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Abstract 

Background:  In Alzheimer’s Diseases (AD) research, multimodal imaging analysis can 
unveil complementary information from multiple imaging modalities and further our 
understanding of the disease. One application is to discover disease subtypes using 
unsupervised clustering. However, existing clustering methods are often applied to 
input features directly, and could suffer from the curse of dimensionality with high-
dimensional multimodal data. The purpose of our study is to identify multimodal 
imaging-driven subtypes in Mild Cognitive Impairment (MCI) participants using a mul-
tiview learning framework based on Deep Generalized Canonical Correlation Analysis 
(DGCCA), to learn shared latent representation with low dimensions from 3 neuroimag-
ing modalities.

Results:  DGCCA applies non-linear transformation to input views using neural net-
works and is able to learn correlated embeddings with low dimensions that capture 
more variance than its linear counterpart, generalized CCA (GCCA). We designed 
experiments to compare DGCCA embeddings with single modality features and GCCA 
embeddings by generating 2 subtypes from each feature set using unsupervised 
clustering. In our validation studies, we found that amyloid PET imaging has the most 
discriminative features compared with structural MRI and FDG PET which DGCCA 
learns from but not GCCA. DGCCA subtypes show differential measures in 5 cognitive 
assessments, 6 brain volume measures, and conversion to AD patterns. In addition, 
DGCCA MCI subtypes confirmed AD genetic markers with strong signals that existing 
late MCI group did not identify.

Conclusion:  Overall, DGCCA is able to learn effective low dimensional embeddings 
from multimodal data by learning non-linear projections. MCI subtypes generated 
from DGCCA embeddings are different from existing early and late MCI groups and 
show most similarity with those identified by amyloid PET features. In our validation 
studies, DGCCA subtypes show distinct patterns in cognitive measures, brain volumes, 
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and are able to identify AD genetic markers. These findings indicate the promise of the 
imaging-driven subtypes and their power in revealing disease structures beyond early 
and late stage MCI.

Keywords:  Deep learning, Multiview learning, Multimodal imaging, Image-driven 
subtypes

Background
Multimodal neuroimaging data are able to provide different but complementary infor-
mation about brain functions that a single modality cannot [1]. One application in 
studying Alzheimer’s Disease (AD) is classifying cases from controls using multimodal 
imaging data (e.g., structural magnetic resonance imaging (MRI) and amyloid positron 
emission tomography (PET)) [2]. Although classification can help with effective diag-
nosis of AD or MCI, another application is to identify disease subtypes to assist with 
targeted treatment, and there have been increasing efforts to identify subtypes using 
multimodal data [3–6], using neuroimaging, biomarker or clinical measurements.

One method to extract subtypes is unsupervised clustering [5, 7]. However, clustering 
is often applied to the original features directly and fails to escape the “curse of dimen-
sionality” [8] as we move to a high dimensional feature space-as is the case with multi-
modal imaging data if we were to use naive concatenation. There have been studies that 
proposed data fusion methods to fuse information from multimodal data and reduce 
dimensionality, such as multi-kernel support vector machine (SVM) [2], multimodal 
random forest [9], and deep learning [10, 11], but are often used for supervised tasks 
such as classification. The work by [12] proposed coupled nonnegative matrix factoriza-
tion (C-NMF) to discover AD phenotypes and is jointly optimized with existing healthy 
control (HC), mild cognitive impairment (MCI) and AD groups.

To address these limitations, we proposed an unsupervised deep multiview learning 
framework based on canonical correlation analysis (CCA) in our previous work [13]. While 
traditional CCA [14] learns linear combinations of the variables in two input data views that 
maximize their correlation, Generalized CCA (GCCA) [15] extends CCA by learning from 
more than 2 views of data, and Deep CCA [16] can apply non-linear transformations using 
deep neural networks. Deep generalized CCA (DGCCA) [17] combine both GCCA and 
DCCA to learn maximally correlated components from more than 2 views. Using features 
learned from DGCCA, we conducted cluster analysis to identify population structure (case 
control groups), and genetic association analysis on candidate AD risk SNPs [18]. DGCCA 
shows promising results in capturing variation of multimodal data in few latent compo-
nents using non-linear transformation and identifying population structure.

Patients with Mild Cognitive Impairment (MCI) show decline in cognitive functions 
and are at higher risk of converting to AD. To further uncover disease subtypes, we 
expand upon our previous work and apply the multiview learning framework on multi-
modal imaging data of MCI patients to facilitate early detection of AD.

