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The high-altitude environment is characterized by hypobaric hypoxia,

low temperatures, low humidity, and high radiation, which is a natural

challenge for lowland residents entering. Previous studies have confirmed

the acute and chronic effects of high altitude on the cardiovascular

systems of lowlanders. Abnormal cardiovascular complications, including

pulmonary edema, cardiac hypertrophy and pulmonary arterial hypertension

were commonly explored. Effective evaluation of cardiovascular adaptive

response in high altitude can provide a basis for early warning, prevention,

diagnosis, and treatment of altitude diseases. At present, post-translational

modifications (PTMs) of proteins are a key step to regulate their biological

functions and dynamic interactions with other molecules. This process is

regulated by countless enzymes called “writer, reader, and eraser,” and the

performance is precisely controlled. Mutations and abnormal expression of

these enzymes or their substrates have been implicated in the pathogenesis of

cardiovascular diseases associated with high altitude. Although PTMs play an

important regulatory role in key processes such as oxidative stress, apoptosis,

proliferation, and hypoxia response, little attention has been paid to abnormal

cardiovascular response at high altitude. Here, we reviewed the roles of PTMs

in driving abnormal cardiovascular complications at high altitude.

KEYWORDS

protein post-translational modifications (PTMs), hypobaric hypoxia, cardiovascular
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Introduction

Nowadays, a large number of lowlanders ascend to high
altitudes (elevation≥ 2,700 m) for military training, commercial
working, mountaineering, and traveling every year. However,
high-altitude environments, with the characteristics of lower
barometric pressure, lower oxygen partial pressure, lower
temperature, lower ambient humidity, and higher ultraviolet ray
radiation, induce a series of system complications for the low-
altitude human body (1, 2), especially for the cardiovascular
system (3–5). Generally, people at low altitudes are prone
to high altitude pulmonary edema (HAPE) due to acute
hypoxia when suffering with rapid high-altitude exposure (2,
6). And lowlanders who live in a high altitude for a long time
(> 3 months) are more likely to suffer from chronic high-
altitude heart disease (HAHD), such as cardiac hypertrophy
and pulmonary arterial hypertension (2, 6, 7). During acute
and chronic high-altitude exposure in lowlanders, the ability
of cardiovascular adaptation to high altitude is regarded as
a key factor for the occurrence of abnormal cardiovascular
complications. Therefore, effectively exploring relevant factors
to evaluate the cardiovascular adaptation ability of lowlanders
could be a promising strategy to decrease the occurrence of
HAPE and HAHD.

Protein post-translational modifications (PTMs) refer to
the covalent addition process of functional groups mediated
by enzymes during or after protein translation (8). These
modifications greatly increase the complexity of organisms
and result in order-of-magnitude changes between the various
proteins encoded in the genome and their biological functions
(9, 10).

After translation, most proteins pass through different
PTMs to maintain their structure, stability, and interactions
with other actors in complex biological systems (11, 12).
Moreover, transcription factors, signaling molecules proteins

Abbreviations: ACE2, Angiotensin-converting enzyme 2; α-SMA,
Alpha-smooth muscle actin; Akt, Protein Kinase B; AMPK, AMP-
activated protein kinase; Ang, Angiotensin; ATG14, Recombinant Human
Autophagy Related 14; COA, Coenzyme A; Drp1, Dynamic-associated
protein 1; GSK3, Glycogen synthase kinase 3; HAHD, High-altitude heart
disease; HDAC2, Histone Deacetylases 2; HIF1, Hypoxia inducible factor
1; HPH, Hypoxia-induced pulmonary hypertension; Inpp5f, Inositol
polyphosphate-5-phosphatase F; IHC, Immunohistochemistry; JAK2,
Janus kinase 2; KADC, Lysine Deacetylase; KAT, Lysine acetyltransferase;
Kcr, Lysine crotonylation; PTMs, Post-translational modifications; LC3,
Light chain 3; mPTP, mitochondrial Permeability Transition Pore; NDDs,
Neurodegenerative disorders; NO, Nitric oxide; PASMC, Pulmonary
arterial smooth muscle cell; PH, Pulmonary hypertension; PI3K,
Phosphatidylinositol 3-kinase; RA, Rheumatoid arthritis; ROS, Reactive
oxygen species; SIRT1, Silent mating type information regulation 2
homolog 1; SIRT3, Silent mating type information regulation 2 homolog
3; SIRT5, Silent mating type information regulation 2 homolog 5; SM22,
Smooth muscle 22; SM-MHC, Smooth muscle-Major histocompatibility
complex; STAT3, Signal transduction and transcriptional activator
3; SUMO, Small ubiquitin-associated modified molecules; TAC,
Tricarboxylic acid cycle; TP, Triptolide; VSMCs, Vascular smooth muscle
cells.

involved in hypoxia-induced myocardial cell proliferation,
inflammation and reparation are subjected to various PTMs (13,
14). Therefore, the pathogenesis of dysregulation expression of
enzymes in the PTMs steps is related to abnormal cardiovascular
complications at high altitude.

