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Abstract: PDZ domains are abundant interaction hubs found in a number of different proteins
and they exhibit characteristic differences in their structure and ligand specificity. Their internal
dynamics have been proposed to contribute to their biological activity via changes in conformational
entropy upon ligand binding and allosteric modulation. Here we investigate dynamic structural
ensembles of PDZ3 of the postsynaptic protein PSD-95, calculated based on previously published
backbone and side-chain S2 order parameters. We show that there are distinct but interdependent
structural rearrangements in PDZ3 upon ligand binding and the presence of the intramolecular
allosteric modulator helix α3. We have also compared these rearrangements in PDZ1-2 of PSD-95
and the conformational diversity of an extended set of PDZ domains available in the PDB database.
We conclude that although the opening-closing rearrangement, occurring upon ligand binding,
is likely a general feature for all PDZ domains, the conformer redistribution upon ligand binding along
this mode is domain-dependent. Our findings suggest that the structural and functional diversity of
PDZ domains is accompanied by a diversity of internal motional modes and their interdependence.
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1. Introduction

The postsynaptic density (PSD) of excitatory synapses is a well organized, dynamic network of
proteins involved in processes of synaptic plasticity, learning and memory [1]. PSD-95 is the most
abundant scaffold protein of the PSD taking part in a multitude of protein–protein interactions within
the network [2]. It is involved in mechanisms/procedures including the stabilization, recruitment
and trafficking of AMPA receptors to the postsynaptic membrane and dendritic spine morphogenesis
during neurodevelopment, as well as in glutamatergic transmission and synaptic plasticity. As a
MAGUK protein family member, PSD-95 contains 3 PDZ domains, an SH3 (Src homology 3) domain
and a GK (guanylate kinase) domain. PSD-95 and related MAGUK proteins have been suggested to
have two supramodular parts, the PDZ1-2 tandem and the PDZ3-SH3-GK domain unit. The PDZ1-2
tandem was shown to exhibit altered interdomain dynamics upon ligand binding [3]. In a recent
computational study we have mapped the possible interdomain orientations in this supramodule
and concluded that ligand binding modulates the structure and dynamics of the loop regions also
participating in the interdomain interface, thereby suggesting a mechanistic link between intra- and
interdomain dynamics [4]. The PDZ3-SH3-GK supramodule has also been shown to behave as a
functionally coupled unit [5]. Models of the supertertiary structure of this supramodule suggest
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interactions between the PDZ3 and SH3 domains as well as a phopshorylation-dependent binding of a
linker segment into the peptide binding groove of PDZ3 [6,7].

PDZ domains (named after three proteins in which they were first identified: PSD-95, Discs-large,
ZO-1) are around 90 amino acid long globular modules consisting of five to six β-sheet and 2 α-helices
in a conserved fold with a binding pocket between the second β-sheet (β2) and the second α-helix.
PDZ domains typically interact with the C-terminal region of various peptides, but other forms of
interactions are also known [8]. They are regularly classified according to the C-terminal sequences
(last four residues) of their binding partners, although the specificity rules governing the interactions
are more sophisticated. Structured extensions or additional elements (helices, loops, β-strands) can be
found in a number of PDZ domains, which may influence binding. There are a number of studies aimed
at identifying allosteric networks in PDZ domains, the results of which can vary widely depending
on the methodology used [9]. Computational and experimental investigations on different domains
conclude that although allostery is a general feature of PDZ domains, the exact residue networks are
not necessarily the same and should be assessed separately for each case [10–12].

