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Abstract: The monopulse angle measuring technique is widely adopted in radar systems due to its
simplicity and speed in accurately acquiring a target’s angle. However, in a spatial adaptive array,
beam distortion, due to adaptive beamforming, can result in serious deterioration of monopulse
performance. In this paper, a novel constrained monopulse angle measuring algorithm is proposed
for spatial adaptive arrays. This algorithm maintains the ability to suppress the unwanted signals
without suffering from beam distortion. Compared with conventional adaptive monopulse methods,
the proposed algorithm adopts a new form of constraint in forming the difference beam with the
merit that it is more robust in most practical situations. At the same time, it also exhibits the simplicity
of one-dimension monopulse, helping to make this algorithm even more appealing to use in adaptive
planar arrays. The theoretical mean and variance of the proposed monopulse estimator is derived for
theoretical analysis. Mathematical simulations are formulated to demonstrate the effectiveness and
advantages of the proposed algorithm. Both theoretical analysis and simulation results show that the
proposed algorithm can outperform the conventional adaptive monopulse methods in the presence
of severe interference near the mainlobe.

Keywords: monopulse technique; adaptive phased array; interferences

1. Introduction

Monopulse is an established technique in radars for fast and precise estimation of direction of
target [1,2]. Compared with other precise angle estimation methods, such as MUSIC, maximum
likelihood (ML) estimation etc., it consumes much less time and demands much lower computation
cost. It can take only a single snapshot to make a precise estimation while its competitors usually have
to solve a non-linear optimization problem [3,4]. In the case of a single target, it is an approximate
ML approach, as shown in [5]. However, monopulse technique is not applicable in the case of
multiple targets. Large aperture radar nowadays can easily avoid the case of multiple targets with
narrower beam width. Modern wide band radars can also employ this technique [6]. Thus, the
monopulse technique has still been a promising candidate for angle estimation in modern radar
systems. Historically, the monopulse technique is implemented by either constructing error voltages
or phase angles from a two-antenna system exploiting a fixed functional relation with the angle of
target [7]. In a typical monopulse system, two sets of identical antennas are either separated by some
distance (phase monopulse) or located at the the same phase center but with a squint angle difference
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(amplitude monopulse). Their outputs are summed up to produce a sum beam and are subtracted
yielding the difference beam. When it comes to two dimensions, the system needs four receiving
channels placed in four quadrants symmetrically to measure azimuth and elevation angles separately.
With the advent of phased array radar, operation in the element level is impractical due to the large
number of elements. Thus, the monopulse technique is usually implemented with digitalized sub-array
outputs. When interference is present, adaptive beamforming [8] is required to suppress the unwanted
signals when forming sum and difference beams. More recently, the method of adaptive beamforming
based on artificial neural network has been presented in [9].

However, adaptive beamforming changes the beam pattern dependent on the received signals
and the desired direction for nulling out the unwanted signals while maximizing the gain in the
desired direction. This change results in a deviation in the pointing direction [10] and deformation of
the main beam which in turn deteriorates angle measurement accuracy. Additionally, the distortion of
the beam pattern is a function of the external environment, such as the location of the interference,
target signal energy, clutter energy, etc. [7].

To alleviate distortion in the sum beam, a technique called “diagonal loading” has been
introduced [11–13]. This technique, in general, makes a compromise between beam distortion and
nulling depth by adding a diagonal matrix to the data covariance matrix. It has been proved that
diagonal loading is mathematically equivalent to adding constraints about the pointing direction
when forming sum beam weights [12]. By choosing a proper loading coefficient, the shape of the
main beam can be maintained to be approximately the same while imposing sufficient suppression of
the interference.

However, beam distortion may be more severe in forming the difference beam where the
“diagonal loading” technique is no longer applicable. The solution to this problem requires keeping
sufficient null depth in the direction of interference and maintaining a constant monopulse ratio.
Methods based on the ML estimator have been developed in [14–17] and generalized in [7]. These
methods are also referred to as adaptive corrected monopulse as they correct the distortion and
bias in the monopulse ratio formula. A different minimum variance adaptive monopulse (MVAM)
solution was proposed in [18] and it was found that this solution is equivalent to the ML estimator
when the sum beam weight is derived for optimal signal-to-noise ratio (SNR). All these methods
have been extended to the space-time case. This has been presented in [19–21]. However, all these
methods require calculation of first or second derivatives of array manifold with respect to angles
of arrival, which makes these methods more sensitive to the error of array elements distribution.
Furthermore, these derivatives are calculated at the radar look direction to approximate its true value
at the unknown target direction, which would result in performance deterioration. Other ML-based
estimation schemes for multi-dimensional parameter estimation were introduced in [22,23], but the
solutions are non-linear and ignore the correlation between azimuth and elevation estimates [7].
Another approach to the problem is by adding additional constraints to clamp the values of monopulse
ratio at several selected direction [24–26]. These constraints work by trading degrees of freedom (DOF)
for the desired difference beam pattern around the look direction. The loss of DOF reduces the output
signal to noise and interference ratio (SNIR). However, how to choose these constraints to optimize
the trade-off remains an open question. Furthermore, the constraints used in [24] ignore the fact that
output of the beamforming process in most of the radar systems is actually complex for the sake of
measuring the Doppler effect. As a result, the constraints imposed may consume more DOF and lead
to further losses in SNIR.

In this paper, a new constrained monopulse algorithm is proposed to calculate adaptive difference
beam weights. By using the proposed algorithm, unnecessary loss of DOF is saved, thus improving
the performance of monopulse angle measurement. The proposed algorithm is then extended to
planar array application, in which the estimation of azimuth and elevation is correlated with each
other. Therefore, decoupling constraint is added to the constrained problem, making azimuth and
elevation estimation independent from each other and the two-dimensional estimation can be solved
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by two separate one-dimensional monopulse measurements. The theoretical mean and variance of the
proposed monopulse estimator is then derived for analysis using the distribution of the monopulse
ratio and the optimized parameters in the constraints are also derived. Theoretical analysis shows
that the estimates using the proposed algorithm are unbiased and comparison with the MVAM
solution shows that the proposed algorithm can achieve better performance with optimized parameters.
In addition, for the first time, we demonstrated that the MVAM could be considered as a special case
of the linear constraint monopulse technique. Numerical simulation is employed to demonstrate the
effectiveness and advantage of the proposed algorithm and the theoretical variance derived fits the
simulation result perfectly well.