Proteome-wide PTMs analysis in these high-altitude
cardiovascular diseases will help clarify the underlying
molecular mechanisms and provide new therapeutic targets
for the prevention, diagnosis, and treatment of abnormal
cardiovascular complications at high altitude. Here, we
summarize recent findings on the roles of the most common
types of PTMs in high-altitude cardiovascular complications,
with emphasis on acetylation, phosphorylation, methylation,
glycosylation, citrullination, crotonylation, lactylation, and
sumoylation. In addition, we discussed the challenges
and prospects of targeted PTMs application for abnormal
cardiovascular responses at high altitude.

High-altitude heart diseases

The description of abnormal
cardiovascular complications at high
altitude

Apart from the original residents of the plateau
for generations, high altitude could result in abnormal
cardiovascular complications for low-altitude individuals.
It may take days, weeks, and even months for people who
previously lived at low-altitude to adapt to hypobaric hypoxia,
thereby acute high-altitude sickness, with an incidence of
10–85% or chronic high-altitude sickness, with an incidence of
nearly 100% may occur.

The abnormal adaptation response to high altitude can
cause physio-pathological changes of varying organs and
tissues. Specifically, it was reported that high altitude could
induce irreversible/reversible damage to high oxygen and
energy demanding tissues, such as the brain, heart, liver,
gastrointestinal tract, and ocular tissue, over a certain period
of time (15–20). The clinical characteristics commonly include
blood pressure fluctuation, loss of memory function (declined
cognitive function), absence of equilibrium function, headache,
indigestion, decreased appetite, and so on (21–24).

As is well known, heart is one of the most metabolically
active organs in the human body. In previous studies,
much attention has paid to high altitude pulmonary edema
(HAPE), a typical acute mountain sickness (AMS). They
have been demonstrated to be implicated in acute altitude
reactions for the reduction of partial oxygen pressure, and
the possible mechanism may be related to uneven pulmonary
vasoconstriction and disruption of the air-blood barrier,
especially intracellular edema (25). Moreover, high altitude heart
disease (HAHD) is used to describe the abnormal cardiovascular
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complications caused by high altitude. Generally, the narrow
sense of HAHD refers in particular to high altitude pulmonary
hypertension, a typical chronic high altitude disease. In a
broad sense, HAHD refers to all kinds of heart damage caused
by high altitude, including cardiac hypertrophy, arrhythmia,
heart failure, pulmonary hypertension and so on. Evidences
from professor Huang in Army Medical University considered
that the pathogenesis of HAHD was related with abnormal
cardiovascular adaptation response to high altitude (26).

The process and evaluation of
abnormal cardiovascular
complications at high altitude

Acute cardiovascular caused by high altitude can often
be divided into two typical processes. At initial entry to
high altitude, cardiac output and heart rate are increased to
compensate for low oxygen levels in the coronary artery. After
a few days of good acclimatization, cardiac output returns to
normal, mainly due to increased heart rate and reduced stroke
volume. When inappropriate high-altitude adaptation occurs,
ventricular filling patterns and ventricular systolic and diastolic
functions would be impaired (27, 28). Then, sustaining hypoxia
conditions may result in chronic cardiovascular complications,
featured with hypoxic pulmonary vasoconstriction and the
enhancement of pulmonary arterial pressure, which increases
right ventricular afterload and impairs its function (28).

As for acute cardiovascular complications, signs (cyanosis,
rapid heart and respiratory rates, edema of the face, liver
enlargement, and rales) and symptoms (headache, dyspnea,
cough, and sleeplessness) could be easily recognized. When
it comes to chronic cardiovascular complications, there is no
consensus on how to quickly identify them. Generally, the
pulmonary artery pressure is used to evaluate the process
of chronic cardiovascular complications. The international
standard for chronic altitude disease is average resting
pulmonary artery pressure > 30 mmHg or pulmonary artery
systolic pressure > 50 mmHg, and average pulmonary
artery pressure > 50 mmHg or pulmonary artery systolic
pressure > 65 mmHg in infants. Additionally, the standard of
pulmonary hypertension stipulated by the WHO is the mean
pulmonary arterial pressure > 20 mmHg with capillary wedge
pressure ≤ 15 mmHg.

