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There is evidence that probiotics have a broad antitumor effect in colorectal cancer

(CRC). However, the mechanism remains obscure. Here, we investigated the effect of

Bornlisy (BO)-cocktails of three probiotics on colitis-associated colon cancer (CAC) and

the underlying mechanism. The treatment of CAC mice with BO resulted in decreased

tumor loads as compared with their counterparts. BO also inhibited the proliferation

and metastasis of CRC cells in vitro. Furthermore, BO inhibited cell proliferation through

downregulating glycolysis. Activating glycolysis reversed the protective role of BO in the

CAC mice. Mechanically, BO administration promoted the activation of GPR43, followed

by its downstream PLC-PKC-ERK pathway, which led to decreased glucosemetabolism.

These results suggest that BO may provide an intervention strategy for CRC therapy,

while GPR43 is a potential targeting receptor during the BO treatment.
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INTRODUCTION

Globally, colorectal cancer (CRC) is the fourth most common non-cutaneous malignancy and the
secondmost frequent cause of cancer-related death (1). Although there are dramatic improvements
in the CRC treatment with surgical technique in the past decades, the enhancement of the 5-year
relative survival rate for the patients with CRC is not significant (2, 3). Accordingly, it is urgent for
us to find a new way to deal with this disease.

As found in more and more research recently, the gut microbiota plays a critical role
for its host in health maintenance and disease pathogenesis (4–6). Consequently, the strategy
through the regulation of gut microbiota has been thought to be a promising therapy to treat
digestive diseases, particularly colon cancer (7–9). It was demonstrated that fecal microbiota
transplant (FMT), which transfers the feces from a healthy human donor to an affected subject,
can be effectively used in the clinical therapy of cancer (10, 11). However, the development
of FMT has been impeded by the operation without standardized protocol, and pathogenic
bacteria persisting inevitably, which brings unexpected damage to the patients (12). The
most frequently used food supplements among the different kinds of bacterial strains are
probiotics, which are considered safe and produced with the standardized protocol completely
(13). A wide variety of disorders have been shown to respond positively to the probiotics,
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such as type 2 diabetes (14), Alzheimer’s disease (15), allergic
rhinitis (16), metabolic syndrome (17), intestinal inflammation
(18, 19), and cancer (20–22). Nowadays, probiotics have been
found to exerts a tumor-suppressive effect (23), such as
colon cancer (24). For example, in a prospective intervention
study, after administered Lactobacillus acidophilus NCFM and
Bifidobacterium lactis Bl-04, the microbial profile in the patients
with CRC altered (25). As a probiotic with the capability of
producing butyrate, Clostridium butyricum can regulate the
gut microbiota and Wnt signaling to repress the development
of intestinal tumors, which show the promising role of the
butyrate-producing bacteria to fight against CRC (26). In
colon cancer cells, the induction of DNA damage-inducible
transcript 3 (DDIT3), which is associated with C-Jun N-terminal
Kinase (JNK), mediates the process for ferrichrome to induce
cell apoptosis, and notably, the ferrichrome is produced by
Lactobacillus casei ATCC334 (27). The extensive antitumor
performance of probiotics has been found in number of studies,
but we still know little about the particular mechanism.

Metabolic reprogramming is widely observed during cancer
development to confer the cancer cells and the ability to survive
and proliferate (28, 29). Almost all the energy obtained by
the normal cells is produced from the reaction of oxidative
phosphorylation in mitochondrial, however, the cancer cells
obtain their primary energy from aerobic glycolysis, which is
quite different from the normal cells. This course is named the
“Warburg effect” (30–32). As one of themost actively deregulated
oncogenes, MYC is expected to mediate the expression of 15% of
total genes (33), including various metabolic genes (34). MYC is
able to upregulate the genes which express the glucose transporter
1(GLUT1) at the transcriptional level (35), lactate dehydrogenase
A (LDHA) (36), hexokinase 2(HK2) (37), and pyruvate kinase
isoform 2 (PKM2) (38), consequently, in pace with the glucose
intake increasing as well as the glucose converting to lactate fast,
MYC enhances the reaction of glycolysis. Although the fact that
the activity of glycolysis is increased in the CRC has been verified,
the role that probiotics performed in the change of glucose during
its metabolic process in the CRC, is still seldom studied.

