating at 4°C overnight
with the primary antibodies: GAPDH (Abcam, ab8245, 1:5,000),
GSDMD (Santa Cruz Biotechnology, sc-393581, 1:1,000), caspase-
11 (Abcam, ab22684, 1:1,000), caspase-1 (Abcam, ab138483,
1:1,000), caspase1 (p10), and caspase-1 (p20) (AdipoGen, AG-
20B-0044, AG-20B-0042, 1:1,000). Immunoreactivity was detected
by incubating with secondary antibodies (Abcam ab205718,
ab97023, 1: 20,000).

Immunohistochemistry
Fix brain tissues with 4% Paraformaldehyde solution. After fixed,
each sample was dehydrated and embedded. Paraffin-embedded
sections (4mm) were prepared for antigen retrieval, blocking,
primary antibody incubation (GSDMD, 1: 50, Santa Cruz
Biotechnology; caspase-11, 1:100, Abcam; caspase-1, 1:100,
Abcam), secondary antibody incubation and staining with DAB.

Lactate Dehydrogenase Release Detection
Mice were collected the blood serum was measured for release. The
primary neurons were collected supernatant from serum-free media
using 0.2-mm syringe filters. The Lactate dehydrogenase (LDH)
detection was using a commercially available kit (Solarbio). Transfer
serum or supernatant to a 96-well plate, then add the reaction
mixture and incubate in the dark for 30 min. The LDH
concentration was quantified by measuring the absorbance
at 490nm.

Quantitative Real-Time Polymerase
Chain Reaction
Total RNA was drawn from the tissue or neurons using a Trizol
reagent (Trizol™ Reagent, Invitrogen). Quantitative real-time
polymerase chain reaction (qRT-PCR) was performed by using a
SuperReal PreMix Plus Kit (SYBR Green) (Qiagen) on the Bio-
Rad CFX96TM Real-Time System. GAPDH was amplified as an
internal control. Primer sequences as follows (Liu et al., 2018):
TLR4 F: 5’- TCACA ACTCG CCCAA GGAGG AA -3’, R: 5’-
AAGAG ACCAC GGCAG AAGCT AG -3’; MyD88 F: 5’-
Frontiers in Pharmacology | www.frontiersin.org 3
CCACC TGTAA AGGCT TCTCG -3’, R: 5’-CTAGA GCTGC
TGGCC TTGTT-3’; NLRP3 F: 5’- GCTAA GAAGG ACCAG
CCAGAGT -3’, R: 5’- GAACC TGCTT CTCAC ATGTC GT -3’;
GAPDH F: 5’- AACTT TGGCAT TGTGG AAGG -3’ R: 5’-
GGATG CAGGG ATGAT GTTCT -3’.

Enzyme-Linked Immunosorbent Assay
The concentrations of total protein were measured using the
BCA Protein Assay Kit (Thermo Fisher Scientific). The levels of
IFN-g, IL-1b, and IL-18 were measured using ELISA kits
(Anoric-Bio) according to the manufacturer’s instructions.

Statistical Analysis
All data are represented as means ± SEM and analyzed by SPSS
statistical software. mNSS test were analyzed using the Kruskal-
Wallis H analysis followed by aMann-Whitney U test. Rotarod data
were analyzed using the One-way analysis of variance (ANOVA)
with repeated measures. The remaining biochemical data were
analyzed using a two-way ANOVA. Each experiment was
repeated three times, and Statistical differences were analyzed
using the two-tailed Student’s t test or one-way ANOVA. P <
0.05 was statistically significant.
RESULTS

