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Abstract

The study of phenomes or phenomics has been a central part of biology. The field of automatic phenotype acquisition
technologies based on images has seen an important advance in the last years. As with other high-throughput
technologies, it addresses a common set of problems, including data acquisition and analysis. In this review, we give an
overview of the main systems developed to acquire images. We give an in-depth analysis of image processing with its major
issues and the algorithms that are being used or emerging as useful to obtain data out of images in an automatic fashion.

Keywords: Algorithms; artificial vision; deep learning; hyperspectral cameras; machine learning; segmentation

Background

The development of systems to monitor large fields using the
Normalized Difference Vegetation Index (NDVI) started more
than 25 years ago when NDVI was used in the so-called remote
sensing field [1]. It was an important milestone in the advance
of automatic methods for analysing plant growth and biomass
[2]. Ever since, new technologies have increased our capacity
to obtain data from biological systems. The ability to measure
chlorophyll status from satellite images allowed plant health to
be measured in large fields and predict crops and productivity
in very large areas such as the Canadian prairies, Burkina Faso,
or the Indian Basin in Pakistan [3–6]. Thus, the field of remote
sensing is an important basis where knowledge about data ac-
quisition and analysis started. The development of phenotyping
devices using local cameras for crops took off using an array of
technologies including Infrared thermography tomeasure stom-
atal opening or osmotic stress [7–9]. Extraction of quantitative
data from images has been developed to study root development

[10–12] and has found a niche to identify germplasm resistant to
abiotic stresses in plants such as cereals [13], Arabidopsis [14],
and large-scale field phenotyping [15]. There are several recent
reviews addressing the different types of growing setups [16–22],
and we will not cover them in the current review.

Two main aspects to consider are the type of image acquired
and how to process it. There are a number of recent reviews
on phenomics and high-throughput image data acquisition
[15, 23–26]. In contrast, the majority of the literature concerning
image processing and analysis is found in books where meth-
ods are described in detail [27–31]. There are some very good
reviews on aspects of data acquisition and analysis, i.e., imag-
ing techniques [32], machine learning (ML) for high-throughput
phenotyping [33], or software for image analysis [34], but a de-
tailed review on the different types of data analysis is lacking.
In this review, we cover the current and emerging methods of
image acquisition and processing that allow image-based phe-
nomics (Fig. 1).
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Figure 1: Basic workflow in computer vision–based plant phenotyping.

Review
Image acquisition

Image acquisition is the process through which we obtain a dig-
ital representation of a scene. This representation is known as
an image, and its elements are called pixels (picture elements).
The electronic device used to capture a scene is known as an
imaging sensor. A charge-coupled device (CCD) and complemen-
tary metal oxide semiconductor (CMOS) are the most broadly
used technologies in image sensors. A light wavelength is cap-
tured by small analogic sensors, which will acquire major or mi-
nor charge depending on the amount of incident light. These
signals are amplified, filtered, transported, and enhanced by
means of specific hardware. A suitable output interface and a
lens in the same housing are all that is needed to perform image
acquisition. The elements enumerated above comprise the
main element of computer vision systems, the camera. Time
delay and integration (TDI) is an imaging acquisition mode
that can be implemented over CCD [35] or CMOS [36]. It im-
proves the features of the image acquisition system consid-
erably. TDI is used in applications that require the ability to
operate in extreme lighting conditions, requiring both high
speed and high sensitivity, e.g., inline monitoring, inspec-

tion, sorting, and remote sensing (for weather or vegetation
observation) [36].

The aforementioned technologies, CCD, CMOS, and TDI, con-
fer unique characteristics, which define the type of data a cam-
era can provide with a degree of robustness. There are fun-
damental differences in the types of performance the differ-
ent sensors offer. In recent years, CMOS technology has outper-
formed CCDs in most visible imaging applications. When se-
lecting an imaging sensor (a camera), CCD technology causes
less noise and produces higher-quality images, mainly in scenes
with bad illumination. It has a better depth of colour due to the
higher dynamic range. On the other hand, the CMOS sensors are
faster at processing images. Due to the hardware architecture
for pixel extraction, they need less electrical power to operate,
they allow a region of interest to be processed on the device, and
they are cheaper than CCDs. Furthermore, TDI mode with CCD
or CMOS imaging sensors is used for high-speed and low–light
level applications [37]. The latest technological developments in
cameras show that the trend of themanufacturers such as IMEC,
world-leader in nanoelectronics, is to fuse TDI technology with
CCD and CMOS characteristics in the same device [38]. TDI tech-
nology is expected to be applied to high-throughput phenotyp-
ing processes in the near future.
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Table 1: List of software tools for image processing

Vision libraries Source Language

OpenCV http://opencv.org C++,
Python,
Java, C#

EmguCV http://www.emgu.com/
PlantCV http://plantcv.danforthcenter.org Python
Scikit-image http://scikit-image.org
Bioimagetools,
bayesimages, edci,
DRIP, dpmixsim,
raster, . . .

https://cran.r-project.org/ R

Cimg http://cimg.eu C++
Simplecv http://simplecv.org
Fastcv https://developer.qualcomm.com/

software/fastcv-sdk
Ccv http://libccv.org
Vxl http://vxl.sourceforge.net
BoofCV http://boofcv.org Java
OpenIMAJ http://openimaj.org
JavaCV https://github.com/bytedeco/

javacv

The field of image acquisition is extremely developed in the
literature, but image acquisition systems can be classified into 7
groups that are suitable for phenotyping.