To validate the imaging-driven MCI subtypes identified by clusters generated from 
multiview features, we compare them with those generated from single modality fea-
tures. We further conducted survival analysis to investigate subtype-specific conversion 
to AD and genetic association. There have been studies conducting survival analysis to 
examine AD progression using various cognitive and imaging features [19, 20]. In our 
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study, we used the Cox proportional hazards regression model to visualize conversion 
curves for the identified subtypes using baseline cognitive and brain volume meas-
ures. Further genetic association analyses performed on comparing the healthy group 
and each identified subtype were able to confirm existing AD risk genes (e.g. APOE, 
TOMM40) and discover additional genetic markers.

Results
Multiview learning

After selecting the top 94 features, explaining 68.66% variance from GCCA embeddings, 
and the top 20 features explaining 68.85% variance from DGCCA embeddings, we calcu-
lated the canonical correlation between modalities corr(Oj1Uj1 ,Oj2Uj2) where ji ∈ [1, 2, 3] 
corresponds to each input view, for each embedded feature from the training and valida-
tion set, see Figs. 1, 2. While the correlation between GCCA features for the training set is 
consistently high, all above 0.3, the validation set correlation drops after the first 15 features. 
For DGCCA features, although the correlation drops after the first 8 features in the training 
set, the validation set correlation is comparable to that of the training set. With a closer look 
at the modality specific correlation, both methods produce features with lower correlation 
between AV45 and VBM. GCCA shows higher VBM and FDG correlation in the validation 
set, and DGCCA shows higher AV45 and FDG correlation in the training set.

Figure 3 plots the view-dependent projection matrices learned by DGCCA ( Ui ), where 
the x-axis dimension is the feature space of Oj (output of neural networks, qj = 116 ) 
and the y-axis is the embedded feature space ( k = 20 ). Projection for AV45 selected 83 

Fig. 1  Canonical Correlation for components extracted from GCCA‘

Fig. 2  Canonical Correlation for components extracted from DGCCA​
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non-zero features from the Oj feature space, where that for VBM selected 74, and that 
for FDG selected 80. In addition, 64 features are jointly selected by all three modalities. 
While we show that DGCCA can learn shared information from all 3 imaging modali-
ties, it can learn unique information as well. For instance, we can see that features for 
AV45 and FDG are more salient compared to VBM features especially after the first 10 
embedded features. AV45 assigns heavy weighting to the feature at index 59 where the 
FDG zeros it out.

Generating subtypes using clustering

The existing classification of participants into early MCI and late MCI are often char-
acterized by the extent of cognitive decline and performance on cognitive assessments. 
The purpose of our study is not particularly to find subtypes that improve upon existing 
MCI groups, but to see if subtypes generated from imaging data can group them dif-
ferently, and potentially reveal a new disease structure that can help us further under-
stand AD progression. Since we generated subtypes using multiview learning methods 
from multimodal data, we compared with single modality data in evaluation to see if the 
GCCA or DGCCA features could be effectively learned from multimodal data.

Cluster evaluation metrics are shown in Table 1. The first step in evaluation was to see 
if these subtypes were indeed good clusters. Using traditional intrinsic measures,  Cal-
inski-Harabasz (CH) and Silhouette score, Exp 2 using AV45 features produced the best 
defined cluster, and all single modality experiments (Exp 1–3) outperformed both mul-
tiview methods. GCCA generates almost indistinguishable clusters whereas DGCCA, 

Fig. 3  Latent features learned by DGCCA projected to each imaging modality Ui . The x-axis marks 116 
imaging features (output of the neural network) and the y-axis marks 20 latent features

Table 1  Cluster evaluation

Clusters are evaluated using Calinski and Harabasz (CH) and the silhouette score as internal measures. Higher CH score 
and Silhouette close to 1 indicates more dense and well separated clusters, where lower CH score and Silhouette closer to 
0 indicates more poorly defined and overlapping clusters. In addition, Adjusted Mutual Information (AMI) are calculated 
for each cluster assignment against the original EMCI/LMCI diagnosis. AMI closer to 1 means two sets of clusters are more 
similar where AMI close to 0 means they are more independent from each other

CH Silhouette AMI

Exp 1 VBM 182.839 0.308 0.008

Exp 2 AV45 322.853 0.431 0.020

Exp 3 FDG 144.537 0.251 0.028

Exp 4 GCCA​ 2.908 0.038 -0.001

Exp 5 DGCCA​ 133.704 0.303 0.039
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while not outperforming single modalities in these regards, yielded a comparable result, 
showing that it could produce valid clusters.