PDZ3 of PSD-95 has been intensively studied both experimentally and by computational methods.
It is a common subject of folding, evolutionary and mutational studies to assess the role of individual
residues and interactions in ligand binding and allostery [13]. Statistical coupling analysis along with
comprehensive mutational studies addressing the energetic coupling between residues identified
generally different networks, although they all highlight the role of residues in strands β2, β3 and
helix α2 [12,14–20]. Besides the common features of a PDZ domain fold, PDZ3 exhibits an additional
C-terminal α-helical extension (termed α3 hereafter, Figure 1). Using NMR relaxation analysis, this extra
helix was shown to act as an intramolecular allosteric modulator of ligand binding by comparing
a construct bearing the full α3 helix with a variant lacking the last seven residues, termed ∆7CT.
Truncation of the third helix leads to an over twentyfold decrease in the binding affinity, and the
mechanism of this allosteric coupling was suggested to be of entropic origin by experiments [21].
Molecular dynamics calculations were qualitatively supporting this scenario, revealing changes in the
flexibility of loops around the binding site [22]. Interaction of helix α3 with the rest of the domain is
likely governed by electrostatic interactions, and the redistribution of these likely occurs upon ligand
binding [23]. In addition, phosphorylation of Tyr397 of α3 alters the contacts of residues Glu331 and
Glu334 in the β2-β3 loops with the ligand [24].

Figure 1. Ribbon representation of PSD-95 PDZ3 (residues 303-402) based on PDB structure 1BE9.
The ligand, the α2 helix and the loops flanking the ligand binding site are labeled. The 7 residues of the
additional α3 helix truncated in [21] are shown in red. The structure was drawn using UCSF Chimera.

The role of loops in allosteric changes upon protonation of histidines and ligand binding has
been reinforced by more recent analysis of µs-regime MD trajectories [25,26]. In some X-ray structures
a succinimide ring was observed, formed by Asp 332 of the β2-β3 loop, although whether this



Int. J. Mol. Sci. 2020, 21, 8348 3 of 18

modification occurs in vivo is not clear [27]. Mutational analysis of this residue revealed previously
unobserved conformations of this loop when Asp332 was replaced with Gly [28].

Dynamic structural ensembles reflecting experimentally determined internal dynamics of proteins
are valuable tools in investigating the functional aspects of structural transitions occurring at various
time scales [29–31]. These ensembles serve as a structural interpretation of the parameters and can be
produced with multiple methods, including restrained molecular dynamics. Such calculations use
additional energy term(s) to ensure the compatibility of the structural ensemble with parameters like
S2 order parameters or NOE distance restraints. S2 order parameters are usually obtained from NMR
relaxation measurements and can be determined for protein backbone amide N-H and side-chain
methyl groups [32]. These parameters report on the fast, ps-ns timescale dynamics of the given
fragments and are ideal for restraining as they can be calculated from the atomic coordinates of a
structural ensemble [33]. Restrained molecular dynamics using S2 order parameters usually relies on
parallel calculation of replicas, and the restraining ensures that at any given time the simultaneously
simulated replicas conform to the parameters [34]. Such calculations have been applied to the second
PDZ domain of HPTP1E and revealed that the dynamical and evolutionary networks show only
limited overlap [35].

In this study we integrate experimental data with computations, namely, using residue-level
NMR-derived data on internal dynamics to generate conformational ensembles of four different states
of PDZ3. We also provide an estimation of changes in conformational entropy between the free and
bound states and analyze the structural differences between the states. With this approach we provide
a detailed model of PDZ3 allostery that is consistent with experimental data and is based on shifting
the equilibrium between well-defined states by the presence of both helix α3 and the ligand. To address
the wider significance of the observed conformational transitions, we also performed a large-scale
comparative analysis of available PDZ domains in the PDB, also including other ensembles either
generated previously or specifically for this study.

2. Results

Dynamic structural ensembles were generated to model the free and peptide-bound states of
the full and ∆7CT variant of PSD-95 PDZ3. The ensembles were verified for their compliance with
experimental parameters and the observed changes in conformational entropy described in [21].
The conformational space explored by the different ensembles was analyzed in order to gain insight
into the dynamical changes occurring upon ligand binding in the full and truncated forms.