Mono-RGB vision
Mono-RGB vision systems are composed of a set comprising a
lens, imaging sensor, specific hardware, and input/output (IO)
interface. Depending on if they use a line or matrix of pixels,
they are classified as line cameras (or scanners) or matrix cam-
eras. Most computer vision phenotyping devices are based on
mono-RGB vision systems. Examples of mono-RGB vision de-
vices include Smart tools for the Prediction and Improvement of
Crop Yield, an automated phenotyping prototype of large pep-
per plants in the greenhouse. The system uses multiple RGB
cameras to extract 2 types of features: features from a 3D recon-
struction of the plant canopy and statistical features derived di-
rectly from RGB images [39]. A different approach has been used
with 2 cameras inside a growth chamber to measure circadian
growth features of Petunia, Antirrhinum, and Opuntia [40]. Two
cameras with low and high magnifications were used to carry
out phenotype studies of Arabidopsis thaliana seeds. The system
is mounted on a 3-axis gantry, and the rotation of the samples
allows the gravitropic bending response to be determined in the
roots, as well as its posterior quantification [41]. Recently a high-
throughput RGB system has been developed to identify quanti-
tative trait loci (QTL) involved in yield in large recombinant in-
bred lines in maize [42], demonstrating the increasing impact of
this approach in phenomics.

These devices have excellent spatial and temporal resolu-
tion; i.e., they can produce a very large number of images in
very short periods and at a very low cost. They are portable,
and there are many software tools to perform image processing
(Table 1). Systems based onmono-RGB vision allow a quantifica-
tion of the plant canopy [43], as well as sufficient computation of
vegetation indices for most purposes. The main disadvantages
are caused by the overlap of plant organs during growth and nu-
tation phases and the relative position of the organswith respect
to the device that makes the precise quantification difficult. In
addition, these devices are affected by variations in illumination
when used outdoors. The trend in outdoor plant phenotyping

is to combine mono-RGB systems with other systems such as
light detection and ranging (LIDAR) devices (see below) or ther-
mal imaging, or adding new bands or filters to the camera that
allow the segmenting of specific regions of the spectrum [44, 45].

Stereo vision
Stereo vision systems try to correct a drawback of mono-RGB
vision systems for distance measurement. The architecture of
stereo vision systems emulates the behaviour of human vision
using 2mono vision systems. Basically, after locating a point in 2
mono vision systems, it is possible to compute the distance from
the point to the system. Images produced are known as depth
maps [46]. A stereo vision system has been used by Biskup and
colleagues [47] to obtain structural features of plant canopies.
The 3D reconstruction has been successfully employed to obtain
3D models of plants, thus demonstrating the power of this ap-
proach [48]. Simple depth reconstructions help to define stems,
leaves, and grapes, showing the potential of this technology [49].
An RGB camera mounted on a mobile robot is used as an auto-
mated 3D phenotyping of vineyards under field conditions. Se-
quentially, the system captures a set of images, which are used
to reconstruct a textured 3D point cloud of the whole grapevine
row [50]. Stereo vision has been developed to perform high-
throughput analysis of rapeseed leaf traits. The system uses 2
identical RGB cameras to obtain stereo images for canopy and
3D reconstruction [51]. Developing a 3D-mesh segmentation has
allowed cotton growth to be analysed [52], showing the further
possibilities of 3D imaging.

Themain advantage of 3D systems is their simplicity; 2 cam-
eras are enough to obtain depthmaps. Stereo vision has evolved
intomulti-view stereo (MSV) and has found a place in plant phe-
notyping [53]. Furthermore, MSV is a low-cost 3D image acquisi-
tion system compared with other technologies such as LIDAR or
tomography imaging [54]. Stereo vision systems have important
weaknesses. They are affected by changes of the scene illumi-
nation, they need a high-performance computational system to
carry out stereo-matching algorithms, and they have poor depth
resolution [55]. These limitations are increased in outdoor envi-
ronments, as image segmentation becomes more challenging.