In addition to intrinsic cluster evaluation, we also plotted confusion matrices for sub-
types generated from 5 experiments, shown in Fig. 4, where Subtype 1 is assigned to the 
cluster with the higher EMCI to LMCI ratio. For all experiments, the majority of EMCI 
participants are assigned to Subtype 1, where LMCI participants are more evenly dis-
tributed between the two. Only Exp 5 using DGCCA embeddings assigned more LMCI 
participants to Subtype 2. We also computed AMI score between the generated clusters 
and the EMCI/LMCI groups, where a score of 1 means that two clusters are identical 
and a score of 0 or negative means they are independent. Subtypes from Exp 5 using 
DGCCA features are the most similar to the original MCI groups out of all experiments, 
but a low value indicates that they are still very different.

To further investigate the subtypes generated from each experiment, we computed 
the AMI score between each pair of experiments, shown in Fig. 5. Subtypes generated 
from DGCCA features are most similar to those from AV45 features. Given that Exp 2 
also produced the best defined clusters, AV45 features are more discriminative. DGCCA 
subtypes are therefore more influenced by AV45 even though all input views to DGCCA 
are weighted the same.

In addition to cluster evaluation, we also conducted Wilcoxon rank-sum test on 11 
cognitive and brain volume baselines measures, and plotted the −log10(p) value in Fig. 6. 
Subtypes from FDG (Exp 3) and DGCCA (Exp 5) features show differential measure in 
all biomarkers. It’s worth noting that VBM and FDG show very strong signal in terms of 
ventricles volume and AV45 does not. While both GCCA and DGCCA produced signifi-
cant result for ventricles volume and the original MCI groups (DX) does not, DGCCA 
shows very weak signal, which might be because DGCCA is influenced more by AV45 

Fig. 4  Confusion matrices of cluster assignments for each experiment
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features. All three modalities show stronger signal in hippocampus volume and ADAS13 
score, which is picked up by DGCCA features as well.

Survival analysis

To validate the identified MCI subtypes, we fitted Cox’s proportional hazard regression 
models for clusters generated by each experiment and the original MCI groups to inves-
tigate their conversion to AD. The model covariates include 5 cognitive assessments, 

Fig. 5  Similarity of cluster assignment between experiments

Fig. 6  Cognitive and biomarker measurement analysis. Heatmap of -log(p) (Bonferroni-corrected at p = 0.01 ) 
of the rank-sum test. Significant values are marked by * in cell
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6 brain volume measures, and 4 data covariates. The conversion curves are shown in 
Fig. 7, and the log hazard ratio for all covariates are plotted in Fig. 8. The model fit and 
log rank test results are shown in Table 2. From the log rank test result and the conver-
sion curves, compared to the original MCI groups, Exp 2 using AV45 features and Exp 5 
using DGCCA features show the most distinctive trends for the two subtypes. Note that 
only 257 out of 976 total observations are on or after month 24, so the majority of obser-
vations are before month 24. While GCCA shows distinctive trends for two subtypes 
in the conversion curve, the two subtypes are not distinct before month 24. Consistent 
with in cluster similarity, see Fig. 5, AV45 has the most discriminative features out of 3 
imaging modalities. The log hazard ratio plot shows that CDRSB and ADAS13 have the 
highest coefficients in the Cox regression model, whereas brain volume measures were 
zeroed out.

While the baseline measures for 5 cognitive assessment and 6 brain volume from 
ADNI QT-PAD are used in survival analysis, we also used the longitudinal measures 
to plot progression curves up to 5 years after baseline for imaging-driven subtypes 
and the original MCI groups, see “Additional File 1: Fig. S1”. Subtypes from DGCCA 

Fig. 7  Conversion Curve the original MCI groups and each experiment from the Cox proportional hazard 
regression model, showing the probability of not converting to AD at the given month
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features have non-overlapping 95% confidence intervals for ADAS13, CDRSB, 
MMSE and FAQ, and display more distinct progression trends in hippocampus and 
ventricles volume compared to EMCI and LMCI groups.

Genetic association analysis

Genetic association results from logistic regression for all experiments are summa-
rized in Fig. 9, where the heatmap plots the − log10(p) value for each SNP in different 

Fig. 8  Log Hazard Ratio (HR) for the original MCI groups and each experiment from Cox proportional hazard 
regression model

Table 2  Survival Analysis Evaluation

The χ2 test statistics are from log rank test comparing survival curves of two clusters

Concordance χ2 statistic p-value − log2(p)

DX 0.882 47.924 4.430e-12 37.716

Exp 1 VBM 0.918 12.013 5.283e-04 10.886

Exp 2 AV45 0.900 39.734 2.911e-10 31.678

Exp 3 FDG 0.905 24.390 7.869e-07 20.277

Exp 4 GCCA​ 0.940 0.253 6.150e-01 0.701

Exp 5 DGCCA​ 0.925 34.906 3.460e-09 28.107
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experiment. Only SNPs with at least one significant result amongst all subypes are shown 
in the heatmap. For visualization purpose, we ordered the SNPs by chromosome num-
ber from 1 to 22, marked by the color bar on the left. The full results with SNP, gene and 
p-value information are recorded in “Additional File 2: Table S1”.