The remainder of this paper is organized as follows: in Section 2, a data model for the adaptive
monopulse technique is outlined. The proposed algorithm is introduced and a closed form solution
generating the adaptive difference beam weights is derived in Section 3.1. The algorithm is then
extended to the case of planar arrays in Section 3.2. In Section 4, the theoretical mean and variance
of the estimator is derived and analyzed and comparison with the MVAM estimation is made.
Mathematical simulations for both the linear array case and planar array case are formulated in
Section 5. Finally, concluding remarks are given in Section 6.

2. Data Model

Consider a linear array consisting of m isotropic elements with spacing d. Assume a target signal
impinges on the array with amplitude b and phase ξ and incidental angle θ0 which is the physical
angle with respect to the line of the array. Besides the target, assume there are p strong sources of
interference emitting jamming noise from different incidental angles {θi : i = 1, 2 · · · p} and with
amplitudes {xi : i = 1, 2 · · · p} and phases {ξi : i = 1, 2 · · · p} respectively. Let

a (θ) = [1 ej 2πd
λ cos(θ) · · · ej 2π(m−1)d

λ cos(θ)] (1)

denote the array response to a plane wave of unit amplitude arriving at an incidental angle θ, j is the
unit of imaginary numbers and λ is the wavelength of the transmitted signal in radar. Then, the array’s
output at the kth moment can be written as

y(k) = b(k)ejξ(k)a(θ0) +
p

∑
i=1

xi (k) ejξi(k)a (θi) + n(k), (2)

where n(k) is the time sample at the k-th moment from white Gaussian noise. With the array output,
the monopulse technique requires forming a sum beam and a difference beam by cutting the array
into its left half sub-array and right half sub-array. The direction of the mainlobe of the sum beam
is determined by the radar look direction θ. However, in the adaptive monopulse radar, a slight
deviation may exist due to the presence of interference [12]. If the target is located right at the radar
look direction, the sum beam output will be maximum while the difference beam will be zero. If the
target has a small offset angle from the look direction θ0 − θ, the ratio of the sum to difference beam,
namely the monopulse ratio is employed to estimate this angle. The monopulse ratio is approximately
independent of the target amplitude and has a good linear shape over the offset angle. For amplitude
monopulse, one can easily show the following basic relation by Taylor expansion [27] with a fixed
squint angle δ and antenna amplitude pattern h

h(θ0 − θ − δ)− h(θ0 − θ + δ)

h(θ0 − θ − δ) + h(θ0 − θ + δ)
≈ −h′(δ)

h(δ)
· (θ0 − θ), (3)

where ()′ is the first order derivative. However, the sum beam is incoherently formed in this way as we
can see from (3), which leads to loss of gain. It is for this reason that we design our algorithm based on
the phase monopulse technique. By ignoring noise and interference, the outputs of two sub-arrays have
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the form bejξ h(θ0 − θ)ej 2πd̄
λ (cos(θ0)−cos(θ)) and bejξ h(θ0 − θ)e−j 2πd̄

λ (cos(θ0)−cos(θ)) for phase monopulse
where h denotes the common sub-array pattern and d̄ denotes the distance from the phase center of
each sub-array to the center of the whole array. Therefore, one can easily get the monopulse ratio
r = j · tan 2π d̄

λ (cos(θ0)− cos(θ)), which is again a linear function in the neighborhood of the look
direction.

In the presence of the interference and noise, the aim is to suppress both the interference and
noise as well as extracting the angle to the target. To fulfil this task, appropriate sum and difference
beam weights needs to be found that are as orthogonal to the interference subspace as possible while
maintaining linearity within the neighborhood of the look direction. Denoting such sum beam weights
as wsum and difference beam weights as wdi f f , we have

Im

(
wH

di f f y(k)

wH
sumy(k)

)
≈ Γ (θ0−θ) , (4)

where Im (·) is the imaginary part of a complex variable, (·)H is the conjugate transpose and Γ is the
slope of monopulse ratio. Consequently, the offset angle of target can be easily estimated using (4).

For a planar array, the array manifold becomes

a (θ, ϕ) =
[
1 · · · ej 2π

λ (m−1)d cos θ+j 2π
λ (n−1)d cos ϕ

]
, (5)

where θ and ϕ are the incident angles w.r.t. the X and Y axis and named azimuth and elevation
respectively, m and n are the number of elements along the corresponding dimension. In this case, the
estimates of azimuth and elevation are correlated with each other. In fact, by using Taylor expansion,
it can be seen that the monopulse ratio is correlated with two partial derivatives w.r.t. azimuth or
elevation [18]. Thus, estimation of either azimuth or elevation would require knowledge of the other,
which makes the problem harder to approach. However, with difference beam weights appropriately
chosen, we can decouple this two-dimensional problem into two independent one-dimensional
monopulse estimations and use (4) to solve them separately.

3. The Proposed Constrained Algorithm

3.1. Derivation of the Algorithm Used in a Linear Array

In this section, the proposed algorithm is introduced and the derivation of the constrained
difference beam weights given. The procedure commences by first forming the adaptive sum beam
weights using a minimum variance distortionless response beamformer (MVDR) [8], e.g.,

wsum =
R−1a(θ)

aH(θ)R−1a(θ)
, (6)

where R is the covariance of the interference plus noise and can be estimated by the ML estimator

R =
1
N

N

∑
k=1

ỹ(k)ỹH(k), (7)

where N is number of snapshots used for estimation and ỹ (k) is the sample of interference plus
noise, which can be obtained using the interference covariance matrix reconstruction methods [28,29].
The diagonal loading technique can also be applied when forming the sum beam in case mismatch
exists between the radar look direction and the target’s true direction.