Multi- and hyperspectral cameras
Multispectral and hyperspectral cameras have been used in nu-
merous fields of science and in industrial applications [56–61].
The spectral resolution is the main factor that distinguishes
multispectral imagery from hyperspectral imagery [62]. Multi-
spectral cameras are devices able to capture images from a
number of discrete spectral bands. The number of bands has
increased in the last decade as technology has improved. Cur-
rently, themain cameramanufacturers offer multispectral cam-
eras acquiring between 3 and 25 bands, including visible RGB
channels, near infrared (NIR), or a set of custom bands, with a
tendency to provide increasing number of bands [63]. The spec-
tral bands may not be continuous; thus for 1 pixel we obtain a
vector of information comprising the number of elements cor-
responding to the number of bands registered. Hyperspectral
systems may reach resolutions of a few nanometers in wave-
length, obtaining for each pixel a digital signature that may
contain several hundreds of continuous bands within a specific
range of wavelengths [64]. Traditionally, both multispectral and
hyperspectral imaging have been used for remote sensing and
have an increased number of applications in phenomics. A mul-
tispectral system has been developed to improve the original
colour of images for fruit recognition [65]. The authors fused
the original colour image with an infrared image using nonlin-
ear Daubechies wavelet transform (DWT). Thus, the additional
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Figure 2: An overview of different spectra used for phenotyping and the associated cameras. The names of different indexes are found in Table 2.

information from the second image allows the original to be
improved.

The use of hyperspectral cameras is increasing in pheno-
typing experiments as they allow the identification of physio-
logical responses, pathologies, or pests in a noninvasive way.
Using hyperspectral images, a system has been developed to
identify pathogens in barley leaves using probabilistic topic
models [66]. A hyperspectral microscope was used to deter-
mine spectral changes on the leaf and cellular level of barley
(Hordeum vulgare) during resistance reactions against powdery
mildew (Blumeria graminis f. sp. hordei, isolate K1) [67]. A detailed
description of the different wavelengths and combinations used
in multispectral and hyperspectral cameras can be seen in Fig.
2, and their uses in Table 2. We expect to see an increase in phe-
nomic setups using multispectral and hyperspectral cameras in
the future. An emerging issue will be the data analysis as the
number of pictures doubles with each additional spectrum used
for analysis (see below).

ToF cameras
The Time of Flight cameras (ToF cameras) have been one of the
last imaging devices to be incorporated into automatic plant

phenotyping [68]. ToF has as a general principle the measure-
ment of the distance between the objective of the camera and
each pixel. This is achieved by measuring the time it takes for a
signal emitted in NIR to come back, reflected by the object. This
allows a precision 3D reconstruction. Stereo vision coupled with
ToF images has been implemented to increase the performance
of methods of image segmentation to obtain leaf areas [69].
Beyond the tedious hand work required for manual analysis,
sampling is done in a non-destructiveway. Depthmaps obtained
by a ToF camera, together with colour images, are used to carry
out the 3D modelling of leaves. The system is mounted on a
robotic arm, which allows image acquisition to be automated
[70]. A ToF has been successfully used to identify QTL regulating
shoot architectures of Sorghum by means of 3D reconstruction
[71].

Microsoft Kinect is a low-cost image acquisition system de-
signed for video gaming that can be used for characterization
and for tracking of phenological parameters [72]. The device is
composed of an infrared projector and a camera that generates
a grid fromwhich the location of a nearby object in 3D can be as-
certained [73]. Kinect has been used to measure plant structure
and size for 2 species growing in California grasslands [74]. The
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Table 2: A list of indexes, the corresponding wavelength ranges, and their use to analyse plant material

Index Range, nm Applications

CAI—Cellulose Absorption Index 2200–2000 Quantification of mixed soil–plant litter scenes [178], estimation of
non-photosynthetic biomass [179]

LCA—Lignin-Cellulose Absorption
Index

2365–2145 Measure of the effects of soil composition and mineralogy of crop residue
cover [180]

NTDI—Normalized Difference
Tillage Index

2359–1150 Used for identifying crop residue cover in conventional and conservation
tillage systems [181]

LWVI-1 – Normalized Difference
Leaf water VI 2

1094–893 Discrimination of sugarcane varieties, allowed to detect large amounts of
non-photosynthetically active constituents within the canopy [182]

DLAI—Difference Leaf Area Index 1725–970 Used for estimating leaf area index based on the radiation measurements in
the visible and near-infrared [183]

PWI—Plant Water Index 970–902 Water content estimation and study of the characteristics of canopy
spectrum and growth status [184, 185]

NLI—Nonlinear Vegetation Index 1400–780 Measurement of plant leaf water content; in combination with others,
indexes can detect interaction of biochemicals such as protein, nitrogen,
lignin, cellulose, sugar, and starch [186]

DWSI—Disease Water Stress Index 1657–547 To predict larval mosquito presence in wetland [187] and detect sugarcane
“orange rust” disease [188]

NDVI—Normalized Difference
Vegetation Index

800–670 Measurement of significant variations in photosynthetic activity and
growing season length at different latitudes [189]

MCARI—Modified Chlorophyll
Absorption Ratio Index

700–670 Study of vegetation biophysical parameters, as well as external factors
affecting canopy reflectance [190]

GI—Greenness Index 670–550 Characterization of corn nitrogen status [191]
CAR—Chlorophyll Absorption
Ratio