Dietary fiber without being digested is fermented by the
colonic microbial to produce primarily short-chain fatty acids
(SCFAs), whose main components are acetate, propionate, and
butyrate (39, 40). As the seven transmembrane receptors, G
protein-coupled receptors (GPCRs) take part in the activation
of heterotrimeric G protein. Because these GPCRs take part
in many diseases, the receptors provide lots of recognition
sites for the therapeutic utilization for many different kinds of
diseases (41). Up to now, due to the important physiological
performance in different kinds of biological reactions, four free
fatty acid receptors (FFARs), FFAR1 (GPR40), FFAR2 (GPR43),
FFAR3 (GPR41), and FFAR4 (GPR120) have attracted significant
attention (42, 43). The SCFAs have potential anti-inflammatory
and anti-carcinogenic properties (44). The SCFAs repress the
activity of histone deacetylase (HDAC) at the Foxp3 locus to
promote the regulatory T cells (Treg) in the colon (39, 45).
In patients with colon cancer, the expression of GPR109A
and GPR43, which belong to the SCFAs receptors, decreased
significantly (46, 47). In the patients with inflammatory bowel
disease (IBD) or colon cancer, the amount of the bacteria with

the capacity of producing butyrate in the gut mucosa and in the
feces samples was found to decrease (48, 49). However, there are
few reports on whether the GPRs signal activated by the SCFAs
affects the metabolism of CRC.

Here, we evaluated the effect of a novel probiotic mixture
Bornlisy (BO) on the development of CAC. Our results show that
the BO treatment inhibits tumorigenesis and glucose metabolism
via activating GPR43 in the CRC. From a broad perspective,
our recent research shows that BO exhibits remarkable and
promising therapeutic performance in the clinical treatment
of CRC.

MATERIALS AND METHODS

Bacteria Culture and Preparation of BO
Lactobacillus acidophilus (ATCC 33198), L. (ATCC 11842), B.
subtilis (ATCC 6051) were purchased from China General
Microbiological Culture Collection Center (CGMCC), Beijing,
China. These bacteria were cultured in the specific liquidmedium
composed of 1% honey, 4% brown sugar, and water at 37◦C.
E. coli (ATCC 25922) was purchased from CGMCC and was
cultured in the Luria-Bertani (LB) medium at 37◦C. BO is
fermented by mixing L. acidophilus, L. bulgaricus, and B. subtilis
on a 1:1:1 scale in the specific liquid medium at 37◦C. After
24 h, the fermentation of a single strain and the probiotic
mixture were collected. Before intragastric administration (i.g.),
the fermentation mixture of the three probiotics was dissolved in
ddH2O at a concentration of 108 CFU/ml.

Animals and Mouse Model
The female C57BL/6J mice aged 6–8 weeks were fed in a cage
with five mice in each cage. The mice were fed for 12/12 h in a
day-night cycle under the control of humidity (50 ± 5%) and
temperature (22 ± 2◦C). The animal study was reviewed and
approved by the National Institutes of Health guide for the care
and use of laboratory animals, as well as the Institutional Animal
Care and Use Committee at Nanjing University, China.

For a generation of the CAC model, the mice were injected
intraperitoneally with AOM (10 mg/kg; # A5486; Sigma-Aldrich,
MO, USA) on the first day. One cycle consists of 7 days of DSS
followed by 14 days of water. The mice were orally inoculated
with BO (10mL/kg) once every 2 days during the first, fourth, and
seventh weeks. For the glycolysis activation experiments, FBP
(Sangon Biotech, Shanghai, China, #81028-91-3, 500 mg/kg, i.p.
once every 2 days) was added for three cycles in the CAC model.
The mice were euthanized on day 100. On the 100th day, the
colons were removed and collected.

Cell Lines and Cell Culture
The CRC cell lines (CT26 and CT116) were obtained from the
American Type Culture Collection (ATCC; Shanghai, China). A
cell was cultured in DMEM (Gibco, USA) supplemented with
10% FBS (Gibco, USA), 1% penicillin, and 1% streptomycin
(Gibco, USA) at 37◦C in a 5% CO2-humified atmosphere.

Acid and Bile Acid Tolerance Test
The single strain and fermentation mixture were inoculated in
the specific liquid medium with 5% inoculum at pH 1.0, 2.0,
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3.0, 4.0, 5.0, and 6.0, respectively, and were cultured at 37◦C for
3 h at 100 r/min, and optical density (OD) 600 was measured
by spectrophotometer.

The single strain and fermentation mixture were inoculated in
the specific liquid medium containing 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6% of bovine bile salt at 5% inoculation amount, respectively,
and were cultured at 37◦C for 3 h at 100 r/min, and their OD 600
was measured by spectrophotometer.

Antibacterial Assay
Escherichia coli was inoculated on the LB solid medium for
the night at 37◦C for 24 h. Some 9mm holes were prepared.
Antibacterial assay of the single strain and fermentation mixture
was carried out by the Agar disk diffusion method. The zones of
inhibition were measured.