Rhein Attenuated TBI-Induced
Neurological Functional Impairment
To examine neurological functional impairment, we assessed
mNSS, Rotarod, and open-field behavioral task tests before and 8,
24, and 48 h after TBI. There was no significant difference between
Sham group and Rhein group in mNSS and Rotarod score (Figures
1A, B). However, mNSS scores peaked at 24 h and mildly decreased
at 48 h. Rhein + TBI group displayed lower mNSS scores compared
with TBI group (Figure 1A). The residence time of mice on the
rotarod bottomed out at 24 h and slightly increased at 48 h in TBI
group. Compared with TBI group, the residence time on the rotarod
in Rhein + TBI group prolonged with the increasing motor latency
(Figure 1B). The open-field behavioral experiment showed that the
Sham group and Rhein group mice spent more time in the
perimeter zone and had longer total travel distance. A significant
difference between TBI and Rhein + TBI group in the perimeter
zone and total travel distance was observed at 24 h after TBI (Figure
1C). TUNEL staining was applied to detect cortical damage in mice.
No significant difference was observed between the Sham group and
Rhein group. Apoptosis index, the number of TUNEL-positive cells
divided by the total cells, was remarkably enhanced in TBI group
but decreased in Rhein + TBI group 24 h after TBI (Figure 1D). In
conclusion, Rhein eased TBI-induced neurological deficits.

Rhein Reduced Levels of Inflammatory
Mediator in the Cortex After TBI
The changes of the inflammatory-related mediators in brain
tissue was tested with ELISA. Lower levels of the pro-
inflammatory cytokines IL-1b, IL-18, and IFN-g were observed
in Sham group and Rhein group compared with other groups. All
September 2020 | Volume 11 | Article 564367
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pro-inflammatory cytokines were augmented in TBI group but
inhibited in Rhein + TBI group (Figures 2A–C). Consistent with
the protein levels, the mRNA expression of TLR4, MyD88, and
NLRP3 in the injured brains 24 h after TBI was lower in Sham
group and Rhein group than in other groups. The levels of these
factors were increased in TBI group but significantly reduced in
Rhein + TBI group (Figure 2D). Together, these results
suggested that Rhein inhibited TBI-induced pro-inflammatory
mediator production in the cortex.
Frontiers in Pharmacology | www.frontiersin.org 4
Rhein Attenuated Pyroptosis in the
Murine Model of TBI
The expression of pyroptosis-related proteins was assessed by
Western Blot (Figures 3A–D). Compared to Sham and Rhein
group, caspase-1 (including p10, p20, and p45), caspase-11, and
GSDMD were severally increased 24 h after TBI. Rhein + TBI group
reduced the enhancement of TBI-induced proteins. Immunostaining
showed that caspase-1, caspase-11, and GSDMD were highly
expressed at 24 h in TBI group mice, while they were less
A B

DC

FIGURE 1 | Rhein attenuated TBI-induced neurological functional impairment. The Neurological impact of TBI was tested by mNSS (A), rotarod (B), and open-field
(C) behavioral task tests before and 8, 24, and 48 h after TBI. (D) TUNEL staining was applied to detect cortical harm in TBI. TUNEL-positive cells (%), the number
of TUNEL-positive cells divided by the total cells per field, was assessed in 20 randomly selected fields. Data are presented as the mean ± SEM. *p < 0.05, ** p <
0.01 versus Sham group, #p < 0.05, ##p < 0.01 versus TBI group.
A B

DC

FIGURE 2 | Rhein reduced levels of inflammatory mediator in the cortex after TBI. (A–C) Concentrations of pro-inflammatory cytokines IL-1b (A), IL-18 (B), and IFN-g (C)
were detected in the region of the contusion 8, 24, and 48 h after TBI by ELISA. (D) TLR4, MyD88, and NLRP3 mRNA expression were tested by qRT-PCR. GAPDH served
as an internal control. Data are presented as the mean ± SEM. *p < 0.05 and **p < 0.01 versus Sham group, #p < 0.05 and ##p < 0.01 versus TBI group.
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expressed in Rhein + TBI group mice (Figure 3E). As cerebral injury
often provokes cellular LDH leakage, we tested serum LDH after TBI.
In contrast to Sham group and Rhein group, Serum LDH
concentration was increased in TBI group while was nearly normal
levels in Rhein + TBI group (Figure 3F). These results suggested that
Rhein effectively inhibited pyroptosis in the murine model of TBI.

Rhein Reduced Neuron Injury-Induced
Inflammatory Mediator Levels In Vitro
The expression of inflammatory mediators after stretch stimulation
was detected by ELISA. Compared to Control group and Rhein
group neurons, pro-inflammatory cytokines (IFN-g, IL-1b, and IL-
18) were enhanced significantly in stretch group neurons while were
inhibited in Rhein + stretch group neurons (Figures 4A–C). The
mRNA expression was assessed using qRT-PCR. In contrast to
Control group and Rhein group, levels of these transcripts (TLR4,
MyD88, and NLRP3) were increased markedly in stretch group
neurons but were reduced in Rhein+Stretch group neurons (Figure
4D). These results indicated that Rhein inhibited neuron injury-
induced inflammatory mediator levels in vitro.