The calculation of difference in beam weights is dependent on the sum beam weights obtained
in (6). The difference beam weights are not only required to obtain sufficient suppression of interference
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and noise, but also to keep the approximation in (4) valid. Therefore, we formulate the following
problem to derive the difference beam weight:

min
wdi f f

(
wH

di f f Rwdi f f

)
, s.t. Im(wH

di f f C) = g (8)

where matrix C is

C =

[
a(θ + ∆θ)

wH
suma(θ + ∆θ)

a(θ)
wH

suma(θ)

]
, (9)

and row vector g is
g = [Γ∆θ 0] , (10)

where ∆θ is a small user-determined parameter whose value influences the performance of the
proposed algorithm. The choice of ∆θ will be discussed shortly.

Using the Lagrange Multiplier method to approach the constrained problem in (8) gives

min
wdi f f ,p

(
f = wH

di f f Rwdi f f + Im(wH
di f f C)p)

)
, (11)

where p is a real column vector to be determined. To solve (11), a complex gradient is introduced as
follows [30]:

∇w∗di f f
( f ) =

(
∂ f

∂ Re(wdi f f )
+ j

∂ f
∂ Im(wdi f f )

)
/2 (12)

where Re(·) is the real part of a complex variable. With (11) and (12), we have

∇w∗di f f
( f ) = Rwdi f f −

j
2

Cp, (13)

where we have used the fact that R is Hermitian. To find a minimum point for f , set the gradient to
zero, then we have

wdi f f =
j
2

R−1Cp (14)

Substituting (14) into the constraint of (8) gives

p = −2
(

Re
(

CHR−1C
))−T

gT , (15)

where (·)T is the transpose of a matrix and (·)−T is the transpose of the inverse matrix. Combining (14)
and (15) together, we give the solution to (8) as follows:

wdi f f = −jR−1C
(

Re
(

CHR−1C
))−T

gT (16)

From (4) and (16), it can be seen that the value of Γ has no effect on the estimate of θ0. Therefore,
it can be any real number other than 0. For simplicity, we make Γ = 1 for the rest of the paper.

After getting the sum beam weight from (6) and the difference beam weight from (16),
the monopulse ratio can be easily calculated and therefore the target angle.

The optimization problem in (8) seeks the solution that minimizes the power of interference
plus noise under two hard constraints. Since the interference and noise are the source of variance of
monopulse estimation, minimizing their power is equal to minimizing the variance of monopulse
estimation. The hard constraints clamp the values of monopulse ratio at two close positions, forcing
the imaginary part of the monopulse ratio to satisfy (4) within the neighborhood of the radar look
direction θ. One of the constraints guarantees that the difference beam has a null at θ, which eliminates
estimation bias. The other ensures the approximate linearity within [θ − ∆θ, θ + ∆θ], if ∆θ is small.
The reason for this can be explained as follows. Suppose the target angle being θ0 = θ + λ̃∆θ,

∣∣λ̃∣∣ ≤ 1
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where ||means the absolute value or the modulus. By using Taylor expansion for the array manifold
and omitting infinitesimal of higher order, we have

a(θ + λ̃∆θ) ≈ a(θ) + λ̃(a(θ + ∆θ)− a(θ)), (17)

After beamforming, the output SNIR of both sum and difference beam should be high enough,
thus the monopulse ratio can be written as

Im (r) ≈ Im

(
wH

di f f
(
a (θ) + λ̃ (a (θ + ∆θ)− a (θ))

)
wH

sum
(
a (θ) + λ̃ (a (θ + ∆θ)− a (θ))

) ) , (18)

Considering ∆θ is small and the numerator is much smaller than the denominator in (18), we have
the following approximation:

wH
suma(θ) ≈ wH

suma(θ + ∆θ) (19)

when calculating the imaginary part of monopulse ratio. From the constraints, we have

Im

(
wH

di f f a(θ)

wH
suma(θ)

)
= 0,

Im

(
wH

di f f a(θ + ∆θ)

wH
suma(θ + ∆θ)

)
= ∆θ.

(20)

Combining (18) and (20), one can easily get

Im

(
wH

di f f y

wH
sumy

)
≈ λ̃∆θ,

∣∣λ̃∣∣ ≤ 1. (21)

which is equal to (4) within [θ − ∆θ θ + ∆θ].
From the above analysis, it is clear that the constraints in (20) are able to clamp the monopulse ratio.

For convenience, we have assumed that the angle of target lies in [θ−∆θ, θ +∆θ]. However, the angle
of target does not have to be confined in this range. As long as λ̃∆θ is small enough to keep (17) and (19)
valid, a reasonable estimation of the target’s offset angle can still be obtained by (4). However, with
the target moving further away from the radar look direction, the approximation error (non-linearity
error) will grow, thus the performance of estimation can be expected to deteriorate. Therefore, as long
as ∆θ is small, the range of angle estimation does not rely on ∆θ.

Indeed, the choice of ∆θ should be able to keep (17) and (19) valid which demands that θ + ∆θ lies
within the neighborhood of the look direction. Denote the range of this neighborhood as ε. In practice,
ε is usually considered to be the 3 dB beamwidth of the sum beam. With the target also lying within
the neighborhood of the look direction, the approximation error is usually negligible compared to the
error incurred by noise and interference. Therefore, the choice of ∆θ should be made to minimize the
power of noise and interference

∆θ = min
∆θ

(
wH

di f f Rwdi f f

)
, s.t.∆θ ∈ [θ − ε/2, θ + ε/2]\{0}. (22)

With (16), we have

wH
di f f Rwdi f f

= g Re
(

CHR−1C
)−1

CHR−1C Re
(

CHR−1C
)−1

gH .
(23)
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Combining (22) and (23), we can get

∆θ = min
∆θ

(
F =

∆θ2

det (Re (CHR−1C))

)
,

s.t.∆θ ∈ [θ − ε/2 θ + ε/2]\{0}.
(24)

which is a non-linear optimization problem. However, using Taylor expansion for the array manifold
and omitting infinitesimal of higher order, we can rewrite (24) as

F ≈ µ2

|µ + η∆θ|2 (µν− |η|2)
, (25)

where µ = aH(θ)R−1a(θ), ν = a′H(θ)R−1a′(θ), η = a′H(θ)R−1a(θ). The denominator of (25) is a
quadratic function of ∆θ. Its axis of symmetry is at ∆θ = −Re(η)µ

|η|2
. From Cauchy–Schwarz inequality,

µν ≥ |η|2. Therefore, the choice of ∆θ depends on the sign of Re(η):

∆θ=

{
ε
2 if Re(η) > 0
− ε

2 if Re(η) < 0
(26)

It should be noted that the performance improvement brought by optimizing ∆θ depends on

the value of −Re(η)µ
|η|2

. If
∣∣∣∣Re(η)µ
|η|2

∣∣∣∣ � ε/2, the improvement will be more prominent. However, if∣∣∣∣Re(η)µ
|η|2

∣∣∣∣→ 0, this improvement would be less obvious.