Histopathological and IHC Analyses
The colonic tissue specimens were embedded in paraffin,
sectioned, and stained with hematoxylin and eosin. The tumor
severity was assessed by a pathologist who did not know the
experimental design using the table of pathological scores (50)
(Supplementary Table 1). For IHC staining, the tumor samples
were stained with the antibodies of Ki-67 (Cell Signaling, USA,
#12202) and PCNA (Cell Signaling, USA, #13110). The stained
sections were examined under a light microscope.

Cell Proliferation Assay
The cell proliferation was detected using a CCK8 (Dojindo
Laboratories, Japan). The cell suspensions (3 × 103/well) were
seeded in the 96-well-culture plates. The CCK8 solution (10 µl)
was added to each well, and the cells were cultured for 2 h at
37◦C. Then, the absorption was evaluated by a microplate reader
at 450 nm (Tecan, Switzerland).

EdU Assay Cells
The cell suspensions (1 × 104/well) were seeded on the 96-
well culture plates and cultured for 24 h. A Cell-Light EdU
Apollo567 In Vitro Kit (Ribobio, China) was used to detect
the incorporated EdU according to the protocols from the
manufacturer. The staining results were observed under the
fluorescence microscope.

Wound Healing Scratch Assay
The cell suspensions (6 × 105/well) were seeded into the 6-
well-plates. When cell confluence reached ∼90–100%, three
vertical scratches were engraved on the cells using a 200 µl tip.
Then, the cells were washed with PBS solution three times and
cultured in the 37◦C-cell incubator. After 0 and 24 h, the breadths
of scratches were measured. The percentage of migration was
calculated as follows: [(the breadths of scratches at 0 h –the
breadths of scratches at 24 h)/the breadths of scratches at 0 h]
× 100%.

Transwell Migration Assay
A 24-well cell culture inserts containing a PET membrane (8.0-
µm pore size, #353097; BD Biosciences, NJ, USA) was used
in the transwell migration assay. The upper compartment was
supplemented with 200 L serum-free DMEM cell suspension (2

× 105 cells), and the lower compartment was supplemented with
800 L DMEM (10% FBS). After incubation for 24 h, the migrated
cells at the bottom of the membrane were fixed with 4% PFA for
20min and stained with 0.1% crystal violet for further analysis.

RNA Isolation and Quantitative Real-Time
PCR (qPCR)
RNA extraction from the cells and tissues was isolated using
TRIzol. cDNA was obtained by a Takara PrimeScript RT
reagent kit (Takara Bio Inc., Japan). Quantitative real-time PCR
(qPCR) was performed using the SYBR Green PCR Master Mix
(Invitrogen, MA, USA) The sequences of primers used in the
study are shown in Supplementary Table 2.

Protein Extraction and Western Blotting
A protein from the tissues and cells was extracted using the
bicinchoninic acid (BCA) protein assay reagent. The antibodies
against GPR43 (Abcam, ab131003; Sigma-Aldrich, ABC299),
GLUT1 (Cell Signaling, #12939), HK2 (Cell Signaling, #2867),
PKM2 (Proteintech, 15822-1-AP), LDHA (Cell Signaling, #3582),
P-ERK (Cell Signaling, #4370), ERK (Cell Signaling, #4695), Ac-
H3 (Cell Signaling, #8173), Ac-H4 (Abcam, ab51997), G(α)i
(Cell Signaling, #5290), PLCγ1 (Cell Signaling, #5690), PKC
(Cell Signaling, #2056), and β-actin(Cell Signaling, #4970) were
purchased from the designated manufacturers.

Cell Apoptosis Analysis
An annexin V-FITC/PI Apoptosis Detection Kit (Vazyme,
Nanjing, China #A211-01) was used according to the protocols
from the manufacturer. The cells were detected using a
FACSCalibur flow cytometer. The data were analyzed using
FlowJo software (FLOWJO, OR, USA).

Glycolysis Analysis
Lactate production and glucose uptake in the CRC cells were
detected using the Lactate Colorimetric Assay Kits (Biovision
CA, USA, #K627-100) and the Glucose Uptake Fluorometric
Assay Kits (Biovision, #K666-100) according to the protocols of
the manufacturer.

The ECAR and OCR
The ECAR and OCR were measured by using the Seahorse
XF Glycolysis Stress Test Kit and Cell Mito Stress Test Kit
(Seahorse Bioscience, MA, USA) at the Seahorse Bioscience XF96
Extracellular Flux Analyzer according to the instructions from
the manufacturer.