700–500 Estimating the concentration of individual photosynthetic pigments within
vegetation [192]

GNDVI—Green Normalized
Difference Vegetation Index

800–550 Providing important information for site-specific agricultural
decision-making [193] and for identification of chlorophyll content and
tissue nitrogen [194]

OSAVI—Optimized Soil Adjusted
Vegetation Index

800–670 Measurement of highly sensitive chlorophyll content variations that are very
resistant to the variations of LAI and solar zenith angle [195]

CI r—Coloration Index red 780–710 Mapping of coastal dune and salt marsh ecosystems [196]
CI g—Coloration Index green 780–550 Characterization of the state of soil degradation by erosion [197]

quantitative 3D measurements of the architecture of the shoot
and structure of the leaves can be performed when proper seg-
mentation algorithms are developed, suggesting some potential
for ToF systems [75].

The main disadvantages of this acquisition system are the
low resolution, a reduced distance range of a few meters, and
the high dependence on the reflecting surface for imaging. As
a result, it cannot operate under strong sunlight and is more
appropriate for indoor conditions. Its reduced cost and the
possibility of obtaining 3D structures of entire plants, as well as
of individual organs, make this system very attractive for indoor
phenotyping.

LIDAR technology
LIDAR is a remote sensing technology developed at the begin-
ning of the 70s to monitor the Earth’s surface [76]. LIDAR uses
a laser pulse light to measure the distance between the light
source and the object by calculating the time of emission and the
time of reflected light detection. It allows the creation of a cloud
of points that reconstruct the 3D structure of an object [77, 78].
LIDAR has been used in image acquisition from distances of
thousands of kilometres to centimetres, demonstrating the
great potential of these types of devices. Satellite-based LIDAR
systems are used for the measurements of vegetation canopy
height, area, volume or biomass, etc. [79–81]. Recent develop-
ment using both manned and unmanned flights has allowed
the estimation of biomass dynamics of a coniferous forest us-
ing Landsat satellite images, together with ground and airborne
LIDAR measurements [82]. Terrestrial LIDAR sensors are ap-
plied to detect and discriminate maize plants and weeds from

soil surface [83]. Short-range LIDAR can be deployed for high-
throughput phenotyping systems for cotton plant phenotyp-
ing in the field [84] or tomato leaf area by 3D laser recon-
struction [85]. Fully automated crop monitoring is feasible us-
ing centimetre ranges from robotized or gantry systems [43]. An
autonomous robotic system has allowed 3D mapping of plant
structures to be performed with millimetric precision [86]. A
LASER SCAN mounted on an XYZ gantry system was used to
estimate the growth measures and structural information of
plants through laser triangulation techniques [87]. Thus, using
different devices, LIDAR has an impressive range of possibilities
for plant phenomics.

Some shortcomings of LIDAR devices for plant phenotyping
are the absence of colour in the measurement, excessive time
to compute the cloud points, low precision for massive phe-
notyping, scanning noises caused by wind, rain, insects, and
small particles in the air, and the requirement of calibration.
Recent advantages suggest that the use of LIDAR technologies
could overcome some of the challenges for the next-generation
phenotyping technologies [88]. Developments in multispectral
LIDAR instruments show novel systems that are capable of
measuring multiple wavelengths and obtaining vegetation in-
dexes (see below) [89, 90] or measuring arboreal parameters [91].
The massive adoption of LASER technologies by autonomous
car manufactures has fostered the development of 3D high-
definition LIDAR (HDL) with real-time (RT) capacities. The new
3D HDLs are capable of generating 1.3 million points per second
with a precision of 2 cm and distances of up to 120 meters [92].
These new devices open the door to the RTmassive phenotyping
in outdoor and indoor crops.
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Thermography and fluorescence imaging
Thermography is a widely used technology in remote sensing
and plant phenotyping [93–96]. Thermographic cameras are able
to acquire images at wavelengths ranging from 300 to 14 000 nm
[97], thus allowing the conversion of the irradiated energy into
temperature values once the environmental temperature is as-
sessed. Plants open stomata in response to environmental cues
and circadian clock depending on the type of photosynthetic
metabolism they have [98, 99]. The evapotranspiration can be as-
sessedwith thermography [100], and quantification can bemade
at different scales, such as a leaf, a tree, a field, or a complete
region. Water stress and irrigation management are 2 fields of
application of thermography imaging [101–104]. Thermography
imaging can detect local changes of temperature produced due
to pathogen infection or defence mechanisms [105]. Oerke et al.
used a digital infrared thermography to correlate the maximum
temperature difference (MTD) of apple leaves with all stages of
scab development [106].