Function F is not continuous at ∆θ = 0, but we can make it continuous by assigning value to
it. Denote

F(0) = lim
∆θ→0

∆θ2

det (Re (CHR−1C))

≈ 1

µν− |η|2
.

(27)

In fact, as ∆θ approaches zero from positive axis, we have

lim
∆θ→0

Im
(

wH
di f f a(θ+∆θ)

wH
suma(θ+∆θ)

)
− Im

(
wH

di f f a(θ)

wH
suma(θ)

)
∆θ

= 1. (28)

The constraints in (20) are equal to the demanding derivative of the imaginary part of the
monopulse ratio at the radar look direction, to be one with a bias of zero. This case, as we will show in
next section, is approximately equal to the MVAM.

Since the constraints are enough to clamp the monopulse ratio, adding extra constraint has
very little effect on improving linearity, but it might incur extra loss of DOF. For this reason, the
constraint at θ − ∆θ as in [24] has little effect on improving linearity but could result in more loss of
DOF. Furthermore, the constraint used in [24] could not be applied to a complex signal. Therefore, the
proposed algorithm is superior to the algorithm in [24].

3.2. Extension to Planar Array Application

In a typical planar phased array, the sum and difference beamforming is usually done at the
sub-array level using the digital output of the sub-arrays to reduce the dimension of computation.
When adaptive beamforming is applied, a serious problem can arise in that the monopulse ratio curve
of one dimension may be dependent on the value of the other. This problem can be severe enough to
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make the monopulse technique fail. Consider a planar array placed in the X–Y plane of a Cartesian
system with the center of array overlapping with the origin. The array manifold is shown in (5).

Unlike the linear array case, to estimate either azimuth or elevation angle, additional constraint is
required to make the estimation of one angle independent on the value of the other. Therefore, the
constrained problem that generates difference beam weights takes the form:

min
waz

(
wH

azRwaz

)
, min

wel

(
wH

el Rwel

)
s.t.

Im
(

ΩHC2

)
= G2, Ω =

(
waz wel

) (29)

where waz and wel are the azimuth and elevation difference beam adaptive weights and

C2 =
(

a(θ,ϕ)
wH

suma(θ,ϕ)
a(θ+∆θ,ϕ)

wH
suma(θ+∆θ,ϕ)

a(θ,ϕ+∆ϕ)

wH
suma(θ,ϕ+∆ϕ)

)
,

G2 =

(
0 ∆θ 0
0 0 ∆ϕ

)
.

(30)

Using the Lagrange Multiplier method gives

Ω = −jR−1C2

(
Re
(

C2
HR−1C2

))−T
GT

2 . (31)

The reason for the constraints keeping linearity within the neighborhood of the radar look
direction can be demonstrated in a way similar to the case of linear arrays. Let (θ, ϕ) denote the
radar look direction. The area of the neighborhood is composed by azimuth ranging from (θ − ε/2) to
(θ + ε/2) and elevation ranging from (ϕ− δ/2) to(ϕ + δ/2). Practically, this area is also determined by
the 3 dB width of the mainlobe. Assume the following approximation holds within the neighborhood
of the radar look direction:

a
(
θ̃, ϕ̃
)
= (1− λθ)

(
1− λϕ

)
a (θ, ϕ)

+ (1− λθ) λϕa (θ, ϕ + ∆ϕ)

+ λθ

(
1− λϕ

)
a (θ + ∆θ, ϕ)

(32)

wH
suma (θ, ϕ) ≈ wH

suma
(
θ̃, ϕ̃
)

(33)

where θ̃ = θ + λθ∆θ ∈
[
θ − ε/2, θ + ε/2

]
and ϕ̃ = ϕ + λϕ∆ϕ ∈

[
ϕ− δ/2, ϕ + δ/2

]
. Then, with

the constraints in (29), one can easily have

Im

(
ΩHa

(
θ̃, ϕ̃
)

wH
suma

(
θ̃, ϕ̃
)) ≈ (λθ∆θ

λϕ∆ϕ

)
(34)

Optimization of parameters ∆θ and ∆ϕ requires solving the following non-linear problem:

min
∆θ,∆ϕ

(
tr
(

KΩHRΩ
))

, K =

(
kaz 0
0 kel

)
s.t.∆θ ∈

[
−ε/2, ε/2

]
\{0}, ∆ϕ ∈

[
−δ/2, δ/2

]
\{0}

(35)

where tr(·) is the trace of a matrix, K is a weighting matrix that weights the variance of azimuth
and elevation difference beam outputs. Unfortunately, there is no easy way to solve this problem as
in the linear array case. Thus numerical methods such as the Nelder–Mead method are suggested
for this problem. However, as long as the constrained directions θ + ∆θ and ϕ + ∆ϕ lie within the
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neighborhood of the radar look direction, the proposed algorithm with optimized ∆θ and ∆ϕ can
always achieve a better performance than the previous method, e.g., the MVAM.

3.3. Summary and Computational Complexity of the Proposed Algorithm

We conclude the procedure of the proposed monopulse technique and discuss the computational
complexity as follows:

1. calculate the adaptive sum beam weights using (6). In this step, calculation of the sample
matrix inversion (SMI) is the most expensive. Fortunately, we can use the recursive matrix
inversion formula for the one rank updated sample covariance matrix [31] which can reduce
the computational complexity to the level of O

(
l2) where l is the dimension of the array

manifold. The other matrix multiplication is also in the order of O
(
l2) [32,33]. Therefore, the total

computational complexity in this step is O
(
l2).