The siRNA Transfection
All the siRNA were synthesized by RiboBio (Guangzhou,
China). The targeting sequences of GPR43 siRNA were 5′-
GGATGCCAAGTTCGGACTT-3′. The targeting sequences of
negative control were 5′-UUCUCCGAACGUGUCACGUTT-3′.
The siRNA targeting GPR43 was transfected into the CRC cells
using Lipofectamine 2000 (Invitrogen, MA, USA) according to
the instructions from the manufacturer.
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Statistical Analysis
Statistical analysis was performed with Prism 8 (GraphPad
Software, CA, USA). All data were analyzed for the differences
between the different treatment groups using the Student’s t-test.
The differences with p ≤ 0.05 were considered significant.

RESULTS

BO Treatment Protects Mice From CAC
In this study, the mixture of three probiotics, Bornlisy (BO),
is produced by mixing L. acidophilus, Lactobacillus bulgaricus,
and Bacillus subtilis on a 1:1:1 scale. The morphological
characteristics of BO are shown in Figure 1A. To compare the
advantages of BO over single strains, we analyzed the probiotic
characteristics of BO. Both the BO and the single strain can
tolerate an acidic environment with a pH above 2.0 (Figure 1B).
However, BO grew faster than the single strain (Figure 1B) under
the same pH condition. Compared with the single strain, the
BO also showed higher growth activity in the specific medium
containing bovine bile salt (Figure 1C). More importantly, BO
had a stronger bacteriostatic effect on Escherichia coli than the
single strain (Figure 1D). Therefore, we used BO with more
advantages to carry out further research.

To assess whether BO has an effect on the development of
CAC, the mice were treated with azoxymethane (AOM) and
dextran sodium sulfate (DSS) to induce the development of CAC,
meanwhile, BO was orally inoculated one time every 2 days
during theDSS treatment (Figure 2A). Themice were euthanized
on the 100th day, and the colons and tumors were evaluated.
As shown in Figure 1B, the BO-treated mice had longer colons
as compared with the CAC mice (Figure 2B). Moreover, the
BO treatment inhibited tumor numbers, tumor sizes, and
tumor loads (Figures 2C,D). The spleens were significantly
shrunken in the BO-treated mice as compared with the CAC
mice (Figure 2E). The histological score of tumor tissues was
significantly lower in the BO-treated mice than in the CAC mice
(Figure 2F). An immunohistochemical (IHC) analysis was used
to detect cellular proliferation in colonic tumors. The tumors
from the BO-treated group had decreased the expression of
proliferating cell nuclear antigen (PCNA) and Ki-67, compared
with those from the CAC group (Figures 2G,H). The mRNA
levels of pro-inflammatory genes were also examined. The BO-
treatment significantly inhibited the mRNA expression of IL-6
and TNF-α in tumor tissues (Figure 2I). Taken together, our
results indicate that BO exerts protective effects against the CAC.

BO Inhibits Proliferation and Metastasis of
CRC cells in vitro
To investigate the effect of BO on the proliferation of CRC
cells in vitro, cell proliferation was detected using Cell Counting
Kit-8 (CCK8; Dojindo Laboratories, Japan) and 5-Ethynyl-2′-
deoxyuridine (EdU). BO significantly inhibited the proliferation
of HCT116 and CT26 cells in both the dose-dependent manner
(Figure 3A) and the time-dependent manner (Figure 3B). The
minimum effective concentration is a multiplicity of infection
(MOI) = 5, while the best inhibitory time is 24 h. In the EdU
assay, fewer cells were found in the BO-treated cells than in
the control group (Figures 3C,D; Supplementary Figure 1). The

effect of BO treatment on cell invasion was further investigated.
By using the scratch test and the transwell migration assay,
we found that the migration and metastasis ability of the
CRC cells were significantly inhibited upon the BO treatment
(Figures 3E–H). Together, these results suggested that the BO
inhibits tumorigenesis both in vivo and in vitro.

BO Inhibits Glucose Metabolism in Cancer
Cells
The metabolic reprogramming, especially the glucose
metabolism to hypoxic glycolysis in the tumor environment
has been reported in many studies. Therefore, we examined
several key enzymes in glucose metabolism in our CAC mice.
The mRNA expression of Glut1, Hk2, Ldha, and Pkm2 were
downregulated in the tumor tissues of BO-treated CAC mice
(Figure 4A). Similar results were found in the protein levels
of these enzymes (Figure 4B). Consistently, BO also inhibited
the expression of these enzymes in the HCT116 and CT26 cells
(Figure 4C). Oncogenes, such as MYC, upregulate glycolysis
activity (51). We also found that the expression of MYC was
downregulated after the BO treatment (Figure 4D). To further
verify the effect of BO on glucose metabolism, glucose uptake,
and lactic acid production were measured. We found that
BO decreased glucose uptake and lactic acid production in
the HCT116 and CT26 cells (Figures 4E,F). The extracellular
acidification rate (ECAR) was decreased while the oxygen
consumption rate (OCR) was increased in the BO-treated cancer
cells (Figures 4G–J). In summary, our results show that BO
inhibits glycolysis of the CRC cells.