Fluorescence imaging has been used in a large number of ex-
perimental setups, as ultraviolet (UV) light in the range of 340–
360 nm is reflected by different plant components as discrete
wavelengths [32]. The corresponding wavelengths emitted are
cinnamic acids in the range of green-blue (440–520 nm). Early
experiments using reflected fluorescence allowed the identifica-
tion of phenylpropanoid synthesis mutants in Arabidopsis [107].
Chlorophyll fluorescence emits in red and far-red (690–740 nm).
It is an important parameter that has been studied as a proxy
for different biological processes such as circadian clock or plant
health [8, 108, 109]. A system based on a UV light lamp and a
conventional camera with a UV filter to avoid RGB and infrared
(IR) images has been used to identify changes in UV absorbance
related to pollination [110]. Multicolour fluorescence detection
uses the combination of chlorophyll and secondary metabolite–
emitted fluorescence to determine plant health in leaf tissues
[111].

Thermography imaging results in an estimable tool for the
monitoring of genotypes and detection of plant diseases [112]
where all the specimens are located under strict control con-
ditions: Temperature, wind velocity, irradiance, leaf angle, and
canopy leaf structures are potential issues for quality image
acquisition. The next generation of thermography imaging for
phenotyping will have to resolve drawbacks related to tempo-
ral variations of environment conditions, aspects relating to an-
gles of view, distance, sensitivity, and the reproducibility of the
measurements [104]. Both thermographic and fluorescent im-
ages capture a single component, and images are in principle
easy to analyse as segmentation based on thresholds can be
applied to the acquired images. Combining thermographic and
fluorescent imaging requires sophisticated data analysis meth-
ods based on neural networks to obtain quality data, but it is an
emerging solution [111].

Tomography imaging
Magnetic resonance imaging (MRI) is a non-invasive imaging
technique that uses radio frequency (RF) magnetic fields to con-
struct tomographic images [113]. Commonly, MRI has been used
to investigate the anatomical structure of the body (especially
the brain) in both health and disease [114]. In plant phenomics,
MRI is used to visualize internal structures andmetabolites. This
method poses a great potential to monitor physiological pro-
cesses occurring in vivo [115]. MRI has allowed the development
of root systems over time in the bean to be mapped [116], mois-
ture distribution to be visualized during development in rice
[117], and water presence to be analysed during the maturity
process of barley grains [118].

Positron emission tomography (PET) is a nuclear medicine
imaging modality that allows the assessment of biochemical
processes in vivo, to diagnose and stage diseases and monitor
their treatment [119]. Karve et al. [120] presented a study about
C-allocation (carbon allocation from CO2 through photosysthe-
sis) in large grasses such as Sorghum bicolor. The study concluded
that the commercial PET scanners can be used reliably, not only
to measure C-allocation in plants but also to study dynamics in
photoassimilate transport.

X-ray computed tomography (x-ray CT) employs x-rays to
produce tomographic images of specific areas of the scanned
object. The process of attenuation of rays together with a rota-
tion and axial movement over objects produces 3D images [32].
A high-throughput phenotyping system based on x-ray CT is 10
timesmore efficient than human operators, being capable of de-
tecting a single tiller mutant among thousands of rice plants
[121]. The remarkable penetration of x-rays has made this tech-
nology a great ally of phenotyping carried out below ground.
The study of root systems and their quantification has been a
field of habitual application of x-ray CT [122–126]. New develop-
ments address the reduction of penetrability and the increase of
the image resolution of x-ray CT in plant tissue using phospho-
tungstate as a contrast agent, due to its capacity of increasing
the contrast and penetrability of thick samples [127].

MRI, PET, and x-ray imaging techniques are available for
screening 3D objects. MRI and PET are 2 non-destructive and
non-invasive scanning technologies that have been applied in
plant sciences to acquire 3D structural information [128]. MRI
and PET data acquisition is time consuming, and software tools
need to be further developed to analyse data and obtain physi-
ologically interpretable results [97]. High-resolution x-ray com-
puted tomography (HRXCT) promises to be the broadest non-
destructive imaging method used in plant sciences. HRXCT will
provide 3D data at a resolution suited for detailed analysis of
morphological traits of in vivo plant samples and at a cellular
resolution for ex vivo samples [128]. In terms of the development
of devices, the trend will be to increase the resolution of images,
the size of the fields of view, and increase the devices’ portability
[129].

Image analysis

Extracting information from images is performed through the
process of segmentation. The aim of a segmentation procedure
is to extract the components of an image that are of interest, i.e.,
object or region of interest from the rest of the image, i.e., back-
ground of the image or irrelevant components. Thus, we end up
with a partitioned image with significant regions. The signifi-
cant regions may be defined as foreground vs background or by
selecting a number of individual components from an image.
The construction of the selected regions is based on the image
characteristics such as colour (colour spaces), spectral radiance
(vegetation indexes), edge detection, neighbour similarity [130],
or combinations that are integrated via a machine learning pro-
cess [131]. In some cases, preprocessing is required in order to
obtain a meaningful segmentation.