Rhein Ameliorated Neuron Injury-Induced
Pyroptosis
To uncover the correlation between neuron injury and pyroptosis,
the expression of pyroptosis-related proteins was detected with
Western Blot. The expression of caspase-1, caspase-11, and
GSDMD of neurons were enhanced in Stretch group but were
decreased in Rhein + stretch group (Figures 5A–D). Similar results
were also obtained in supernatant LDH concentration assay
(Figure 5E), indicating that Rhein ameliorated neuron injury-
induced pyroptosis.
Frontiers in Pharmacology | www.frontiersin.org 5
DISCUSSION

In this study, we evaluated the damage on sensory dysfunction
and motor dysfunction after TBI. The results showed a higher
mNSS score and the lower Rotarod test score at 24 h. We found
that TBI mice significantly enhanced neuronal dysfunction at
24 h. Previous study observed that neurological deficit of TBI
mice was worse at 24 h than at 72 h (Xu et al., 2017). Then we
detected inflammatory correlation factors in the acute phase. A
series of pro-inflammatory cytokines (IL-1b, IFN-g, and IL-18)
secretion were found to increase after TBI. Besides, mRNA
expression of the upstream inflammatory regulatory molecules
including TLR4, MyD88, and NLRP3 increased at 24 h. The
protein levels of caspase-1, caspase-11, and GSDMD in damaged
cortical tissue and blood LDH release also enhanced 24 h after
TBI. As mechanical stretch was used to study bone-related and
cardiovascular diseases (Yu et al., 2016), we established a
neuronal injury model under equiaxed stretch at the cellular
level (1.0 Hz frequency, 12% strain, and 12 h), The results of in
vitro experiments supported the findings of in vivo experiments.
These data suggested that pyroptosis was likely involved in
neuroinflammation with TBI.

We previously found that inflammation in the mouse cerebral
cortex gradually increased with the progress of TBI. Significant
neurological damage and upregulation of caspase-1, caspase-11 and
GSDMD were also observed in our study. Caspase-1 knockout TBI
mice showed remarkably reduced neuroinflammation, neuronal
damage, and neurological dysfunction compared with the normal
group, indicating that neuronal pyroptosis was an important
mechanism of neuronal death following injury (Liu et al., 2018).
Cellular pyroptosis is mediated by two cysteine-containing aspartate
A B

D E F

C

FIGURE 3 | Rhein attenuated pyroptosis in the murine model of TBI. (A–D) Expression of pyroptosis-related proteins of caspase-1 (p45, p20, and p10), caspase-
11, and GSDMD was assayed by Western blot 24 h after TBI (two randomly selected samples from each group were shown). (E) Representative photomicrographs
at × 20 magnification of proteins immunostaining in the cortex 24 h after TBI. (F) Serum LDH was tested 24 h after TBI. Data are presented as the mean ± SEM.
*p < 0.05 and **p < 0.01 versus Sham group, #p < 0.05, ##p < 0.01 versus TBI group.
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proteolytic enzymes (caspase), including caspase-1, 4, 5, 11 (4, 5
presents in humans). These proteolytic enzymes belong to
inflammatory protein, playing a key role in immune response and
serving as an important components of the “inflammasome”.
Activation of these caspases induces cell pyroptosis and
inflammasome activation, which has an important role in
endotoxic shock and Gram-negative bacterial-induced sepsis (Shi
Frontiers in Pharmacology | www.frontiersin.org 6
et al., 2014). In addition, these caspases show impact on the
development of infectious diseases, nervous system-related
diseases, and atherosclerotic diseases. Studies found that gene
gasderminD is a key substrate for these caspase in 2015 (Shi J.
et al., 2015). The amino terminal peptide of these caspase cleaved by
gasdermin D could cause cell death and provoke secretion of
inflammatory factors, which may be the key molecular
A B