Therefore, accurately predicting the risk level of abnormal
cardiovascular responses at high altitude may be an effective way
to reduce HAHD. More recently, cardiac function parameters
at sea level were used as predictors of HAHD occurrence by
screening echocardiographic parameters of the left ventricle,
right ventricle, and pulmonary circulation (29). Moreover,
changes in blood pressure (BP) and BP load were clinically
found to be higher in HAHD patients, suggesting that BP
load can be an effective indicator to evaluate cardiovascular
adaptation ability (30). Furthermore, study found subjects with

low 25% of the pulmonary volume values at low altitude were
shown to be susceptible to high levels of pulmonary arterial
pressure (31).

Basic studies of abnormal
cardiovascular complications at high
altitude

At high altitude, the cardiovascular system must adapt
to meet the metabolic need for oxygen (27). Meanwhile, it
also increases the oxygen demand of the heart to react for
the release of adrenaline and pulmonary artery pressure. It is
well known that low-pressure hypoxia is a major challenge at
high altitude and causes acute mountain sickness (29). Normal
cardiovascular adaptation can effectively promote oxygen
delivery to satisfy the body’s mitochondria metabolic demand
and abnormal cardiovascular adaptation may lead to ventricular
enlargement, pulmonary hypertension, and myocardial fibrosis.
Animal studies found that mice exposed to a simulated high-
altitude environment could develop myocardial hypertrophy
and lesions involving the left and right ventricles (32). Electron
microscopy showed dissolved or degenerated myofibrils,
swollen mitochondria, dilated endoplasmic reticulum, and
decreased glycogen granules (33).

Studies have shown that cardiac remodeling induced by
altitude involved multiple mechanisms. Perinatal hypoxia at
high altitude can cause neonatal pulmonary hypertension and
right heart failure, which is closely related to the production
of superoxide anion in mitochondria (34). Moreover, the high-
altitude environment could destroy cardiac protein folding
homeostasis and cause unbalanced endoplasmic reticulum
stress. Animal studies showed that hypoxia stress enhanced the
generation of free radicals, resulting in enhanced expression
of hypoxia inducible factor 1α (HIF1α) (35). Combined with
cold stress, reduced oxygen availability leads to extensive protein
oxidative modification, accompanied by cardiac tissue damage
and matrix remodeling. The presence of oxidized protein
resulted in significantly up-regulated expression of Glucose
Regulated Protein 78 (GRP78) and protein disulfide isomerase
(PDI) in endoplasmic reticulum chaperone in hypoxia exposed
animals (35).

Post-translational modifications

The basic descriptions of
post-translational modifications

It is well-known that the human proteome is significantly
more complex than the human genome. Specifically, researchers
estimated that the human genome may contain between 20,000
and 25,000 genes, while the human proteome was estimated
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to contain more than 1 million proteins. The increase in
complexity from the level of the genome to the proteome is
further facilitated by protein PTMs. PTMs occur at different
amino acid side chains or peptide bonds via covalently
adding functional groups or proteins, proteolytic cleavage
regulatory subunits, or entire protein degradation, and are
usually mediated by enzyme activity.

PTMs are essential mechanisms to diversify protein
functions, controlling protein stability, localization, and
conformation. Moreover, PTMs can regulate protein interaction
with other cellular molecules such as proteins, nucleic acids,
lipids, and cofactors. Therefore, even if the expression level
of the protein is not changed, the function of the protein can
be significantly changed if the status of the PTMs is changed.
Generally, the effect of PTMs on protein function is diverse,
which is manifested in the following three aspects: (1) The
same protein will be endowed with multiple functions even
if only one type of modification occurs; (2) The same PTMs
of the same protein can have different functions if it occurs
on different amino acids; (3) The same protein may also
have different modifications, and its functions and biological
processes are more complex.

These modifications affect nearly all aspects of normal cell
biology and pathogenesis. In fact, it is estimated that 5% of
the proteome contains more than 400 PTMs. These enzymes
include kinases, phosphatases, transferases, and ligases, which
add or remove functional groups, proteins, lipids, or sugars
from amino acid side chains. There are also proteases, which
remove specific sequences or modulate subunits by breaking
peptide bonds. Many proteins can also modify themselves
using autocatalytic domains, such as self-kinases and self-
proteolytic domains. Table 1 shows the most common and best
studied types of PTMs, including acetylation, phosphorylation,
methylation, glycosylation, citrullination, and sumoylation (36,
37). Recently, studies have shown that both bacteria and humans
could adapt to new environments through PTMs (38–40), while
the role of PTMs in abnormal cardiovascular adaptive response
at high altitude has rarely been reported.