2. Determine the parameter ∆θ or the parameter pair (∆θ, ∆ϕ) as follows: in the linear array case,
use (26) to determine ∆θ, while in the planar array case, solve (35) for (∆θ, ∆ϕ) or directly make
∆θ and ∆ϕ close to zero to approximate the performance of the MVAM if seeking to reduce
computational cost. In this step, determining the parameter ∆θ according to (26) or directly
choosing a small value close to zero does not require any computation. However, in the planar
array case, optimization of the parameters requires recursive iteration to solve (35), thus it is not
suggested for real-time applications.

3. Use (16) for linear array applications or (31) for planar array applications to calculate the constrained
difference beam weights. The sample matrix inversion is already calculated in the first step and the
other matrix inversion in (16) and (31) is usually negligible because l � 3 in practice. Therefore,
the total computational complexity in this step is in the order of O

(
l2).

4. Perform beamforming with the beam weights calculated in the previous steps and then calculate
the monopulse ratio along with the angle estimates. This last step has the computational complexity
of O (2l).

In general, the total computational complexity of the above procedure is O
(
l2) which is about

the same as the MVAM. In practice, such computational cost is usually affordable for modern
radar systems.

It is worth noting that before forming the monopulse ratio, any linear processing, such as coherent
integration, can be applied to both beam outputs to improve SNIR as the processing effect on the target
signal is identical in both beam outputs.

4. Performance Analysis of the Proposed Monopulse Estimator

4.1. Mean and Variance of the Proposed Estimator

In this section, the theoretical performance of the proposed estimator is analyzed. The derivation
follows the ideas developed in [17,34,35] using conditional distributions. All the beam weights are
considered to be given quantities. Let dx and dy denote the output of the azimuth difference beam
and elevation difference beam respectively. s is the output of the sum beam. The beam outputs(

dx dy s
)T

are assumed to be circularly-symmetric complex Gaussian distributed with mean u and
covariance matrix Q. The mean vector and covariance matrix can be partitioned as

u =

(
ud
us

)
, Q =

(
Qd qds
qH

ds qs

)
, (36)
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where ud is the mean of d =
(

dx dy

)T
, Qd is its covariance, qds = E

(
(d− ud)(s− us)H) is the

covariance with s and E(·) means the expectation value. Here, we only consider the case of the
deterministic target. Therefore, we have

ud = bejξΩHa(θ0, ϕ0), us = bejξ wH
suma(θ0, ϕ0); (37)

where (θ0, ϕ0) is the direction of the target and

Qd = ΩHRΩ, qs = wH
sumRwsum, qds = ΩHRwsum. (38)

The conditional distribution of d conditioned on s is also complex Gaussian with mean
ud|s = ud + qdsq−1

s (s− us) and covariance Qd|s = Qd − qdsq−1
s qH

ds. Rewrite the imaginary part of
the monopulse ratio as

r = Im
(

ds∗

|s2|

)
. (39)

Then, the conditional distribution of r conditioned on s is Gaussian with mean

Im
(
qdsq−1

s +
(
ud − qdsq−1

s us
)

s−1) and covariance Re
(

Qd|s
2|s|2

)
. Let uaz|s and qaz|s denote the mean

and variance of the azimuth estimator conditioned on s respectively. With (37) and (38), they can be
written as

uaz|s = Im
(

β +
(

wH
aza (θ0, ϕ0)− βwH

suma (θ0, ϕ0)
)

bejξ s−1
)

,

qaz|s =

(
wH

azRwaz −
∣∣wH

azRwsum
∣∣2

wH
sumRwsum

)(
2 |s|2

)−1
,

β =
wH

azRwsum

wH
sumRwsum

.

(40)

The performance of the estimator depends on the sum beam weights. In the presence of
interference, the MVDR beamformer, as in (6), is usually a practical method for calculating sum
beam weights and the proposed monopulse technique is based on it.

Using (6) and the constraint Im (β) = 0, we can get

uaz|s

= Im

((
wH

aza (θ0, ϕ0)−wH
aza (θ, ϕ)wH

suma (θ0, ϕ0)
)

bejξ

s−1

)
,

qaz|s

=

(
wH

azRwaz −
∣∣wH

aza (θ, ϕ)
∣∣2

aH (θ, ϕ)R−1a (θ, ϕ)

)(
2 |s|2

)−1
.

(41)

By integrating over the distribution of s, the mean and covariance of r can then be obtained.
The sum beam output power |s|2 cannot be too low, otherwise the monopulse estimation would fail.
Therefore, a threshold α is set for the lower bound of the integration and the mean and variance derived
in the following is still conditioned on |s|2 > α [17]. This threshold is relevant with the scenario where
the radar system is working, including SNIR, false alarm rate, etc. Using the results from [17], the mean
of the azimuth estimator uaz is given by

uaz = Im
(

wH
aza (θ0, ϕ0)

wH
suma (θ0, ϕ0)

)(
1− a1

pd

)
(42)
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where

a1 = e−(α+|us |2)/qs · I0
(
2
√

α |us| /qs
)

,

pd =
1
qs

∫ ∞

α
e−(t+|us |2)/qs · I0

(
2
√

t |us| /qs

)
dt

(43)

where I0 denotes the modified Bessel function of order zero. In the derivation of (42), we have used
the constraint Im (β) = 0. The mean of the elevation estimator can be derived analogously:

uel = Im

(
wH

el a (θ0, ϕ0)

wH
suma (θ0, ϕ0)

)(
1− a1

pd

)
(44)

As α approaches zero, a1 is approaching a small value determined by the SNR of the sum beam
and pd is approaching unity. Thus, the proposed estimator is approximately unbiased.