The best known AD genetic risk SNPs from APOE, APOC1 and TOMM40 in chromo-
some 19 are identified by the AD group and all experiments except VBM in Exp 1. Note 
that the AD participants are not in experiment subtypes which are generated from MCI 
participants, and AV45 features in Exp 2 and DGCCA features from Exp 5 are able to 
identify many of the same signal as AD with even stronger signals (lower p-values), as 
shown in “Additional File 2: Table S1”.

There are also genetic markers identified by imaging experiment subtypes and not the 
original MCI. For instance, rs10961151 near the PRKCH gene is identified by Subtype 
1 in Exp 5 using DGCCA feature, reported by a previous GWAS to be associated with 
paired helical filament (PHF) tau measurement [21]. On the other hand, rs149142 in the 
DACT1 and RPL9P5 gene is identified by Subtype 1 in Exp 5 and EMCI group, but not 
by single modality subtypes. This SNP was reported by a GWAS study [22] to be associ-
ated with cortical thickness.

Many genetic markers for AD are identified by imaging-driven MCI Subtype 2 using 
AV45 and DGCCA features with strong signals but not LMCI, which shows the limi-
tation of the existing early vs late MCI groups. There are also genetic findings discov-
ered by imaging-driven subtypes that were not found using the original MCI groups. 
This observation indicates the promise of these imaging-driven disease subtypes and 
their power in revealing interesting underlying genetic determinants. It warrants further 
investigation on the role of these subtype-derived genetic findings in disease status and 
AD progression in an independent cohort.

Discussion
In this study, we have proposed to generate imaging-driven MCI subtypes from mul-
timodal data using a fully unsupervised approach based on CCA. GCCA extends tra-
ditional CCA by applying transformation to more than 2 views of data, and is able to 
learn view-independent embeddings in addition to the view-dependent projections for 
each view. DGCCA can capture more variance in the original data with few features 
than its linear counterpart GCCA consistent with our previous work, and select both 
joint and unique features from its input views. We designed 5 experiments to compare 
features from single imaging modality and multiview methods. Two MCI subtypes were 
generated using unsupervised clustering where Subtype 1 has less disease severity and 
Subtype 2 has more. DGCCA and single modality features are able to generate valid sub-
types that are distinct from the original MCI groups.

With this new grouping of participants, our validation studies demonstrate that 
DGCCA subtypes are discriminative in 6 brain volume measures (outperforming AV45), 
5 cognitive assessment scores (outperforming VBM), AD conversion (outperforming 
VBM and FDG) and genetic markers (outperforming VBM and FDG). MCI subtypes 
generated from AV45 and DGCCA features can identify genetic markers in chromo-
some 19 with strong signals that AD group also identifies but the original MCI groups 



Page 10 of 22Feng et al. BMC Bioinformatics          (2022) 23:402 

Fig. 9  Heatmap of −log10(p) in genetic association analysis. After thresholding at p = 0.05 with FDR 
correction, we include SNPs that are significant in at least one case control association test. SNPs are ordered 
by chromosomes, as shown on the left y-axis



Page 11 of 22Feng et al. BMC Bioinformatics          (2022) 23:402 	

fail to. DGCCA subtypes show the best alignment with those from AV45 features, the 
most discriminative out of three modalities, although each modality is weighted the 
same in the DGCCA input. In the case that there are different views of data we want to 
learn from but don’t know how important they are, DGCCA can prove useful.

While subtypes from DGCCA features don’t outperform those from each single 
modality in every validation study, we show that DGCCA does effectively learn from all 
modalities. We also want to highlight that DGCCA reduces dimensions, where 20 fea-
tures explain 68.85% variance of three modality of data, especially important given the 
limited sample size (n=308).

As to why DGCCA features don’t drastically improve upon single modalities, we can 
look at the test for cluster independence. When testing the assumption that the mul-
timodal imaging data have a shared clustering assignment using the ROI features, this 
assumption holds only for AV45 and FDG. In other words, clusters from VBM features 
don’t align with those from AV45 and FDG using the original features. But this assump-
tion holds for all pairs of the three modalities using DGCCA features. DGCCA is essen-
tially learning from a subset of features from multiple modalities (as shown in Fig.  3 
where some features are zeroed out) that have high correlation with each other. But these 
features might not necessarily correspond to those aligning with cluster assignments.