TABLE 1 Common types of post-translational modifications and
target amino acid residues.

NO Types of modification Amino acid residues

1 Acetylation Serine/threonine/alanine/lysine residues

2 Phosphorylation Serine/threonine residues

3 Methylation Lysine/cysteine residues

4 Glycosylation Asparagine residue

5 Citrullination Arginine residue

6 Crotonylation Lysine residue

7 Lactylation Lysine residue

8 Sumoylation Lysine residue

9 Succinylation Lysine residue

The potential application area of
post-translational modifications

The understanding of PTM function mainly focuses on
phosphorylation, acetylation, ubiquitin, glycosylation, and other
modifications. Even a basic understanding of these types
of modifications would greatly expand our knowledge of
biological processes and regulatory mechanisms. Therefore, the
analysis of proteins and their PTMs is particularly important
for the study of heart disease, cancer, neurodegenerative
diseases, and diabetes.

Specifically, phosphorylation is involved in almost all
biological processes. In addition to being the core mechanism
of signal transduction, it is also involved in mitochondrial
function, cytoskeleton regulation, cell membrane protein
function and transcriptional regulation. And Non-histone
acetylation is widely distributed in cytoplasm, mitochondria and
other organelles, participating in signal transduction, energy
metabolism, cytoskeleton, transcription factor activity, and
so on. Additionally, glycosylation occurs mostly in proteins
expressed on membranes and is important for macromolecular
recognition. As for methylation, the methylation of DNA and
histones is best known to be involved in epigenetic regulation.
In recent years, more and more studies have found that
methylation also occurs on non-histone proteins and plays
an important role in many signal transduction processes.
Interestingly, PTMs seem to play an important role in the
process of heart remodeling induced by altitude. Table 2 shows
the previous studies related with the PTMs patterns and high-
altitude heart diseases.

PTM is an important regulatory mechanism of biological
functions, as important as transcription and protein expression
regulation, but much more complex. However, the current study
is only the tip of the iceberg when it comes to the profound
understanding of PTMs.

Role of different post-translational
modifications in high-altitude
cardiac remodeling

Acetylation/deacetylation

Protein acetylation/deacetylation is a reversible PTM
in which an acetyl group is added or removed from the
amino acid of a protein (59, 60). The process is catalyzed
by two groups of enzymes, K lysine acetyltransferase
(KAT) and K lysine deacetyltransferase (KADC) (59–61).
Acetylation or deacetylation of non-histone proteins modifies
a series of biological processes including enzymatic activity,
inflammation, autophagy, protein–protein interactions,
and protein localization. Either aberrant expression of
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TABLE 2 Post-translational modification patterns and loci of high
altitude-related heart disease.

Heart disease
related to the
high altitude/
Hypoxia

Type of
TPMs

Modification
site

References

High Altitude
Pulmonary Edema
(HAPE)

Acetylation/
Methylation
Phosphorylation

Histone
modification/DNA
methylation
Vascular
endothelial
cadherin/Na,
K-ATPase

41
42, 43

High Altitude
Pulmonary
Hypertension
(HAPH)

Methylation
Glycosylation
Acetylation
Phosphorylation
Ubiquitination

N6-
methyladenosine
O-GlcNAcylation
Histone 4
MLC20/MYPT1/
eNOS
HIF2α

44
45

46, 47
48–51

52

Right Ventricular
Hypertrophy

Methylation
Carbonylation
Oxidative
modifications
NA
Carbonylation

Lysine 36 on
histone 3/N6-
methyladenine
NA
SU5416/ovalbumin
Sodium-calcium
exchange current
Annexin A1

53
54
54
55
56

Left Ventricular
Hypertrophy

Methylation
Carbonylation

Lysine 36 on
histone 3/N6-
methyladenine
Annexin A1

53
56

Arrhythmia NA Sodium-calcium
exchange current

55

Ischemia Reperfusion
Injury (I/R)

Succinylation
Sumoylation

P53
HIF1α

57
58

acetyltransferases/deacetylases or alteration in the status
of acetylation of protein targets are found in acute and
chronic effects of high altitude on the cardiovascular
system of lowlanders.