Image preprocessing
Image preprocessing is an important aspect of image analysis.
The aim of image preprocessing is to improve contrast and elim-
inate noise in order to enhance the objects of interest in a given
image [132]. This process can be extremely helpful to enhance
the feature extraction quality and the downstream image anal-
ysis [133]. Preprocessing can include simple operations such as
image cropping, contrast improvement, or other significantly
more complex operations such as dimensionality reduction via
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principal component analysis or clustering [33]. One preprocess-
ing pipeline has been proposed for plant phenotyping based on
converting the image to grayscale, application of a median fil-
ter, binarization, and edge detection [134]. A similar preprocess-
ing method has been developed to identify plant species under
varying illumination conditions [135]. It comprises conversion
to grayscale, image binarization, smoothing, and application of
a filter to detect edges. In a comparative study to analyze leaf
diseases, histogram equalization was found to be the best way
to obtain preprocessing of color images converted to grayscale
[136]. However, RGB images have been found to perform bet-
ter than grayscale conversions when identifying leaf pathogens
[137].

We cannot conclude that a single preprocessing method will
outperform other methods. The quality and type of image are
fundamental to selecting a type of preprocessing procedure.
Nevertheless, preprocessing is a basic step that can improve im-
age analysis, and sometimes make it possible. It should be de-
scribed in the materials and methods of image procedures to
make data comply to the new standards—Findability, Accessi-
bility, Interoperability, and Reusability (FAIR) [138].

Image segmentation
As we mentioned above, image segmentation is the core of
image processing for artificial vision-based plant phenotyping.
Segmentation allows the isolation and identification of objects
of interest from an image, and it aims to discriminate back-
ground or irrelevant objects [139]. The objects of interest are de-
fined by the internal similarity of pixels in parameters such as
texture, colour, statistic [133], etc. (See a list of Open software
libraries for image segmentation in Table 1.)

One of the simplest algorithms used is threshold segmen-
tation, based on creating groups of pixels on a grayscale ac-
cording to the level of intensity, thus separating the background
from targets. Such an approach has been used with Android OS
(ApLeaf) in order to identify plant leaves [140].

The Otsu’s method [141] is a segmentation algorithm that
searches for a threshold that minimizes the weighted within-
class variance [132]. This method has been used for background
subtraction in a system that records and performs automatic
plant recognition [142] and can give high-contrast segmented
images in an automatic fashion [143]. Under certain circum-
stances, it can underestimate the signal, causing under segmen-
tation, and is significantly slower than other thresholdingmeth-
ods [132].

The Watershed [144] transformation is a popular algorithm
for segmentation. It treats an image as a topological surface that
is flooded, and seed regions are included, usually by the user.
This generates an image with gradients of magnitudes, where
crests appear in places where borders are apparent (strong
edges) and causes segmentation to stop at those points [130].
It has been used to identify growth rate [145], recognition of
partially occluded leaves [56], individual tree crown delineation
[146], and leaf segmentation [147].

Grabcut [148] is a segmentation algorithm based on graph cut
[149]. It is created on graph theory to tackle the problem of sep-
arating an object or foreground from the background. The user
should mark a rectangle (bounding box) surrounding the object
of interest, thus defining the outrebound of the box as back-
ground [150]. This algorithm has been tested to extract trees
from a figure, but it has been successful only with very sim-
ple backgrounds [151]. More recently, Grabcut has been deployed
as a segmentation algorithm in a pipeline for plant recognition
with multimodal information, i.e., leaf contour, flower contour,
etc. [152]. Grabcut loses precision or even fails when pictures

have complex backgrounds but is highly precise with simple
backgrounds [151, 142].

Snakes are a special type of active contour [153] and are used
asmethods to fit lines (splines) either to open or close edges and
lines in an image. Thesemethods have been used for face recog-
nition, iris segmentation, and medical image analysis. Within
the field of plant phenotyping, there are procedures where ac-
tive contours are used inside a protocol constructing a vector of
features with data of colour intensity, local texture, and a previ-
ous knowledge of the plant incorporated via Gaussian mixture
models, previously segmented [154]. These steps give an initial
rough segmentation, upon which active contours can operate
with a much higher precision.

Active contours have used images of flowers for plant recog-
nition [155], based on a combination of the algorithm proposed
by Yonggang and Karl [156] and the model of active contours
without edges [157].Whilst thework proposed byMinervini et al.
[154] appears to give significantly better results compared with
the results of Suta et al. [155], the usage of images with a nat-
ural background may be related to the apparent differences in
segmentation. Thus, a current problem concerning the compar-
ison of algorithms and procedures lies with the different back-
grounds used for image acquisition.

Features extraction
Features extraction constitutes one of the pillars of the identi-
fication and classification of objects based on computer vision.
Beyond the raw image, a feature is information that is used to re-
solve a specific computer vision problem. The features extracted
from an image are disposed in the so-called “feature vectors.”
The construction of feature vectors uses awide set ofmethods to
identify the objects in an image. Themain features are edges, in-
tensity of image pixels [39], geometries [158], textures [154, 159],
image transformations, e.g., Fourier [160] or Wavelet [65, 161] or
combinations of pixels of different colour spaces [131]. The end
goal of feature extraction is to feed up a set of classifiers and
machine learning algorithms (see below).