With the results from [17], the variance of the azimuth and elevation estimator is

qaz =
1
2

(
wH

azRwaz −
∣∣wH

aza (θ, ϕ)
∣∣2

aH (θ, ϕ)R−1a (θ, ϕ)

)
a2

pd

=
1
2

(
wH

azR1/2PnullR
1/2waz

) a2

pd
,

qel =
1
2

(
wH

el Rwel −
∣∣wH

el a (θ, ϕ)
∣∣2

aH (θ, ϕ)R−1a (θ, ϕ)

)
a2

pd

=
1
2

(
wH

el R1/2PnullR
1/2wel

) a2

pd
,

(45)

where Pnull is the projection matrix to the null space of R−1/2a (θ, ϕ) and

a2 =
∫ ∞

α

1
qs

e−(t+|us |2)/qs · I0

(
2
√

t |us| /qs

)
t−1dt. (46)

With (31), we can rewrite Re
(
ΩHa (θ, ϕ)

)
as

Re
(

ΩHa (θ, ϕ)
)

= G2

(
Re
(

C2
HR−1C2

)−1
)

Im
(

C2
HR−1a (θ, ϕ)

)
.

(47)

With the constraints in (29), one can easily get Im
(

C2
HR−1a (θ, ϕ)

)
= 0. Therefore, we have

qaz =
1
2

(
wH

azRwaz

) a2

pd
,

qel =
1
2

(
wH

el Rwel

) a2

pd
.

(48)

As we can see from (48), a2
pd

is determined by the SNR of the sum beam output and the threshold
α, the other term is the variance of the difference beam output. Therefore, given the sum beam weights
and α, the variance of the estimator only depends on the variance of the difference beam output which
hence explains (22) and (35) for the optimization of parameter ∆θ.

4.2. Comparison with MVAM

In the MVAM [18], the adaptive difference beam weights were derived under different objective
function and different constraints from (29). However, as will be proved in the following, the adaptive
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difference beam weights calculated by the MVAM are equivalent with that of the proposed algorithm
in a special case where ∆θ → 0. Therefore, the proposed algorithm can outperform the MVAM
with the parameter ∆θ optimized using (26) or in the planar array case, using numerical methods.
Let Ω̃ =

(
w̃az w̃el

)
denote the adaptive difference beam weights given by the MVAM. These weights

are calculated from [18]:

min
w̃az

(
w̃H

azR̃w̃az

)
, min

w̃el

(
w̃H

el R̃w̃el

)
s.t. Re

(
C̃HΩ̃

)
= I2

(49)

where I2 is the unity matrix of rank 2 and

R̃ = R− a (θ, ϕ)wH
sum

wH
suma (θ, ϕ)

R− R
wsuma (θ, ϕ)H

aH (θ, ϕ)wsum

+
a (θ, ϕ) aH (θ, ϕ)

|wH
suma (θ, ϕ)|2

wH
sumRwsum

C̃ =
(

caz cel

)
,

caz =

(
wH

suma (θ, ϕ)
)

dθ −
(
wH

sumdθ

)
a (θ, ϕ)

|wH
suma (θ, ϕ)|2

,

cel =

(
wH

suma (θ, ϕ)
)

dϕ −
(
wH

sumdϕ

)
a (θ, ϕ)

|wH
suma (θ, ϕ)|2

,

(50)

where dθ and dϕ are respectively the partial derivatives of a (θ, ϕ) w.r.t. θ and ϕ at the look direction.
The singularity of R̃ prevents solving (49) directly with the Lagrange method. In [18], this problem
was solved by adding an additional constraint Ω̃Hwsum = 0.

Because R−1 = MPMH + 1
σ2 I where M is the interference eigenvector matrix and σ2 is the power

of the noise, it follows that

Ω̃Hwsum =

(
Ω̃HMPMHa (θ, ϕ) + 1

σ2 Ω̃Ha (θ, ϕ)
)

aH (θ, ϕ)R−1a (θ, ϕ)
. (51)

Because the power of interference is assumed to be much stronger than the noise, the maximum
eigenvalue of P is much smaller than 1

σ2 and the difference beam weights should be orthogonal to the
sub-space of interference. Therefore, we have

Ω̃Hwsum ≈
1

aH (θ, ϕ)R−1a (θ, ϕ)

(
1
σ2 Ω̃Ha (θ, ϕ)

)
(52)

and further the constraint Ω̃Hwsum = 0 approximately equals to Ω̃Ha (θ, ϕ) = 0. Thus, with the
additional constraint Ω̃Ha (θ, ϕ) = 0 added to (49), the solution of the MVAM is given by:

Ω̃ = R̄−1C̄
(

Re
(

C̄HR̄−1C̄
))−1

1 0
0 1
0 0

 ,

R̄ = R̃ + a3a (θ, ϕ) aH (θ, ϕ) , C̄ =
(

C̃ a (θ, ϕ)
) (53)

where a3 is a non-zero loading factor that makes R̄ invertible. The effect of the loading matrix is
cancelled by the additional constraint.
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Let a3 = 1/aH (θ, ϕ)R−1a (θ, ϕ), then the weight solution becomes

Ω̃ = R−1C̄
(

Re
(

C̄HR−1C̄
))−1

1 0
0 1
0 0

 (54)

Let us rewrite C̄ as follows:

C̄ = lim
∆θ→0
∆ϕ→0

(Π) , Π =
(

z1 z2 z3

)
,

z1=
1

∆θ

(
a (θ + ∆θ, ϕ)

wH
suma (θ + ∆θ, ϕ)

− a (θ, ϕ)

wH
suma (θ, ϕ)

)
,

z2=
1

∆ϕ

(
a (θ, ϕ + ∆ϕ)

wH
suma (θ, ϕ + ∆ϕ)

− a (θ, ϕ)

wH
suma (θ, ϕ)

)
,

z3=
a (θ, ϕ)

wH
suma (θ, ϕ)

.

(55)

Combining (54) and (55), we have

Ω̃= lim
∆θ→0
∆ϕ→0

R−1Π
(

Re
(

ΠHR−1Π
))−1

1 0
0 1
0 0




= lim
∆θ→0
∆ϕ→0

(jΩ) .

(56)

where Ω is calculated by (31). It can be seen from (56) that the MVAM corresponds to a special case of
the proposed algorithm where ∆θ → 0 and ∆ϕ→ 0. In the case of linear array, one can prove that the

variance of estimation using the MVAM is
(

µν− |η|2
)−1

which is (27).

Denote G(∆θ, ∆ϕ) = tr
(
KΩHRΩ

)
and define G(0, 0) by its limit value. Then, function G

is continuous almost everywhere within the domain ∆θ ∈
[
−ε/2, ε/2

]
, ∆ϕ ∈

[
−δ/2, δ/2

]
.