While we were able to show that the subtypes generated from DGCCA features are 
comparable to those generated from single modality and the original MCI groups, we are 
limited on the sample size and longitudinal observations. Our model uses simple feed-
forward networks on ROI level imaging features, but with DGCCA’s ability to learn non-
linear transformation, the neural networks in DGCCA can be extended to more complex 
architectures to accommodate larger datasets and more complex features, e.g. convo-
lutional layers for voxel-level imaging data and recurrent layers for genetic sequences. 
Some deep learning architectures can also help understand how the model learns from 
the input features and future work can expand on the interpretability of DGCCA.

Conclusions
In this study, we show that DGCCA can learn low dimensional embeddings from multi-
modal neuroimaging data via non-linear transformations. Imaging-driven MCI subtypes 
generated from DGCCA embeddings align most with those generated from AV45 fea-
tures, and show differential measures in brain volume, cognitive assessment, AD con-
version and genetic markers. Our experiments demonstrate the potential of DGCCA 
in leveraging multimodal imaging data to learn disease structure beyond early and late 
MCI to faciliate early detection of AD.

Methods
Materials

Data used in the preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [23]. The ADNI 
was launched in 2003 as a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 
MRI, PET, other biological markers, and clinical and neuropsychological assessment 
can be combined to measure the progression of mild cognitive impairment (MCI, a 
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prodromal stage of AD) and early AD. For up-to-date information, see www.​adni-​
info.​org.

Study participants

In this work, we analyzed 612 non-Hispanic Caucasian subjects with complete 
baseline measurements of 3 studied imaging modalities, genotyping data, cognitive 
assessments, brain volume measurements and visit-matched diagnostic information. 
Specifically, there are 219 controls (i.e., 154 healthy controls (HC) and 65 normal con-
trols with significant memory concern (SMC)) and 393 cases (i.e., 195 patients with 
early MCI (EMCI), 113 patients with late MCI (LMCI), and 85 AD patients). Shown 
in Table 3 are their characteristics.

Imaging data

The three imaging modalities used in this study are structural MRI [24] (sMRI, meas-
uring brain morphometry), [ 18F]florbetapir-PET [25] (AV45, measuring amyloid bur-
den), and fluorodeoxyglucose -PET [26] (FDG, measuring glucose metabolism). The 
multi-modality imaging data were aligned to each participant’s same visit. The sMRI 
scans were processed with voxel-based morphometry (VBM) using the Statistical 
Parametric Mapping (SPM) software tool [27]. Generally, all scans were aligned to a 
T1-weighted template image, segmented into gray matter (GM), white matter (WM) 
and cerebrospinal fluid (CSF) maps, normalized to the standard Montreal Neurologi-
cal Institute (MNI) space as 2 ×2× 2 mm3 voxels, and were smoothed with an 8mm 
FWHM kernel. The FDG-PET and AV45-PET scans were registered into the same 
MNI space by SPM and standard uptake value ratio (SUVR) was computed by inten-
sity normalization based on a cerebellar crus reference region. The MarsBaR ROI 
toolbox [28] was used to group voxels into 116 regions-of-interest (ROIs). ROI-level 
measures were calculated by averaging all the voxel-level measures within each ROI. 
As mentioned above, participants in this work included 612 non-Hispanic Caucasian 
subjects with complete baseline ROI-level measurements of three modalities and 
visit-matched diagnostic information; see Table 3 for their characteristics.

Table 3  Participant characteristics in our experiments at the baseline

There are totally 612 participants, where HC and SMC participants are grouped as controls (N=219), and EMCI and LMCI 
participants are grouped as cases (N=308). HC Healthy control; SMC Significant memory concern; EMCI Early mild cognitive 
impairment; LMCI Late mild cognitive impairment; AD Alzheimer’s disease. p-values were computed using one-way ANOVA 
(except for gender using χ2 test)

Diagnosis HC SMC EMCI LMCI AD p-value

Number 154 65 195 113 85 -

Gender(M/F) 75/79 24/41 105/90 59/54 45/40 1.85E-01

Age(mean±sd) 75.44±6.40 71.97±5.25 71.04±7.04 72.66±8.53 73.96±8.30 6.69E-07

Education(mean±sd) 16.30±2.59 16.66±2.76 16.10±2.62 16.31±2.92 15.79±2.52 3.28E-01

http://www.adni-info.org
http://www.adni-info.org
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Genetics data

Genotyping data were quality-controlled, imputed and combined as described in [29, 
30]. Briefly, genotyping was performed on all ADNI participants following the man-
ufacturer’s protocol using blood genomic DNA samples and Illumina GWAS arrays 
(610-Quad, OmniExpress, or HumanOmni2.5-4v1) [31]. Quality control was per-
formed in PLINK v1.90 [32] using the following criteria: 1) call rate per marker ≥ 95% , 
2) minor allele frequency (MAF) ≥ 5% , 3) Hardy Weinberg Equilibrium (HWE) test P 
≤ 1.0E-6, and 4) call rate per participant ≥ 95% . The resulting genotyping data include 
a total of 5,574,300 SNPs.