BO Inhibits Colon Cancer Cell Proliferation
by Reducing Glycolysis
To identify the role of aerobic glycolysis in the development
of CAC, fructose-2,6-biphosphate (FBP), a glycolytic activator,
was administrated to the C57BL/6J mice during the AOM-DSS
treatment (Figure 5A). As described above, the BO-treated mice
had longer colons and decreased tumor loads compared with
the PBS-treated control mice. However, FBP administration with
BO reversed the protective role of BO, presenting as shorter
colons and increased tumor numbers, tumor size, and tumor
loads (Figures 5B–D). Moreover, the severity of proliferation
in the colon was also reversed in the BO-treated mice after
FBP administration (Figure 5E). Similar results were found
using the PCNA and Ki-67 IHC staining (Figures 5F,G). These
results together suggested that the BO inhibits colon cancer
cell proliferation through downregulating glycolysis in the
cancer cells.

GPR43 Is a Targeted Receptor of BO in
Suppressing CRC Proliferation
Some Gram-positive bacteria exert anti-inflammatory effects
through the toll-like receptor (TLR) signaling pathway (52,
53), which prompts us to investigate whether the TLR
signaling was activated in the BO-treated CRC cells. However,
no difference in the transcriptional level of TLR1, TLR2,
TLR4, and TLR6 was found in the CRC cells upon BO
stimulation (Supplementary Figure 2A). Next, we examined
the role of histone deacetylase butyrate (HDAC) inhibition
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FIGURE 1 | The morphological and probiotic characteristics of Bornlisy (BO). (A) The morphological characteristics of BO were observed under a light microscope

(scale bar, 250µm). (B) The single strain and fermentation mixture were inoculated in the specific liquid medium at different pH and were cultured at 37◦C for 3 h at

100 r/min, and optical density (OD) 600 was measured by spectrophotometer. (C) The single strain and fermentation mixture were inoculated in the specific liquid

medium containing different concentrations of bovine bile salt and were cultured at 37◦C for 3 h at 100 r/min, and their OD 600 were measured by spectrophotometer.

(D) Escherichia coli was inoculated on LB solid medium for the night at 37◦C for 12 h. The representative images of the inhibition zone were shown. (E) The diameter

of the inhibition zone was measured. Data with error bars are presented as mean ± SD. Each panel is a representative experiment of at least three independent

biological replicates. *P < 0.05, **P < 0.01, and ***p < 0.001 as determined by unpaired Student’s t-test.

in enhancing antibacterial activity (54). However, the amount
of acetylated H3 and H4 showed no difference upon BO
treatment (Supplementary Figure 2B). The SCFAs activate
multiple signaling pathways by binding to GPR41, GPR43,
and GPR109A with varying affinities (55). GPR43 recognizes
SCFAs and is involved in the inhibition of colorectal cancer
(56). As shown in Figure 5A, the BO-treatment upregulated the
mRNA expression of GPR43 but had no significant effect on
the mRNA expressions of GPR41 and GPR109a (Figure 6A).
The protein level of GPR43 in the tumor tissues was also
upregulated (Figure 6B). GPR43 couples to Gαi proteins, which
results in the activation of phospholipase C (PLC), protein
kinase C (PKC), and the following extracellular signal-regulated
kinase (ERK) (57). The BO treatment significantly activated this
GPR43-Ga(i/o)-PLC-PKC-ERK signaling pathway in HCT116
and CT26 cells (Figure 6C). To determine whether the inhibition
of BO on the proliferation of cancer cells is mediated by
GPR43, GPR43 was knocked down by using siGPR43. The
transfection efficiency of siGPR43 is shown in Figure 6D. The
CCK8 assays suggested that GPR43 knockdown combined with
BO offset the inhibitory effect of BO on cell proliferation
(Figure 6E). Moreover, annexin/PI staining showed that GPR43
knockdown combined with BO eliminated the inhibiting effect
of BO on cell proliferation (Figure 6F). Similar results were

found by using Ga(i/o) blocker (NF023) (Figures 6G,H), PLC
inhibitor (U73122) (Figures 6I,J), and PKC inhibitor (Go6983)
(Supplementary Figures 2C,D). These results together suggest
that BO inhibited tumor proliferation through activating GPR43-
Ga(i/o)-PLC–PKC–ERK signaling pathway.