Therefore, by optimizing the choice of ∆θ and ∆ϕ, the proposed algorithm could achieve better
performance than the MVAM or Nickel’s corrected adaptive monopulse [18] which gives the same
performance as the MVAM. In the case of linear array, the strategy for choosing the parameter is given
by (26).

Furthermore, the proposed algorithm does not require knowledge of the derivatives of array
response. Thus, it is more robust than the MVAM in the case where errors about the array response exist.

5. Numerical Examples and Applications

In order to examine the performance of the proposed monopulse algorithm, mathematical
simulations are conducted using an echo simulation software programmed in MATLAB. Comparison
is made between the proposed algorithm, traditional constrained method [24] and the MVAM.
The simulation is composed of two parts. In the first part, different methods are compared using a
uniform linear array, while in the second they are applied to a rectangular planar array for comparison.

5.1. Simulation in Linear Array

Consider a linear array with 16 elements equally spaced by half of the wavelength. The desired
radar look direction is 20◦ away from the boresight. A deterministic target is located at the direction
20.8◦ off the boresight with the power of 10 dB relative to internal noise. Two noise jammers with the
power of 30 dB relative to internal noise are incident from 10◦ and 14◦ off the boresight respectively.
The sum beam is formed adaptively using (6). The beam patterns using the proposed algorithm and
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the MVAM are plotted in Figure 1. As a reference, the quiescent beam patterns are also plotted. For the
proposed algorithm, ∆θ is set to be 4◦ (half of the 3 dB beamwidth), because Re (η) > 0. It can be seen
from Figure 1 that the mainlobe of the sum beam pattern is slightly nudged away from the desired
look direction due to the strong jammers. Two clear nulls can be observed at the directions of jammers
for both of the methods, providing jammer rejection. However, the proposed algorithm places another
null at the radar look direction because of the constraint while the MVAM only tends to have a null at
the look direction [18].
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Figure 1. The beam pattern of the proposed algorithm.

In Figure 2, the standard deviations of the proposed algorithm, the MVAM and the traditional
constrained method are plotted with signal to noise ratio (SNR) changing from −3 dB to 13 dB and
Root-Mean-Square Errors (RMSE) of these three methods are plotted in Figure 3. The covariance matrix
R is estimated from 100 snapshots. For the traditional constrained method, the constrained points
are respectively −4◦, 0◦ and 4◦ away from the radar look direction. It can be seen that the proposed
algorithm outperforms both the MVAM and the traditional constrained method, especially in the case
of low SNR. Comparing the standard deviation and RMSE at each SNR scenario, we can tell that all
these three methods give approximately unbiased estimates of the target direction. Additionally, the
theoretical standard deviation calculated by (48) predicts the simulation results well. However, at low
SNR, due to the disturbance of noise and a finite number of samples, the simulation results slightly
deviate from the theoretical curve.
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Figure 2. Mean of the estimation error versus the signal-to-noise ratio (SNR) in scenario 1 of the linear
array simulation.
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Figure 3. Standard deviation versus the SNR in scenario 1 of linear array simulation.

The effect of choosing different ∆θ is evaluated in Figure 4 where the MVAM is used as a
comparison. SNR is set to be 10 dB. It can be seen that the RMSE of the proposed algorithm
slowly decreases with ∆θ growing until ∆θ reaches half of the beamwidth and the RMSE near 0
is approximately equal to that of the MVAM. This result shows that by optimizing ∆θ, the proposed
algorithm can achieve better performance than the MVAM. It can also be observed that the standard
deviation continues to decrease with ∆θ growing beyond the half of beamwidth which is analyzed in
section III. However, the RMSE deteriorates after that point which suggests that, in this case, the bias
of the estimation cannot be ignored.
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Figure 4. Root-Mean-Square Errors (RMSE) versus the deviation of the angle of target in scenario 2 of
the linear array simulation.

Finally, the RMSE versus target angle is plotted in Figure 5. When the target is very close to the
radar look direction, the proposed algorithm with ∆θ = 4 achieves much better performance than
the MVAM and the traditional constrained method. However, its performance deteriorates fast with
the target offset angle growing and would be worse than the MVAM when the offset angle continues
growing. This deterioration is due to the bias increase of the estimation. As can be seen in Figure 5,
when ∆θ is adjusted to 1, the proposed algorithm has better performance than the MVAM at every
offset angle of target. However, compared with the case where ∆θ = 4, its RMSE is worse at positions
close to the radar look direction.
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Figure 5. Antenna placement of the planar array.

From the above simulation results, we can see that the proposed algorithm always outperforms
the traditional constrained method and when ∆θ goes to 0, it gives the same performance as the
MVAM. With proper choice of ∆θ, the proposed algorithm can outperform the MVAM.

5.2. Simulation in Planar Array

In this section, a simulation is conducted based on a 12 × 12 rectangular planar array with
elements horizontally and vertically spaced by half of the wavelength. This whole array is divided
into 16 3× 3 sub-arrays all steered to look at the direction (70◦, 90◦). For simplicity of comparison
and discussion, no amplitude weighting is considered at the array elements. The target is located at
(69◦, 89◦) with power equal to the internal noise. Two noise jammers with power of 30 dB relative
to the internal noise are incident from the direction (77◦, 90◦) near the mainlobe and the direction
(84◦, 90◦) in the sidelobe region. The time series data is passed through a 100-point fast Fourier
transform (FFT) filter before applying the adaptive weighting. The covariance matrix R is estimated
from 100 snapshots.

In the first scenario, instead of solving (35), we first evaluate two choices of ∆θ: ∆θ = 3◦ and
∆θ = −3◦, whose absolute value is almost half of the beamwidth. The other parameter ∆ϕ is chosen to
be 0.1. The azimuth and elevation difference beam pattern cuts for the case of ∆θ = −3◦ are plotted in
Figure 6. It can be observed that nulls are placed at the directions of jammers for both the proposed
algorithm and the MVAM and like the case of linear array, the MVAM tends to place a null at the radar
look direction.