2.1. The Calculated PDZ3 Ensembles Reflect Experimental Backbone and Side-Chain S2 Order Parameters

Implications of the side-chain dynamics having an apparent effect on the allostery [21,22] render
it inevitable to include side-chain mobility in our ensemble-based models. To inspect the effects
of side-chain order parameter restraining, exploratory simulations were carried out using different
combinations of parameters available for PDZ3. Principal component analysis of ensembles generated
with the only backbone, only side-chain and both S2 order parameters shows that the generated
ensembles sample slightly different conformational ranges depending on the parameters used
(Figure S1). Correlation with experimental order parameters was considerably lower for parameters
not explicitly restrained for the particular ensembles (Table S1). Therefore, we decided to perform
calculations with both backbone and side-chain S2 order parameters applied simultaneously, as they
provide essential information to the ensembles. All our analysis and conclusions below refer to
ensembles generated with both backbone and side-chain restraints (Figure 2, Table 1, Table S2).
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Figure 2. Measured (black) and back-calculated (colored according to key) backbone S2 values for
the ensembles.

Table 1. Correlation of backbone and side-chain S2 values in the calculated PDZ3 ensembles.

Ensemble Backbone S2 Side-Chain S2

Free full-length (ff) 0.92 0.95
Free ∆7CT (fd) 0.87 0.96
Complex full-length (cf) 0.95 0.97
Complex ∆7CT (cd) 0.83 0.95

2.2. Estimates of Changes in Conformational Entropy upon Binding Are Consistent with
Experimental Observations

Conformational entropy of the PDZ3 ensembles was estimated using GROMACS with the
quasi harmonic method [36] and the Schlitter formula [37]. It is not realistic to expect that the
conformational entropy differences match the experimentally determined values, especially because
different calculation methods, often considering different sets of atoms, yield substantially different
estimates. It is also not expected that entropy values for larger ensembles—generated from longer
simulations—show convergence regarding the absolute values. Our approach was to calculate the
ratio of the binding entropy (defined as the difference between the free and complex structures) of the
full-length and ∆7ct forms. The ratios calculated this way were checked for convergence.

In all cases, the free ∆7CT ensemble had the highest entropy, while the entropy values of the
other states were comparable to each other. Therefore, the ∆7ct form exhibits a larger entropy
change upon binding than the full-length domain. These observations are consistent with the
findings in [21]. The ensembles derived from our 20 ns simulations have an entropy difference
ratio (Scd − S f d)/(Sc f − S f f ) of 4.1 that is considered to be in a reasonably good agreement with the
experimental value of 2.4 obtained from isothermal titration calorimetry measurements reported in [21].
Thus, our ensembles reflect both experimental order parameters and conformational entropy changes
well enough to be suitable for further detailed analysis.
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2.3. Principal Component Analysis Reveals Distinct Motional Modes Affecting the Ligand Binding Site
in PDZ3

Principal component analysis (PCA) was carried for the combined ensemble of the four states.
Only residues that are common to all variants are considered, thus, the C-terminal helix was omitted.
Based on an exploratory analysis, the highly mobile N-terminal region was also truncated to be able
to focus to motions in the structured core of the domains (residues 310–394). Principal component
analysis of the combined ensemble reveals different types of motions around the ligand binding site
(Figure 3).

Figure 3. Principal component analysis of the combined ensembles for PSD-95 PDZ3. (a) Plot showing
the distribution of conformers along the first two modes (PC1 and PC2). Colors represent the four
ensembles as shown on the key on the right. PC1 is identified as an opening-closing motion and
PC2 as a narrow-wide transition around the ligand binding site. (b) structural representation of the
rearrangements corresponding to the identified motions. The two extremes of the motions are shown
in magenta and cornflower blue (magnitudes of the motions are arbitrary for visualization purposes).
Structures were rendered with UCSF Chimera. The key structural elements affected by the motions are
labeled. (c) histograms showing the distribution of the conformers in the different ensembles along
PC1 and PC2. Coloring is the same as in panel (a).
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The first mode, corresponding to principal component 1 (PC1) represents an opening-closing
motion primarily affecting the β1-β2 loop and the C-terminal region of the α2 helix, which are in close
proximity to each other and at the C-terminus of the ligand peptide. The second mode (PC2) affects
the β1-β2 and β2-β3 loops and corresponds to a concerted displacement of the α2 helix and the β2
strand. We will refer to this mode as a narrow-wide transition. This mode also affects residues 293–294,
close to α3, not explicitly considered in this analysis. The third mode affects multiple regions but
mostly the β1-β2 and β2-β3 loops at opposite ends of the binding grove (Figure 3 and Figure S3).