Sirtuin (SIRT) is a mammalian NAD+-dependent
deacetylase family composed of seven SIRT1-7 members,
which plays an important role in the abnormal cardiovascular
complications at high altitude (62). Recently, the potential
mechanisms of SIRTS in HAHD have been extensively
investigated from clinical observations to molecular studies
(63, 64). Animal studies have shown that SIRT1 expression was
reduced in an acute hypoxia-induced pulmonary hypertension
rat model. Interestingly, resveratrol (a small molecule agonists
of SIRT1) and SRT1720 (a selective activator of SIRT1) could
reverse the proliferation of pulmonary smooth muscle cells (65).
Moreover, cell studies confirmed that SIRT1 could promote
pulmonary artery endothelial cells proliferation and inhibit
apoptosis in a simulated hypoxic environment. This mechanism
may be related to the activation of protein kinase B (Akt)
signaling pathway and B-cell lymphoma-2 (Bcl-2) pathway (66).
Moreover, it is well-known that cardiovascular complications
are often accompanied with mitochondrial dysfunction (67),
and acetylation/deacetylation of mitochondrial proteins
are considered as a key regulatory factor of mitochondrial
metabolism and function (68). SIRT3 has been reported to

be a major mechanism for regulating protein acetylation in
mitochondria through pyruvate dehydrogenase and aconitase
deacetylation (68). Overexpression of SIRT3 has been shown to
prevent the accumulation of reactive oxygen species (ROS) in
cardiomyocytes in response to different environmental stressors
(69) and α1-adrenergic receptor agonist phenylephrine (70).

Cardiomyopathy hypertrophy is a typical abnormal
cardiovascular complication of high altitude, ultimately
leading to heart failure (71, 72). Histone acetylation plays an
important role in epigenetic remodeling in the pathogenesis
of cardiac hypertrophy (73). Specifically, histone deacetylase
2 (HDAC2) can result in severe cardiac hypertrophy, while
HDAC2 knockout mice are resistant to exogenous hypertrophy
stimulation (73, 74). Additionally, HDAC1 and HDAC5 were
elevated in the right ventricles of rats when exposed to acute
hypoxia. Valproic acid and class I HDAC inhibitors SAHA
could alleviate and reduce the development of hypoxia induced
pulmonary hypertension (75).

The role of other members of the histone deacetylase family
in PTMs in abnormal cardiovascular complications at high
altitude is unclear, but the potential therapeutic effects of SIRT1
agonists or class I histone deacetylase inhibitors have been
observed in existing studies. Therefore, histone acetylation and
deacetylation modification may be one of the options for the
prevention of acute and chronic cardiovascular complications
at high altitude.

Phosphorylation

Protein phosphorylation is the addition of a phosphate
group to an intermediate metabolite or protein. Enzymes
capable of removing phosphate groups are called phosphatases
(76). Protein phosphorylation occurs on many types of amino
acids (the main unit of proteins), with serine predominating,
followed by threonine. Dephosphorylation refers to the removal
of phosphate groups and acts as an “on/off” effect for many
organisms (77).

It is widely believed that metabolic changes in individuals
exposed to high altitude are due to ambient hypoxia and lower
atmospheric pressure. The discovery of hypoxia inducible
factor 1 (HIF1), a transcription factor, is a breakthrough
in the study of high-altitude adaptation response (78).
A recent study found that HIF1α transcription primarily
regulated metabolic reprogramming, while HIF2α exerted a
greater role in regulating angiogenic extracellular signaling,
guidance cues, and extracellular matrix remodeling factors
(79). HIF1 is a heterodimer composed of oxygen-sensitive
HIF1α and oxygen-independent subunit HIF1β. Recently,
a key role of PTM of HIF1α in cellular oxygen sensitivity
has been identified (80). Under normoxic conditions,
HIF1α hydroxylates on specific proline residues, leading
to immediate ubiquitination and subsequent proteasome
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degradation of α subunits (81). In addition, hydroxylation
of asparagine residues blocks transcriptional activity of HIF1
by inhibiting its interaction with coactivators. Conversely,
the elimination of proline hydroxylation leads to HIF1α

stabilization under hypoxia, while the absence of asparagine
hydroxylation allows transcriptional activity. In addition,
transcriptional activity can be regulated by phosphorylation
or methylation modification of HIF1 (81). Figure 1 shows
the different PTMs of HIF1α under normoxia and hypoxia
conditions, respectively.

Janus kinase 2 (JAK2) was thought to be involved in
pulmonary vascular remodeling in pulmonary hypertension. In
response to hypoxia-induced activation, JAK2 phosphorylates
signal transduction and transcriptional activator 3 (STAT3),
which then binds to the Cyclin A2 (CCNA2) promoter
to transcription cyclin A2 expression. And JAK2 inhibitor
could alleviate hypoxia-induced proliferation of primary
human pulmonary artery smooth muscle cells (PASMC)
(82). Endothelial dysfunction plays an integral role in
HAHD, and AMPK (AMP-activated protein kinase) and
ACE2 (angiotensin-converting enzyme 2) are crucial in
endothelial homeostasis. Phosphorylation of ACE2 by AMPK
can enhance the stability of ACE2, which increased Ang
(angiotensin) 1–7 and endothelial nitric oxide synthase-derived
NO bioavailability (83).