The RMSE of azimuth estimates versus the SNR are plotted in Figure 7. It can be seen that the
proposed algorithm outperforms the MVAM with ∆θ = −3◦ but performs worse than the MVAM in
the case of ∆θ = 3◦. Therefore, to achieve the best performance, the parameters need to be optimized.
Combining with the simulation results in the case of linear array, it can be observed that in all these
scenarios, the proposed algorithm with optimized parameters outperforms the MVAM.

The RMSE of elevation estimates versus the SNR are plotted in Figure 8. From Figure 8, we can
see that the proposed algorithm and the MVAM have the same performance at each SNR. Therefore,
we demonstrate that by choosing ∆ϕ close to 0, the proposed algorithm gives the same performance as
the MVAM.

In the second scenario, we evaluate the performance w.r.t. different target locations. Assume
the target is incident from the direction (71◦, 91◦) while the rest of the conditions remain the same
as the first scenario. Again, two sets of parameters ∆θ = 3◦, ∆ϕ = 0.1◦ and ∆θ = −3◦, ∆ϕ = 0.1◦ are
evaluated. The RMSE of estimates versus the SNR are plotted in Figures 9 and 10. It can be seen from
Figure 9 that in the estimation of azimuth, the proposed algorithm with ∆θ = −3◦ still outperforms
the MVAM. In Figure 10, it can be seen that the estimation of elevation is irrelevant with the choice
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of ∆θ and with ∆ϕ = 0.1◦, the proposed algorithm is equivalent with the MVAM. More results with
different target locations are shown in Tables 1 and 2. In these cases, the SNR is fixed at −6 dB. From
case 1 to 4, the target is incident from (71◦, 89◦), (69◦, 91◦), (72◦, 92◦) and (68◦, 88◦) respectively.

In the third scenario, we evaluate the performance of the proposed algorithm with different
jammer locations. The target is located at (69◦, 89◦) with the SNR being −5 dB. We consider three
different cases. In the first case, assume two jammers are incident from (77◦, 90◦) and (70◦, 97◦)
respectively. In the second case, they are (63◦, 90◦), (56◦, 90◦) and in the third case, (63◦, 90◦), (70◦, 83◦).
The rest of the conditions are the same as scenario one. The RMSE of the proposed algorithm and
the MVAM are shown in Tables 3 and 4. For the proposed algorithm, parameters are determined by
solving (35) with grid search within 3 dB beamwidth around the radar look direction. The weighting
matrix K is chosen to be the unity matrix. Since the range of searching area is small, the computation
cost is reasonable. For case 1, the optimum parameters are ∆θ = −3◦ and ∆ϕ = −3◦. For case 2, the
optimum parameters are ∆θ = 3◦ and ∆ϕ = −3◦ while for case 3, they are ∆θ = 3◦ and ∆ϕ = 3◦.
It can be seen that the proposed algorithm outperforms the MVAM in all three cases. However, the
performance of the proposed algorithm depends on the locations of jammers. In the case where both
jammers have the same elevation angle (case 2), the advantage of the proposed algorithm is more
obvious than the other cases.
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Figure 6. Azimuth and elevation beam pattern cuts. (a) Azimuth difference beam pattern; (b) Elevation
difference beam pattern.
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Figure 7. RMSE of azimuth estimates versus the SNR in the first scenario.
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Figure 8. RMSE of elevation estimates versus the SNR in the first scenario.
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Figure 9. RMSE of azimuth estimates versus the SNR in the second scenario.

Table 1. RMSE of azimuth estimates versus target locations.

Method Case 1 Case 2 Case 3 Case 4

Proposed algorithm 0.79◦ 0.60◦ 1.10◦ 0.64◦

MVAM 0.93◦ 0.72◦ 1.20◦ 0.79◦
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Table 2. RMSE of elevation estimates versus target locations.

Method Case 1 Case 2 Case 3 Case 4

Proposed algorithm 0.27◦ 0.22◦ 0.72◦ 0.37◦

MVAM 0.27◦ 0.22◦ 0.72◦ 0.37◦
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Figure 10. RMSE of elevation estimates versus the SNR in the second scenario.

Table 3. RMSE of azimuth estimates versus jammer locations.

Method Case 1 Case 2 Case 3

Proposed algorithm 0.33◦ 0.81◦ 0.42◦

MVAM 0.33◦ 0.96◦ 0.47◦

Table 4. RMSE of elevation estimates versus jammer locations.

Method Case 1 Case 2 Case 3

Proposed algorithm 0.32◦ 0.21◦ 0.37◦

MVAM 0.33◦ 0.28◦ 0.40◦

6. Conclusions

In this paper, a novel constrained monopulse algorithm has been proposed for phased array radar.
In the real battlefield, airborne target signals are usually masked by strong noise jammers which are
close to the target in space. By using novel adaptive difference beam weights, the difference beam
adaptively provides suppression against unwanted signals and maintains the beam shape around the
look direction. Therefore, the monopulse ratio formed by the proposed algorithm is able to maintain
the linearity around the look direction and minimize the effect from noise jamming. The theoretical
mean and variance of the proposed monopulse estimator is derived for performance evaluation.
From the theoretical analysis and mathematical simulation, it can be seen that the estimation of the
target’s direction is unbiased and accurate. In comparison with the previous methods, it is found that
the MVAM is equivalent with a special case of the proposed algorithm where the constrained point is
chosen to be close to the look direction. By optimizing the constrained point, the proposed algorithm
can outperform the existing adaptive monopulse techniques. The optimized constrained point is
derived in the linear array case. In the planar array case, the optimization requires recursive iteration,
thus is not suggested for real-time application. However, in such case, the proposed algorithm can
still achieve the same performance as the MVAM by making the constrained points close to the look
direction. Mathematical simulation results in scenarios where severe jamming sources occur near
the mainlobe, demonstrate that the proposed monopulse technique can accurately acquire target
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direction and outperform the previous adaptive monopulse techniques. In addition, the computational
complexity of the proposed algorithm is found to be O

(
l2) which is about the same as the traditional

adaptive monopulse techniques and usually affordable in modern phased array radar. All in all,
the proposed algorithm proves to be effective in the real scenarios where strong jammers occur near
the target.
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