As our parallel simulations comprised eight replicas, thus eight different trajectories, it is
important to check whether replicas are “trapped” in the open and closed conformations of individual
trajectories can visit both states. We have observed that the free ∆7CT form can fluctuate between
these states within an individual trajectory, supporting that this type of motion is an inherent dynamic
property of the domain. We have also compared our ensemble to the structures recently published by
Camara-Artigas et al. [28] containing D332G and D332P mutants and showing variable conformations
of the β2-β3 loop. We found that our ensemble covers the variability of these structures (Figure S4).

The first mode dominates the variability of the combined ensemble by accounting for almost
40% of its diversity covered by the first 10 modes (Figure S3). The ligand-bound structures populate
primarily the closed conformation, whereas a substantial fraction of the unbound, free domains explore
the open state. The ∆7CT structure, lacking the C-terminal “extra” helix α3, populates the open and
closed states almost equally, whereas the unbound full domain remains in the open conformation.
The narrow-wide difference seems to be affected by the presence of helix α3: full structures populate
the narrow conformation and the ∆7CT variants the wide state, though the preferences are less
pronounced than for the open-closed states (Table 2). Again, the free ∆7CT structure explores the
largest region along this mode. Principal components and thus the motions they represent are by
definition independent; nevertheless, this does not exclude that the states—defined as a region along
one of the PCs—can preferably occur in specific combinations in some of the individual ensembles
examined here. This is the case for the free full-length ensemble which almost exclusively occupies the
open—wide region of the conformational space (Table 2).

Table 2. Distribution of the conformers in the individual ensembles according to the principal
components. The thresholds between open-closed and narrow-wide conformations are chosen to
be 0 along the first and second PCs, respectively. The co-occurrence values provide a measure of how
the different states appear simultaneously in the different ensembles.

Complex Complex Free Free
Ensemble All4 ∆7CT Complex ∆7CT full ∆7CT full

Open 53% 35% 10% 2% 18% 69% 97%
Narrow 54% 30% 50% 31% 69% 30% 87%
Open-Narrow co-occurrence 0.56 0.51 0.54 0.68 0.61 0.67 0.85

2.4. Residue–Residue Contacts Affected by the Motions and the Presence of Helix α3 and the Ligand

We have calculated residue–residue contacts for each structure in the ensembles and analyzed
how changes in these contacts are associated with ligand binding and the presence of helix α3.
The 28 contacts with discriminating power at least for one pair of states (see Methods) form a
discontinuous graph, with one connected subgraph consisting of 19 residues as nodes. Of these,
12 have a nonzero betweenness centrality. We propose this network as one possible set of interactions
responsible for allosteric communication (Figure 4). These residues connect strand β2 to β3 and both
of these to helix α2. Residues 326–329 of strand β2, 339 of strand β3 as well as 376 and 379 of helix α2
are in contact with the ligand in the complexed ensembles. Residues 337–339 are also in direct contact
with the residues 394–397 of the C-terminal helix α3.
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Figure 4. Residue contact network including contacts with discriminative power between two of
the four possible states defined by ligand binding and presence of helix α3. (a) network displayed
emphasizing the role of residues in β2, β3 or α2. (b) structural representation of the residues in the
network and residing in the secondary structure elements mentioned (β2: light gray, β3: dark gray,
α2: slate gray). Figure rendered with UCSF Chimera.