One system proposed uses a feature vector composed of a
combination of RGB and CIE L∗a∗b∗ colour spaces to segment the
images captured during the day [131]. The night-time image seg-
mentation computed a vector composed of statistical features
over 2 decomposition levels of the wavelet transform using IR
images.

Iyer-Pascuzzi et al. presented an imaging and analysis plat-
form for automatic phenotyping to identify genes underlying
root system architecture. The authors employed a set of 16 sta-
tistical, geometric, and shape features obtained from 2297 im-
ages from 118 individuals such as median and maximum num-
ber of roots, the total root length, perimeter, and depth, among
others [162].

There are a number of algorithms to identify invariant fea-
ture detectors and descriptors. This type of image analysis en-
sures the detection of points of interest in a scale- and rotation-
independent manner. This is crucial for camera calibration and
for matching to produce a set of corresponding image points
in 3D image reconstruction. Furthermore, it allows the iden-
tification of points of interest even when they change scale
and/or position or situations of uncontrolled illumination, a
common issue when phenotyping plants. The Scale Invariant
Features Transforms (SIFT) [163], Speeded-Up Robust Features
(SURF) [164], and the Histograms of Oriented Gradients (HoG)
[165] are algorithms used to extract characteristics in computer
vision, and they have been extended to plant phenotyping. Wei
et al. [166] presented an image-based method that automati-
cally detects the flowering of paddy rice. The method uses a
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Table 3: List of machine learning software libraries and their
languages

Libraries ML/DL Source Language

MICE, rpart, Party,
CARET,
randomForest, nnet,
e1071, KernLab,
igraph, glmnet,
ROCR, tree, Rweka,
earth, klaR,

https://cran.r-project.org/ R

Scikit-learn http://scikit-learn.org/stable/ Python
Tensorflow https://www.tensorflow.org/
Theano http://deeplearning.net/software/

theano
Pylearn2, http://deeplearning.net/software/

pylearn2
NuPIC http://numenta.org/
Caffe http://caffe.berkeleyvision.org/
PyBrain http://pybrain.org/
Weka http://www.cs.waikato.ac.nz/

ml/weka/
Java

Spark http://spark.apache.org/
Mallet http://mallet.cs.umass.edu/
JSAT https://github.com/EdwardRaff/

JSAT
ELKI http://elki.dbs.ifi.lmu.de/
Java-ML http://java-ml.sourceforge.net/
Accord http://accord-framework.net/ C#, C++, C
Multiboost http://www.multiboost.org/
Shogun http://shogun-toolbox.org/
LibSVM http://www.csie.ntu.edu.tw/

∼cjlin/libsvm/
mlpack http://mlpack.org/
Shark http://image.diku.dk/shark/
MLC++ http://www.sgi.com/tech/mlc/

source.html

scale-invariant feature transform descriptor, bag of visual
words, and a machine learning method. The SIFT algorithm has
been used to combine stereo and ToF images with automatic
plant phenotyping. It can create dense depth maps to identify
pepper leaf in glasshouses [69]. SIFT and SURF algorithms have
been tested for detecting local invariant features for obtaining
a 3D plant model from multi-view stereo images [167]. A HoG
framework allows the extraction of a reliable quantity of pheno-
typic data of grapevine berry using a feature vector composed of
colour information [168].

So far, feature extraction has been an arduous and difficult
task, requiring the testing of hundreds of feature extraction al-
gorithms and a greater number of combinations between them.
This task demands expert skills in different subjects. The suc-
cess in the identification does not depend on the robustness of
the classification methods, but on the robustness of the data.

Machine learning in plant image analysis
The amount of data generated in current and future phenomic
setups with high-throughput imaging technologies has brought
the use of machine learning (ML) statistical approaches. Ma-
chine learning is applied in many fields of research [169–171].
As phenotyping can generate terabytes of information, ML tools
provide a good framework for data analysis. A list of ML libraries
can be found in Table 3. A major advantage of ML is the possi-
bility of exploring large datasets to identify patterns using com-
binations of factors instead of performing independent analysis
[33].

Among the ML algorithms, a predictive model of regression
has been used to phenotype Arabidopsis leaves, based on geo-
metric features as a training dataset [158]. Three different algo-
rithms were tested, k Nearest Neighbour (kNN), Support Vector
Machine (SVM), and Naı̈ve Bayes, to segment Antirrhinum majus
leaves. Colour images have a characteristic vector intensity in
the RBG and CIE L∗a∗b∗, while the NIR vector is obtained with
the wavelet transform. The best results were obtained with kNN
for colour images and SVM for NIR. This shows that segmen-
tation has several components, as mentioned before, including
the wavelength of image acquisition [131].