D E

C

FIGURE 5 | Rhein ameliorated neuron injury-induced pyroptosis. The neurons were treated with stretch stimulation for 12 h in the absence or presence of Rhein (10
µg/ml), then cell lysate and culture supernatant were collected. (A–D) Pyroptosis-related protein expression was detected by Western blotting. The histogram was
used to analyze protein expression. (E) Supernatant LDH concentration was detective after stretch and Rhein treatments. The statistics were based on at least three
independent experiments. *p < 0.05, **p < 0.01 versus control group; #p < 0.05 versus Stretch group.
A B

DC

FIGURE 4 | Rhein reduced neuron injury-induced inflammatory mediator levels in vitro. The neurons were treated with stretch stimulation for 12 h in absence or
presence of Rhein (10 µg/ml), then the expression of pro-inflammatory cytokines IFN-g (A), IL-18 (B), and IL-1b (C) were tested by ELISA. mRNA expressions of
TLR4, MyD88, and NLRP3 after stretch and Rhein treatments were detected by qRT-PCR (D). Data were presented as three independent experiments. *p < 0.05,
**p < 0.01 versus control group; #p < 0.05, ##p < 0.01 versus stretch group.
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Bi et al. Rhein Protects Against Neurological Deficits
mechanism of pyroptosis. Recently, Meng et al. showed that
inflammasome NLRP1 is highly expressed in neurons and is
associated with a variety of neurological diseases. Activated
NLRP1 causes inflammatory responses and cell pyroptosis (Meng
et al., 2014). Targeted inhibition of NLRP1 attenuates intrinsic
immune response, neuronal death, and age-related cognitive
impairment in various animal models (Mawhinney et al., 2011).
Neuroinflammation occurs throughout the range of central nervous
system lesions (Helmy et al., 2011). It has been recognized that drug
therapy can modulate inflammation to control TBI damage (Thelin
et al., 2017). Moreover, The antagonists of NLRP3 inflammasome
and IL-1 receptor reduce neuroinflammation following TBI (Irrera
et al., 2017). Blocking electroacupuncture-induced TLR4 signaling
promotes hippocampal neurogenesis and nerve recovery post-
traumatic (Ye et al., 2017).

Rhein is an anti-inflammatory active ingredient enriched in
rhubarb. It has been found that Rhein inhibited IL-1b-induced
activation of NF-kB and AP-1 in hypoxic cultured chondrocytes
(Martin et al., 2003). In human umbilical vein endothelial cells,
Rhein restrained the production of vascular cell adhesion factor-1
(Hu et al., 2013). It also prevented endotoxin-induced acute
kidney injury through suppressing the activity of NF-kB (Yu
et al., 2015) and alleviated acute kidney injury caused by sepsis
via blocking the TLR4 pathway (Zhang et al., 2015). In addition,
Rhein improved chronic kidney disease in rats (Su et al., 2013),
showed anti-tumor effect (Tsang and Bian, 2015), displayed anti-
imbalance oxidative stress and anti- fibrosis function (Guo et al.,
2003). In KK/HIJ diabetic rats (non-alcoholic fatty liver disease),
Rhein reduced inflammation and fat infiltration (Wei et al., 2016),
along with curing intervertebral disc degeneration (Li et al., 2011).
Moreover, Rhein protected renal by upregulating the expression of
Klotho in kidney fibrosis model mice (Zhang et al., 2016; Zhang
et al., 2017). In the present study, we treated mice with
intraperitoneal injection of Rhein. Rhein was found to inhibit
the production of inflammatory factors, the mRNA expression of
TLR4, MyD88, and NLRP3, and the protein levels of caspase-1,
caspase-11, and GSDMD. Rhein also alleviated neurological
deficits in mice after TBI. Our research demonstrated that Rhein
alleviates neurological deficits by improving TBI-induced
neuronal burnout. This finding may provide a strategy for
therapeutic treatment of TBI in clinical.

In conclusion, our study found that Rhein relieved
neurological deficits by suppressing TBI-induced neuronal
pyroptosis. Rhein exerted an anti-inflammatory effect in
Frontiers in Pharmacology | www.frontiersin.org 7
damaged cortex, which inhibited TBI-induced neuronal
pyroptosis and neurological deficits.
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