Given the large number of SNPs, we used GWAS catalog to select a subset [33] to 
be used in the genetic association analysis. Traits in the GWAS Catalog map to terms 
from the Experimental Factor Ontology (EFO) [34]. Searching for GWAS results using 
the trait “Alzheimer’s Disease” (EFO_0000249) and “Alzheimer’s disease biomarker 
measurement” (EFO_0006514), we obtained 1096 SNPs from 97 studies, and 2808 
SNPs from 107 studies for each trait respectively. We then merged result for both 
traits with the ADNI genotyping data, obtaining 2,650 SNPs for all 612 participants.

Biomarker and clinical data

We used the ADNI data freeze for the Alzheimer’s Disease Modelling Challenge (QT-
PAD) with longitudinal and heterogeneous measurements, see http://​www.​pi4cs.​org/​
qt-​pad-​chall​enge. Along with 4 covariates (age, gender, APOE4 and education), we 
selected 11 AD-related baseline measures, including 5 cognitive assessment scores: 
Alzheimer’s Disease Assessment Scale 13-item cognitive subscale (ADAS13) [35], 
Clinical Dementia Rating Scale-Sum of Boxes (CDRSB) [36], Rey Auditory Verbal 
Learning Test score learning score (trial 5 score minus trial 1 score) [37], Mini-Men-
tal State Examination (MMSE) [38], and Functional Assessment Questionnaire (FAQ) 
[39]; and 6 brain volume measures: whole brain, hippocampus, entorhinal, ventricles, 
middle temporal and fusiform.

Multiview learning models

Given limited data and a rich feature space, a multiview learning method learns a sin-
gle model from multiple input views data with reduced dimensions. We apply this 
method to learn a shared representation on three imaging modalities, sMRI (VBM), 
AV45 and FDG, where each modality corresponds to a single data view.

Generalized CCA (GCCA)

GCCA extends CCA [14] by learning correlated components from 2 data views by 
applying linear transformations. Given J views of data Xj ∈ R

N×pj , where Xj is the 
j-th view of the data, N is the number of data points, and pj is the number of fea-
tures in view j, GCCA learns a view-dependent projection matrix Uj ∈ R

pj×k for each 
view, mapping to a view-independent shared representation or embedding G ∈ R

N×k 

http://www.pi4cs.org/qt-pad-challenge
http://www.pi4cs.org/qt-pad-challenge
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where k denotes the dimension of shared embedding space. The objective function of 
GCCA can be written as:

The optimal solution 
(

U∗
1 ,U

∗
2 , . . . ,U

∗
J ,G

∗
)

 and optimal objective value of problem (1) 
are as follows: G∗ contains the top k eigenvectors of J

j=1 Xj XT
j Xj

−1
XT
j  as its col-

umns, which we use as the share latent features,

and

where �i(·) denotes the i-th largest eigenvalue of its matrix argument/input.

Deep generalized CCA (DGCCA)

DGCCA [17] extends GCCA further by introducing non-linearity by passing the each 
input view through its own neural network. The architecture of DGCCA is shown in 
Fig. 10. To learn the view-dependent projection matrices 

(

U∗
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∗
2 , . . . ,U

∗
J

)

 and view-
independent embedding G∗ , we minimize the objective function:
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Fig. 10  DGCCA architecture
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where θj and Oj ∈ R
N×qj are the vector of all network weights parameters and the out-

put of the neural network for view j, respectively, and Uj ∈ R
qj×k and G ∈ R

N×k are the 
view-dependent projection matrix for view j and the view-independent shared represen-
tation, respectively.

To train the neural networks, we need to compute the gradients of the DGCCA 
objective:

with respect to θ1, θ2, . . . , θJ . This can be done by computing the gradients of 
L
(

θ1, θ2, . . . , θJ
)

 with respect to Oj , and then backpropagation. As shown in [17], we have

where G has the top k eigenvectors of 
∑J

j=1Oj

(

OT
j Oj

)−1
OT
j  as its columns, and IN is 

the identity matrix of size N × N .

Implementation

For GCCA, we used an existing implementation in Python [40], and extended this 
implementation for training the DGCCA model using the PyTorch library [41]. For 
both models, we used imaging data on 80% of MCI samples for training, and 20% for 
validation and tuning the model. The neural network for each input view consists 
of 2 hidden layers each of size 96 and with ReLU activation, a dropout layer where 
probability of zeroing out an element is 0.1 and the output layer has the same dimen-
sion as the input of 116 features. The networks were trained using the Adam opti-
mizer with a learning rate of 0.0005 and weight decay of 0.01. To prevent overfitting, 
we also added an early stopping threshold with patience of 5, when the validation 
loss decreases by no more than 0.05% of the max validation loss.