Methylation

The best well-known methylations are DNA and histones
modifications, mainly involved in epigenetic regulation. In
recent years, more and more studies have found that
methylation also occurs on non-histone proteins and played an
important role in various signal transduction processes. Protein
methylation is a multifunctional PTM involving a variety of
major cellular processes. Methylation can modulate protein
activity, stability, localization, and/or interactions, resulting
in specific downstream signaling and biological outcomes.
Lysine methylation is a dynamic and fine-tuned process, and
its irregularities often lead to human pathology (84). HIF1α

and HIF2α are the main regulators of cellular responses to
hypoxia. PTMs of HIF1α and 2α are required to regulate their
function. The methylation of non-histones by the SET domain
containing lysine methyltransferase Set7 is a novel mechanism
for regulating the function of cellular proteins under various
cellular stresses (85). Xing Liu et al. found that Set7 induced
HIF1α methylation at lysine 32 and HIF2α methylation at
lysine K29. This methylation inhibited HIF1α/2α expression
by interfering with the hypoxia response element of HIFα in
the promoter of the HIF target gene (85). Moreover, Xiong
et al. found that yaks coped with high altitude hypoxia stress
by changing the expression of methylation of hypoxia-inducing
factors (86). This adaptation has been observed in highland
animals and humans (87–90).

Glycosylation

Protein glycosylation is one of the most complex forms of
PTMs. Glycosylation is a process in which sugar chain molecules
are transferred to proteins and special amino acid residues
on proteins form glycosidic bonds under a series of enzyme
regulation actions (91). Glycosyltransferases and glycosidases
are responsible for catalyzing the transfer of glycosyl-based
residues from donor to recipient proteins and the removal of
glucose residues from oligosaccharide complexes. Studies have
shown that 70% of human proteins contain one or more sugar
chains, and 1% of the human genome is involved in the synthesis
and modification of sugar chains. Among the various types
of glycosylation identified, O-linked N-acetylglucosamine (O-
GlcNAcylation) and N-glycosylation are the two most common
types (92, 93).

It is well known that abnormal glycosylation and impaired
glycosyltransferase localization and expression are closely
related to the occurrence and development of various
hypoxia diseases, including high altitude polycythemia
(94), hippocampal neuron damage during chronic hypoxia (95),
and brain injury from intracerebral hemorrhage (96). Recently,
it has been found that the transmembrane glycoprotein
receptor CD147 played an important role in the induction
of hypoxia-induced cardiac remodeling. Glycosylated CD147
could significantly attenuate stress-induced pathological
cardiac remodeling, accompanied by decreased oxidative
stress and ferroptosis (97). Arrhythmia is proved be a typical
abnormal cardiovascular complication in high altitude.
Ufret-vincenty, C. A. investigated the role of ion channels in
arrhythmias and eventually found that deficient glycosylation
of Na+ channel contributed to Na+ current-dependent
arrhythmogenesis in heart failure (98). Moreover, hypoxia-
induced pulmonary hypertension is a progressive disease
mainly caused by long-term exposure at high altitude (99).
Increased pulmonary vascular resistance and pulmonary artery
pressure results in enhancement of right ventricular afterload,
leading to right heart failure. Further studies have shown that
mitochondrial dysfunction played a key role in high-altitude
pulmonary hypertension. Protein O-GlcNAcylation protected
heart tissues by attenuating the formation of mitochondrial
permeability transition pores (mPTP) and subsequent loss
of mitochondrial membrane potential (100). Although much
progress has been made in the role of glycosylation in
abnormal cardiovascular complications at altitude, the role of
different glycosyltransferases in HAHD remains to be further
investigated.