As the specific wavelength used for image acquisition plays
a key role in the type of data obtained, hyperspectral cameras
are becoming important tools; however, hyper images can be in
the order of gigabites of size, making ML a necessity. Examples
of coupling hyperspectral and thermal imaging with ML have al-
lowed the early detection of stress caused by Alternaria in Bras-
sica [172]. The best image classification was obtained doing a
second derivative transformation of the hyperspectral images
together with a back propagation of neural networks, allowing
the identification of fungi on leaves days after infection [172].

A current concept derived from ML is deep learning (DL),
comprising a set of algorithms aimed to model with a high level
of abstraction. This allows the development of complex con-
cepts starting from simpler ones, thus getting closer to the idea
of artificial intelligence (AI) [173]. Convolutional neural networks
(CNN) are an example of DL derived from artificial neural net-
works (ANN). These multi-layered networks are formed by a
layer of neurons that work in a convolutional way, reducing the
sampling process to end with a layer of perception neurons for
final classification [174]. Recently DL has been implemented us-
ing a CNN to automatically classify and identify different plant
parts [175], thus obtaining both classification and localization
that significantly improve the current methods. A CNN has been
used to detect plant pathogen attacks [176]. Although the train-
ing period is computationally heavy, requiring several hours of
CPU clusters, classification was performed in less than 1 second
[176]. Nevertheless, DL is a step forward in ML and has great po-
tential to allow the management and analysis of the data pro-
duced in phenomic experiments.

Although direct testing maybe the best way to determine the
superior algorithm in each case, there are a number of exam-
ples that may guide initial approaches [33, 177, 178]. As a gen-
eral rule, discriminating methods such as SVM, ANN, and kNN
give better results in large datasets that are labelled [33]. Gen-
erative methods such as Naive Bayes, Gaussian mixture mod-
els, and Hide Markov models give better results with smaller
datasets, both labelled and unlabelled. The use of unsupervised
algorithms, i.e., k-means, may help identify unexpected charac-
teristics of a dataset. As mentioned above, preprocessing plays
a fundamental role in increasing the ML output. A summary of
the complete pipeline of image analysis, including sensors, pre-
processing, segmentation procedures, feature extractions, and
machine learning algorithms, can be found in Table 4.

Conclusions and Future Prospects

The implementation of phenomic technologies is a welcome
change toward reproducibility and unbiased data acquisition in
basic and applied research. A successful approach requires in-
tegrating sensors with wavelength and image acquisitions that
will allow the proper identification of the items under analy-
sis. A lot of work has been conducted in indoor setups, where
reasonable conditions can be created to obtain high-quality im-
ages amenable to further processing. The difficulty with outdoor

https://cran.r-project.org/
http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://deeplearning.net/software/theano
http://deeplearning.net/software/theano
http://deeplearning.net/software/pylearn2
http://deeplearning.net/software/pylearn2
http://numenta.org/
http://caffe.berkeleyvision.org/
http://pybrain.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://spark.apache.org/
http://mallet.cs.umass.edu/
https://github.com/EdwardRaff/JSAT
https://github.com/EdwardRaff/JSAT
http://elki.dbs.ifi.lmu.de/
http://java-ml.sourceforge.net/
http://accord-framework.net/
http://www.multiboost.org/
http://shogun-toolbox.org/
http://www.csie.ntu.edu.tw/protect $
elax sim $cjlin/libsvm/
http://www.csie.ntu.edu.tw/protect $
elax sim $cjlin/libsvm/
http://mlpack.org/
http://image.diku.dk/shark/
http://www.sgi.com/tech/mlc/source.html
http://www.sgi.com/tech/mlc/source.html
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setups increases as a result of limitations in the actual image ac-
quisition devices and the uncontrolled conditions that directly
affect image quality. The new technologies such as the high-
definition LIDAR or the multi-hyperspectral cameras have great
potential to improve in the near future, especially in outdoor en-
vironments.

Preprocessing and segmentation data are 2 aspects of data
treatment and acquisition that require careful design in order
to avoid distortions and reproducibility [138]. As images are
machine-produced data, but image types and processing proce-
dures may be very different, the standardization of image cap-
ture, preprocessing, and segmentation may play an important
role. Furthermore, a single procedure for image analysis can-
not be considered a better choice, and it is the researcher that
needs to assess the different algorithms to come up with an op-
timized procedure for their specific setup. It is a matter of time
until databases with raw images become part of the standard in
phenomics; using images very much like NCBI or Uniprot plays
a key role in genomic and proteomic projects. With the decrease
in the price of hyperspectral devices, new experiments may be
performed that produce even larger datasets, and these datasets
will have to go through artificial intelligence–based data analysis
in order to give the researchers results interpretable by humans.
We guess that, like in other omic approaches, therewill be a con-
fluence of standard procedures that are not currently common
ground, making the current literature look intimidatingly di-
verse. Nevertheless, most of the basic processes described here
are shared by the different experimental setups and data anal-
ysis pipes.
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