When training DGCCA, k, the dimension of the shared embeddings G is a hyper-
parameter. We experimented with different values of k and found that embeddings 
with lower k can explain just as much variance of the original data as those from 
training with higher k, so we decided to set k at 20. To better compare GCCA and 
DGCCA, we then selected the top k ′ features from embeddings G generated from 
both models that explain the same amount of variance of the original data. With 
k = 20 , Gdgcca explains 68.58% of variance, and using this threshold, we picked the 
top 94 features of Ggcca which explain 68.66% of variance. Consistent with our pre-
vious findings [13], DGCCA explains the same amount of variance in fewer latent 
features, see Fig. 11.
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Experimental design

In this section, we describe our experimental design on the features used and how the 
imaging-driven subtypes are generated.

Test for cluster independence

In our experiments, we would generate subtypes from multimodal data using unsu-
pervised clustering, which makes the assumption that there is a shared clustering 
assignment of participants from all input views, in our case, the three imaging modal-
ities. Before moving on to experiment design, we conducted a statistical test to check 
if this assumption holds [42], where the null hypothesis is that clusterings for two data 
views are independent of each other. In other words, if clusterings for two modalities 
are not independent of each other, we reject the null hypothesis, and the assumption 
that there’s a shared clustering on the given multimodal data holds.

Using the R package multiviewtest in [42], we conducted the test of cluster 
independence on both the 116 ROI features and 20 DGCCA embedding features ( Oj ) 
for comparison. Because this test can only be applied to two input views, we con-
ducted it on three pairs of imaging modalities-VBM versus AV45, VBM versus FDG 
and AV45 versus FDG. This test was conducted for each of the 6 settings, and the 
resulting test statistics and p-value are recorded in Table 4. When we tested on the 

Fig. 11  Variance Explained by components extracted from GCCA and DGCCA​

Table 4  Test independence of clusters generated from each pair of imaging modalities, using the 
original features ( Xj ) and DGCCA projected features ( XjUj)

Significant results (p-value ≤ 0.05) are shown in bold

Original features ( p = 116) DGCCA Projected Features 
( k = 20)

Test Statistic p-value Test Statistic p-value

VBM vs. AV45 1.089 0.99 11.959 <0.0001
VBM vs. FDG 1.742 0.38 102.786 <0.0001
AV45 vs. FDG 12.522 <0.0001 11.381 <0.0001
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116 ROI measures, we rejected the null hypothesis only for the pair FDG and AV45, 
indicating that there’s a shared clustering on FDG and AV45 data using the ROI meas-
ures, but we cannot concatenate VBM with either of these two modalities directly and 
generate valid subtypes. However, we rejected the null for all pairs of modalities when 
using 20 embeddings features generated from DGCCA, which means that we can 
apply clustering on the DGCCA embeddings learned from three modalities of data.

Experiments

We designed a total of five experiments, and the flowchart is shown in Fig.  12. In 
addition to the shared embeddings G learned by GCCA and DGCCA, we also used 
the ROI features from each imaging modality for comparison. The number of features 

GCCA Exp 4G

DGCCA Exp 5G

Clustering

Cluster 1 Cluster 2

EMCI LMCI

Original Diagnosis
Group

Healthy Controls

Genetic Association
Analysis

Disease Subtypes with
Novel Genetic Basis

Exp 1 XVBM

Exp 2 XAV45

Exp 3 XFDG

QT & Survival Analysis

Fig. 12  Experimental Flowchart

Table 5  Comparison of features used in clustering

The feature numbers used in Exps 5–6 were determined to explain 70% of total data variance respectively; see also Fig. 11

Experiments Features Used for Clustering # Features

Exp 1 VBM XVBM 116

Exp 2 AV45 XAV45 116

Exp 3 FDG XFDG 116

Exp 4 GCCA​ Ggcca 94

Exp 5 DGCCA​ Gdgcca 20
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for the five experiments are recorded in Table 5, and these features are used in subse-
quent clustering to generate imaging-driven MCI subtypes.

We used agglomerative clustering to generate 2 clusters from 308 samples, similar 
to the original MCI group (EMCI and LMCI), and based on the elbow plot in Fig. 13. 
Subtype 1 is assigned to the cluster with higher EMCI to LMCI ratio, corresponding 
to less disease severity where Subtype 2 is of lower EMCI to LMCI ratio and more 
disease severity.