Sumoylation

Sumoylation is the process of covalently attaching ubiquitin
associated modification small molecules to multiple proteins to
regulate their function (101). The Sumoylation of proteins has
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FIGURE 1

HIF phosphorylation and methylation are involved in cardiac remodeling induced by hypoxia. In the normoxia condition, HIF1α protein in
myocardial cell can be degraded by ubiquitin modification. However, in the hypoxia condition, HIF1α protein in myocardial cell be activated by
phosphorylation and methylation modification. Then heart hypoxia related down-stream genes can be cascade activated to induce myocardial
cell abnormal proliferation. Finally, cardiac remodeling would be occurred during sustaining chronic hypoxia conditions.

become an important PTM that modulated cellular responses
to different types of stress, including hypoxia, cold, and
oxidative stress. Previous studies have shown that ubiquitination
and deubiquitination were closely related to tumor invasion
and escape (102). In colon cancer and breast cancer, tumor
suppressor gene P27 is degraded by ubiquitination, which
increases tumor aggressiveness. Conversely, deubiquitination
stabilizes tumor suppressor genes and thus inhibits tumor
progression (103).

In the hypoxia induced pulmonary arterial hypertension
mouse model, SUMO1 expression was significantly increased,
which was associated with autophagy activation, pulmonary
artery vascular smooth muscle cells dedifferentiation,
and pulmonary vascular remodeling. Moreover, SUMO1
knockdown reversed hypoxia-induced pulmonary artery
vascular smooth muscle cells proliferation and migration
(104). Intact mitochondrial homeostasis has been shown to
be critical for cardiac systolic function and cardiomyocyte
metabolism, and dynamic-associated protein 1 (Drp1) is a key
factor in maintaining mitochondrial homeostasis (105). Studies
have shown that Drp1 was affected by many PTMs, including
ubiquitination. It was found that Drp1 could be ubiquitinated by

Parkin, and Parkin targeted Drp1 for proteasome degradation,
thereby affecting the process of mitochondrial fission and
fusion (106).

Citrullination

Citrullination refers to the conversion of arginine residues
to citrulline residues on the protein peptide chain under
the action of protein arginine decarboxylase (107). These
modifications are most commonly found in rheumatoid
arthritis (RA) and cancer (108). Arginine deamination (also
known as citrullination) plays a major role in the progression
of rheumatoid arthritis by producing autoantibodies and
exacerbating inflammatory responses (109, 110). Studies
have shown that citrulline regulates cell apoptosis and
differentiation, promotes epithelial–mesenchymal transition
and metastasis, and the potential application of citrulline
antigen in immunotherapy. Citrullination is also used as a
cancer biomarker (109, 111). Currently, the role of citrulline
modification in abnormal cardiovascular complications at
high altitude has not been reported, but we believe that
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with the further study, the role of citrulline modification in
abnormal cardiovascular complications at high altitude will be
gradually discovered.

Succinylation

Back in 2010, the University of Chicago team first discovered
the PTMs of succinylation of lysine (112). Compared with
methylation and acetylation, lysine succinylation induced more
changes in protein properties (113). This is because the
succinylation is given two negative charges, the valence state
changes from + 1 to − 1, which is higher than the charge
changes caused by acetylation (+ 1 to 0) and mono-methylation
(no change). In addition, succinylation leads to larger group
structures that are more capable of altering protein structure
and function (112). Meanwhile, succinyl-CoA is a cofactor
of the enzyme that regulates succinylation. As an important
intermediate product of metabolic reactions, succinyl-CoA
appears in tricarboxylic acid (TCA) cycle, the synthesis of
porphyrins and the decomposition of some branched amino
acids (114, 115). Its stable state is essential for maintaining
normal physiological activities of cells. Genetic mutations in
succinyl-CoA metabolism are likely to cause diseases. During
the neonatal period, significant maturation changes occur
in cardiac energy metabolism, from glycolysis to fatty acid
oxidation. Acetylation and succinylation of lysine residues are
novel PTM that controls cardiac energy metabolism (116).
Researchers investigated the effects of protein succinylation on
cardiac energy metabolic maturation at 1, 7, and 21 days of
age in rabbits. The results showed that the rate of fatty acid β-
oxidation increased at 21 days of age, and the rate of glycolysis
and glucose oxidation decreased. The degree of acetylation of
fatty acid oxidase, long-chain acyl-CoA dehydrogenase and β-
hydroxyacyl-CoA dehydrogenase was positively correlated with
their activity and fatty acid β-oxidation rate (117). Sadhukhan
et al. analyzed acyl-CoA molecules in different mouse tissues
and found that different tissues had different acyl-CoA profiles.
Succinyl-CoA is the most abundant acyl-CoA molecule in the
heart, and the succinylation of myocardial lysine is regulated
by SIRT5 (118). Considering the disorder of cardiometabolic at
high altitude environments, protein succinylation needs to be
further explored.