Activating GPR43 Inhibits Aerobic
Glycolysis in the Cancer Cells
We further examined whether GPR43 regulates glycolysis in
cancer cells. We found that GPR43 knockdown upregulated
the expression of the key enzymes in the glucose metabolism,
including MYC, GLUT1, HK2, LDHA, and PKM2 (Figure 7A).
GPR43 also led to increased lactate production, increased glucose
uptake, increased ECAR, and decreased OCR in HCT116 cells
(Figures 7B–E). Our data suggested that GPR43 inhibits aerobic
glycolysis in the CRC cells.

DISCUSSION

More and more evidence suggests that probiotics exhibit
extensive antitumor effects in different kinds of cancers (58–60).
However, the mechanism by which the probiotics represses the
CRC has still not been well-studied. Based on our research, we
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FIGURE 2 | Bornlisy treatment protects the mice from colitis-associated colon cancer (CAC). (A) C57BL/6J mice (n = 5 for each group) were injected intraperitoneally

with azoxymethane (AOM) (10 mg/kg) on day 1, 2% dextran sodium sulfate (DSS) was subsequently added to the drinking water for 7 consecutive days. Three cycles

of DSS treatment were used. The mice were orally inoculated with BO (10 ml/kg) once every 2 days during the DSS treatment. After induction of tumorigenesis (100

days), the mice were euthanized. The spleens and colons were removed. (B) Colon length was measured. (C) The representative images of colon tumors were

shown. (D) Tumor number, tumor size, and tumor load in the colons were measured. (E) The spleens from mice were weighted. (F) The histological analysis of colon

tumors was shown by H&E staining. The histological score was assessed by a pathologist (scale bars, 50µm). (G) Tumor tissues were stained for Ki-67 and

proliferating cell nuclear antigen (PCNA) (scale bars, 50µm). (H) The percentages of Ki-67-positive and PCNA-positive tumor cells were quantified. (I) mRNA

expressions of IL-6 and TNF-α in tumors were detected using quantitative real-time PCR (qPCR). Data with error bars are represented as mean ± SD. Each panel is a

representative experiment of at least three independent biological replicates. *p < 0.05, **p < 0.01, and ***p < 0.001 as determined by unpaired Student’s t-test.

found that the probiotics repress aerobic glycolysis to repress
the malignant progression of CRC. Furthermore, our studies in
vivo and in vitro revealed that the development of CRC could be
repressed by the probiotics significantly. Moreover, our research

revealed that GPR43 performed an important role via function
analysis in the CRC cells in the process of tumor suppression, and
was an important targeting receptor of probiotics. We deduced
that the probiotics negatively regulate the tumorigenesis and
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FIGURE 3 | Bornlisy inhibits proliferation and metastasis of colorectal cancer (CRC) cells in vitro. (A) The HCT116 and CT26 cells were treated with BO of different

concentrations for 24 h. The cell proliferation was measured by CCK8 assay. (B) The HCT116 and CT26 cells were treated with BO (multiplicity of infection [MOI] = 5)

for different days. The cell proliferation was determined by the CCK-8 assay. (C,D) The HCT116 cells were treated with BO (MOI = 5, 24 h). The cell proliferation was

evaluated using immunofluorescence staining. The EdU-positive cells were calculated (scale bar, 100µm). (E,F) The HCT116 cells and CT26 cells were treated with

BO (MOI = 5, 24 h). The migratory ability was detected by wound healing assays. The percentage of migration was measured. (G,H) The HCT116 cells and CT26

cells were treated with BO (MOI = 5, 24 h). The infiltration ability was detected by a transwell assay. The percentage of infiltration was measured. Data with error bars

are presented as mean ± SD. Each panel is a representative experiment of at least three independent biological replicates. *P < 0.05, **P < 0.01, and ***p < 0.001

as determined by unpaired Student’s t-test.
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FIGURE 4 | Bornlisy inhibited aerobic glycolysis of colon cancer cells in vivo and in vitro. (A) The mice were treated as described in Figure 1A. The tumor tissues

were separated. The mRNA expressions of PKM2, PFKL, LDHA, HK2, GLUT1, PGK1, and PGAM1 in tumors tissues were detected by qPCR. (B) The protein levels

of GLUT1, HK2, PKM2, and LDHA in tumors tissues were detected by western blots. (C) The HCT116 cells and CT26 cells were treated with BO for 24 h (MOI = 5).