To evaluate the clustering result, we computed the Calinski-Harabasz (CH) score [43] 
and Silhouette score [44] as internal evaluation measures. CH score computes the ratio 
of the sum of between-cluster distances and the sum of within-cluster distances. Silhou-
ette score measures how well a sample is matched to its own cluster versus the neighbor-
ing clusters. We also computed the Adjusted Mutual Information (AMI) [45] score to 
compare how similar the generated subtypes and the original EMCI/LMCI groups are.

Validation studies

To validate our subtypes, we first conducted the Wilcoxon rank-sum test on each of 
the 5 cognitive assessment and 6 brain volume baseline measures from ADNI QT-
PAD. To control for type 1 error, we adjusted the critical p-value of 0.01 using Bon-
ferroni correction. We also conducted survival and genetic association analysis to 
further investigate the subtypes generated from each experiment.

Survival analysis

We conducted survival analysis by fitting a semi-parametric Cox’s proportional hazard 
model for each of the 5 experiments and original MCI groups for comparison. The Cox 

Fig. 13  Elbow plot for picking cluster number using the distortion metric
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model (see Eq. 6) expresses the hazard function h(t|Xi) at time t for individual i, given p 
covariates, denoted by Xi . The population baseline hazard h0(t) may change over time.

We first selected observations from participants from QT-PAD whose diagnosis at each 
visit is either MCI, AD or MCI converted to AD. We fitted the model on the resulting 
976 observations from 304 MCI participants, with the 5 cognitive assessment 6 brain 
volume baseline measures and 4 covariates (age, gender, education and APOE e4) as 
model covariates, and added L1 and L2 penalty with their ratio being 1:1 to encourage 
sparse coefficients. Conversion curve is plotted for each subtype, showing the probabil-
ity of “survival” (not converting to AD) at different time points, measured in months. 
The model fit is evaluated using concordance index, and the log rank test is also con-
ducted to check the difference between the two subtypes/groups in each experiment.

In addition to survival analysis, we also plotted the progression curves using 5 cogni-
tive assessments and 6 brain volume longitudinal measures, from month 0 to 60, to visu-
alize the difference between the two subtypes in each experiment and the original MCI 
groups.

Genetic association analysis

Using the genetic data (2650 SNPs) on all 612 participants including controls (see 
Table 3), we ran PLINK case control association analysis [46] for each individual subtype 
generated in each experiment against the control group ( N = 219 ). As a comparison, 
we also conducted the case control analysis for the original group: EMCI vs. Control, 
LMCI vs. Control and AD vs. Control. While AD patients are not included in the MCI 
subtypes, we want to see if there’s overlap in terms of the identified genetic markers. 
The association analysis was ran using logistic regression given case control group as 
the phenotype, and with age, gender and education as covariates. APOE e4 allele (i.e., 
rs429358) was not included as a covariate in the analysis to check if our subtypes can 
identify the APOE e4 allele. We set the p-value threshold to 0.05 and controlled the false 
discovery rate (FDR) using the Benjamini-Hochberg (BH) procedure. Of note, given our 
modest sample size and SNPs pool, we selected a relatively liberal p-value threshold in 
order to suggest promising top findings for future investigation.

Abbreviations
AD	� Alzheimer’s disease
ADNI	� Alzheimer’s disease neuroimaging initiative
SMC	� Significant memory concern
EMCI	� Early mild cognitive impairment
LMCI	� Late mild cognitive impairment
MRI	� Magnetic resonance imaging
PET	� Positron emission tomography
CCA​	� Canonical correlation analysis
GCCA​	� Generalized canonical correlation analysis
DGCCA​	� Deep generalized canonical correlation analysis
ROI	� Region of interest
VBM	� Voxel-based morphometry
AV45	� [18F]florbetapir or 18F-AV-45
FDG	� Fluorodeoxyglucose or 18F-FDG

(6)h(t|Xi) = h0(t) exp

p
∑

j=1

βjXij
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Additional file 1: Fig. S1.Progression Curves. For the 11 cognitive and biomarker measurements, while we only 
usedthe baseline measure in our cluster and survival analysis, we also plotted their progression curve using the lon-
gitudinal measures for the subtypes and the original MCI groups. The line plots are generated by aggregatingpartici-
pants in the same subtype, where the line is the mean at a given time point and the shading is the 95%confidence 
interval.

Additional file 2: Table S1.Results for genetic association analysis in Fig. 9 sorted by chromosome number.Thresh-
olding at p= 0.05 with FDR correction, only SNPs that are significant in at least one case control associationtest are 
included and only p-values for significant results are recorded. Mapped gene(s) for each SNP are shown asthey are 
recorded in GWAS Catalog - SNPs in multiple genes are separated by comma, interactions are separated by”x”, and 
upstream anddownstream genes are separated by a hyphen for intergenic SNPs.
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