Lactylation

Lactylation modification is a newly discovered PTM, first
described by Zhang et al. and published in Nature (119).
Using a bacterial exposed M1 macrophage model system,
researchers demonstrated that histone lactation and acetylation
have different temporal dynamics. The results suggested that
elevated histone lactate levels induced homeostasis genes,
including arginase 1, to participate in wound healing during

late polarization of M1 macrophages (120). Hideo Hagihara
described the presence of lactate modifications in neurons
that affected neural excitability (121). High altitude and lack
of oxygen also lead to increased glycolysis and lactic acid
production. At present, it is not clear whether excessive
lactic acid can cause protein lactylation modification. Hence,
systematically exploring the proteins lactylation modification
at high-altitude hypobaric hypoxic environment could be
a promising way to expand the mechanism of abnormal
cardiovascular complications at high altitude.

Crotonylation

The Crotonylation of histone lysine residues was first
identified as being enriched in promoter and enhancer
regions of human male reproductive cells (122). Subsequently,
non-histone crotonylation was found to be particularly
enriched in nucleoproteins involved in RNA processing,
nucleic acid metabolism, and chromosomal tissue (123).
More studies identified lysine crotonylation (Kcr) in non-
histone proteins (124–126). Kcr is conserved and regulated
by a range of enzymes and coenzymes, including lysine
crotonyltransferase (writer), lysine decarboxylase (eraser),
certain YEATS proteins (reader), and crotonyl-coenzyme A
(donor) (127). It is well known that P53 is a tumor
suppressor protein that binds to specific DNA sequences
and transcriptionally activates target genes to regulate critical
cellular processes, including cell cycle control, apoptosis, and
DNA repair under genotoxic stress. Meanwhile, P53 is also
involved in cardiac remodeling induced by altitude hypoxia
(128). These results suggest that PTM of P53 signaling pathway
may play an important role in high altitude adaptation
response (129).

Therapeutics targeting
post-translational modifications in
the treatment of high-altitude
heart disease

A series of studies revealed the role of PTMs in abnormal
cardiovascular complications at high altitude, providing a basis
for the further prevention, diagnosis, and treatment of PTMs in
altitude heart disease (Figure 2).

Specifically, analysis of cells and tissues isolated from in vivo
preclinical models of pulmonary arterial hypertension and
human pulmonary hypertension patients revealed significant
changes in the expression levels of various HDACs, SIRT1 and
SIRT3 proteins. The roles were demonstrated to be associated
with proliferative, inflammatory, and fibrotic phenotypes, and
cardiac remodeling processes (59, 61, 69, 130). Due to the
reversible ability of PTM acetylation, the efficacy of a number
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FIGURE 2

Typical post-translational modifications in high-altitude cardiovascular complications. The substrate and modification enzyme of lactylation,
acetylation, phosphorylation, crotonylation, glycosylation, and methylation were exhibited using a diagrammatic plan. When inappropriate
PTMs occurred, myocardial cell would become hypertrophic during high-altitude accommodations mainly due to hypobaric hypoxia.

of small molecule inhibitors, such as vorinorestat, valproic acid,
sodium butyrate, and resveratrol, have been evaluated in various
preclinical models of cardiovascular diseases. This suggests

the therapeutic value of targeted histone acetylation pathways
in hypoxia-induced pulmonary hypertension and right heart
failure induced by pulmonary hypertension (131).
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In recent years, high-altitude response caused by short-
term intermittent hypoxia exposure has attracted attention
again (132). One of the mechanisms of altitude adaptation
caused by intermittent hypoxia exposure is proteins PTMs.
HIF1 is a major regulator of cellular and systemic oxygen
homeostasis. HIF1α is methylated or phosphorylated under
intermittent hypoxia induction, activating cardiac genes that
encode proteins involved in hypoxia homeostasis response
and participate in altitude adaptation. Other types of PTMs,
such as methylation, crotonylation, and lactation, have also
shown potential therapeutic effects. However, these treatments
were still in the research stages and have not been applied to
clinical practice.

Conclusion

In this review, we discussed the main types of PTMs in
high-altitude cardiovascular adaptation response, including
acetylation, phosphorylation, methylation, glycosylation,
sumoylation, citrullination, succinylation, lactylation, and
crotonylation. Many PTMs have been discovered in recent
years, and the key role of PTMs has attracted extensive
attention from researchers due to the discovery of enzymology,
function and mechanism. In addition, with the advent of new
proteomic techniques, new PTMs have been shown to play
essential roles in hypoxia-induced. However, the role of PTMs
in myocardial remodeling, such as lactylation, citrullination,
and crotonylation, has not been fully appreciated and required
further investigations. We believe that as research continues, the
role of PTMs in abnormal cardiovascular complications at high
altitude will become clear.
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