The mRNA expressions of GLUT1, HK2, PKM2, LDHA, and PFKL in the HCT116 cells and CT26 cells were detected by qPCR. (D) The HCT116 cells and CT26 cells

were treated with BO for 24 h (MOI = 5). The mRNA expressions of MYC in HCT116 cells and CT26 cells were detected by qPCR. (E,F) The HCT116 cells and CT26

cells were treated with BO (MOI = 5, 24 h). The cell supernatant is collected. Lactate production was detected by Lactate Colorimetric Assay Kits. Glucose uptake

was detected by Glucose Uptake Fluorometric Assay Kits. (G,H) The HCT116 cells and CT26 cells were treated with BO (MOI = 5, 24 h). The extracellular

acidification rate (ECAR) of HCT116 cells and CT26 cells were measured by the Seahorse XF Glycolysis Stress Test Kit. (I,J) The HCT116 cells and CT26 cells were

treated with BO (MOI = 5, 24 h). The oxygen consumption rate (OCR) of HCT116 cells and CT26 cells were measured by the Cell Mito Stress Test Kit. Data with error

bars are presented as mean ± SD. Each panel is a representative experiment of at least three independent biological replicates. *P < 0.05, **P < 0.01, ***p < 0.001

as determined by unpaired Student’s t-test.
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FIGURE 5 | Bornlisy inhibits colon cancer cell proliferation by reducing glycolysis. (A) The C57BL/6J mice (n = 5 for each group) were intraperitoneally treated with

fructose-2,6-biphosphate (FBP) (500 mg/kg, once every 2 days) and orally treated with BO (10 ml/kg, once every 2 days) during AOM-DSS administration. After

induction of tumorigenesis (100 days), the mice were euthanized and the colons were removed. (B) The representative images of colons were shown, and the colons’

lengths were measured. (C) The representative images of colon tumors were shown. (D) Tumor number, tumor size, and tumor load in colons were measured. (E) The

histological colon tumor images using H&E staining were shown. The histological score was assessed by a pathologist (scale bars, 500µm). (F,G) The tumor tissues

were stained for Ki-67 and PCNA (scale bar: 500µm). The percentages of Ki-67-positive and PCNA-positive cells were quantified. Data with error bars are

represented as mean ± SD. Each panel is a representative experiment of at least three independent biological replicates. Scale bars, 50mm. *p < 0.05, **p < 0.01,

and ***p < 0.001 as determined by unpaired Student’s t-test.
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FIGURE 6 | A GPR43 is a targeted receptor of BO in suppressing CRC proliferation. (A) The HCT116 cells and CT26 cells were treated with BO for 12 and 24 h (MOI

= 5). The mRNA expressions of GPR41, GPR43, and GPR109A in the HCT116 cells and CT26 cells were detected by qPCR. (B) The mice were treated as described

in Figure 1A. The tumor tissues were separated. The protein levels of GPR43 in tumors tissues were detected by the western blots. (C) The HCT116 cells and CT26

(Continued)
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FIGURE 6 | cells were treated with BO for 12 and 24 h (MOI = 5). The protein levels of GPR43, G(α)i, PLC, PKC, p-ERK, and total ERK in the HCT116 cells and CT26

cells were detected by western blots. (D) The HCT116 cells were treated with siGPR43 duplexes for 48 h. The efficiency of GPR43 knockdown in HCT116 cells was

measured by qPCR. (E,F) The HCT116 cells were treated with siGPR43 duplexes for 48 h and then treated with BO (MOI = 5, 24 h). The cell proliferation was

measured by a CCK8 assay. The cell apoptosis was monitored by flow cytometry. The percentage of the apoptotic cell (Annexin V+/PI+) was calculated. (G,H) The

HCT116 cells were stimulated with BO (MOI = 5, 24 h) after pretreatment with NF023 (10mM) for 4 h. The cell proliferation was measured by a CCK8 assay. The cell

apoptosis was monitored by flow cytometry. The percentage of an apoptotic cell (Annexin V+/PI+) was calculated. (I,J) The HCT116 cells were stimulated with BO

(MOI = 5, 24 h) after pretreatment with U73122 (1mM) for 4 h. The cell proliferation was measured by a CCK8 assay. The cell apoptosis was monitored by flow

cytometry. The percentage of the apoptotic cell (Annexin V+/PI+) was calculated. Data with error bars are presented as mean ± SD. Each panel is a representative

experiment of at least three independent biological replicates. *P < 0.05, **P < 0.01, and ***p < 0.001 as determined by unpaired Student’s t-test.

FIGURE 7 | Activating GPR43 can inhibit aerobic glycolysis in the CRC cells. The HCT116 cells were treated with siGPR43 duplexes for 48 h. (A) The mRNA

expressions of MYC, GLUT1, HK2, PKM2, and LDHA in the HCT116 cells were detected by qPCR. (B) Lactate production of HCT116 cells was detected by Lactate

Colorimetric Assay Kits. (C) Glucose uptake of HCT116 cells was detected by Glucose Uptake Fluorometric Assay Kits. (D) The ECAR of HCT116 cells was

measured by the Seahorse XF Glycolysis Stress Test Kit. (E) The OCR of HCT116 cells was measured by the Cell Mito Stress Test Kit. Data with error bars are

presented as mean ± SD. Each panel is a representative experiment of at least three independent biological replicates. *P < 0.05, **P < 0.01, and ***p < 0.001 as

determined by unpaired Student’s t-test.

the metabolic process of glucose via activating GPR43 in CRC
(Figure 8).

Previous studies have demonstrated that the probiotics were
able to prevent tumorigenesis and progression after being
administered sufficient doses (61, 62). In this research, we
proved that BO represses the proliferation of CRC cells in
vivo and in vitro. The BO-treated mice had fewer tumor

numbers, reduced tumor burden, and decreased tumor sizes in
the CAC mouse model. In vitro, BO exhibits anti-proliferative
and pro-apoptotic effects in the CRC cells. Normally, the cancer
cells metabolize abnormally due to metabolic reprogramming.
The most noticeable metabolic reprogramming existing in
cancer leads to the aerobic glycolysis instead of the oxidative
phosphorylation reaction in mitochondrial, which releases
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FIGURE 8 | Proposed model of the mechanism underlying the BO-induced suppression of CAC via inhibiting the GPR43-mediated glycolysis.

constant nutrients and energy utilized for the out-of-control
proliferation, as is defined as the Warburg effect (32, 63, 64).
Whether probiotics can regulate glucose metabolism in colon
cancer is unclear. Our data demonstrated that BO administration
decreased the expression of MYC and downstream glycolytic
genes of GLUT1, LDHA, HK2, and PKM2 in the CRC cells,
which lessened the activity of glycolysis. In consideration of the
crucial performance of BO in the process of glucose metabolism
in CRC, we further studied the potential underlying mechanism
and downstream effectors.

Recently, it is reported that GPR43, a G protein-coupled
receptor, can be activated by the SCFAs (65). FFAR2(GPR43)
is downregulated in human colon cancers that matched the
adjacent healthy tissue. In accordance with this, Ffar2−/−

mice are hyper susceptible to the development of intestinal
carcinogenesis (66). C. butyricum reduced the contents of fecal
secondary bile acids (BA), heighten the quantities of cecal SCFA,
and activated the G-protein coupled receptors (GPRs), such as
GPR43 and GPR109A (26). However, whether BO can activate
GPCR in the intestinal epithelial cell still is unclear. To explore
the targeting receptor of BO that mediates the repression of CRC
cell proliferation, we examine the expression of TLR, GPCR,
and acetyl-histone. Interestingly, the results suggested that BO
activates the G protein-coupled receptor and that GPR43 was
dramatically upregulated. It is reported that GPR43 links to
either Gi/o or Gq as another subunit of heterotrimeric G protein
(67). Our study showed that the BO-activated GPR43 couples
to Gi/o and followed by PLC/PKC/ERK axis. To our knowledge,
GPR43 negatively modulates the proliferation of CRC cells, and

functions as a tumor suppressor in CRC. Consistent with the
previous results, our data suggested that BO was linked with
GPR43 knockdown in vitro, the repressive effect of BO on
CRC was abrogated, exhibiting that GPR43 was a significant
downstream target receptor of BO that regulated the repression
of CRC cell proliferation.

The biological function of GPR43 has seldom been studied
in the field of glucose metabolism; consequently, it is innovative
that our findings proved that GPR43 is a negative regulator
of glucose metabolism in CRC. But how GPR43 regulates
glycolysis is not clear. Our results showed that BO administration
enhanced the phosphorylation level of ERK (Thr202/Tyr204)
and decreased the expression of MYC in the CRC cells
and tumor tissues. According to the previous reports, CD47
interacted with ENO1 and protected it from degradation
mediated by ubiquitin, subsequently enhancing the glycolytic
activity and phosphorylation of ERK in the CRC cells
(68). A LncRNA LINRIS bound to a ubiquitination site
of insulin-like growth factor 2 mRNA-binding protein 2
(IGF2BP2), and this binding impeded the degradation of
IGF2BP2 via the ubiquitination-autophagic pathway. As a
typical target of IGF2BP2, downstream mRNAs of MYC
mRNA, including MYC mRNA, were studied (69). These
studies perhaps had suggested that the phosphorylation of ERK
and the ubiquitination of MYC have a delicate relationship
in glycolytic metabolism. The mechanism by which GPR43
functions in the process of glycolysis is waiting for further
exploration. We will concentrate on these problems in our
future studies.
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