2.5. Comparison of PSD-95 PDZ3 with an Extended Set of PDZ Domains

We intended to examine whether the structural rearrangements observed for PDZ3 are commonly
found in other PDZ domains and how the structural diversity of a large set of PDZ domains relates
to these. To this end, we compiled an extended set of PDZ structures from multiple sources. First,
we have included the ensembles of PSD-95 PDZ1 and PDZ2 generated in our previous study [4].
Second, we selected small ensembles using the CoNSEnsX+ server from an MD-derived conformer
pool for PDZ domains for which NMR chemical shifts are available (see Methods). Third, we included
a number of PDZ domain structures as available in the PDB. The full set, including all three sources,
is expected to sufficiently cover the conformational space occupied by different PDZ domains.

Comparison of a large set of domains is only possible if a common structural core is defined,
and this core—the set of structurally corresponding residues—is smaller for larger structure sets.
To identify the common residues in different sets of the domain analyzed, we have used multiple
structural alignments and mapped the structures by retaining the Cα atoms of the residues in the core
with a consensus numbering.

Principal component analysis of the extended PDZ domain sets (Figure 5) reveals that the three
PDZ domains of PSD-95 occupy different regions in the conformational space defined by the first
two principal components. It should be noted that as in this analysis only residues in the common
“PDZ core” are used, this difference is not a consequence of the presence of highly variable loop regions.
In this context, PC1 corresponds to structural differences occurring mainly in the region connecting
strand β6 with helix α2. Along PC2, the largest difference is the distance of β2 and α2, qualitatively
reminiscent of the narrow-wide transition identified for PDZ3 above. PC3 describes a “seesaw” motion
of α2 and PC4 resembles the opening-closing motion described above (see also Table 3 and more details
below). PSD-95 PDZ2 seems to adopt a largely unique structure along PC1. Even in our full PDZ
set (Figure 5b), only two structures can be found in or near the region defined by PDZ2. The first
one is, not surprisingly, the second PDZ domain in the structure 2KA9 [3], the experimental NMR
structure of the PDZ1-2 tandem of PSD-95 and the starting structure used to generate the PSD-95 PDZ2
ensemble [4]. The other structure is 1B8Q, corresponding to the PDZ domain of neuronal NO synthase,
a protein that can interact with PSD-95. The interaction is between PDZ2 of PSD-95 and a segment
located before the PDZ of nNOS [38].
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Figure 5. PCA analysis of the extended PDZ domain set.

While PCs 1 and 2 correspond to structural differences between different PDZ domains, in the
PC3-PC4 plot, all structures form a largely homogeneous group, indicating that these components
describe states that are accessible for most domains. Specifically, all three PSD-95 PDZ ensembles are
largely overlapping in these modes. We provide a more detailed analysis of these modes later below.

2.6. The Three PDZ Domains of PSD-95

To analyze the differences between the PDZ domains of PSD-95, we compared the ensembles for
these three domains using two approaches. In the first, we considered all resides that are common
to these three domains, in the second, we used only the “PDZ core” common to all investigated
structures as defined using a multiple structure alignment. Principal component analysis using these
two approaches shows largely similar results, indicating that the differences between the domains
are present regardless whether larger segments in the loop regions are included in the analysis
or not. The PCA overlap analysis clearly shows that the first two modes capture essentially the
same motions and the 3rd and 4th also describe highly similar motions. We have also analyzed the
overlap between the modes in the individual ensembles and the combined ensemble. This analysis
reveals that the first two modes that define the differences between the domains do not correspond
to characteristic motions of the individual domains. In contrast, the third mode, as suggested above,
largely corresponds to the opening-closing motion identified in PDZ3. This is also true for PDZ1 but
not for PDZ2, confirming our previous notion that when analyzed separately, PDZ1 and PDZ2 exhibit
distinct major structural rearrangements upon ligand binding [4]. This, however, as discussed below,
does not mean that there are no common aspects of ligand-induced changes in the domains when
analyzed as part of a larger dataset.

2.7. Comparison of the Free and Complexed States of Different PDZ Domains

The free and bound states are separated along the same mode, PC4 in the PCA for the extended
domain set. This mode largely matches PC3 of the analysis containing only the PSD-95 PDZ domains,
where this mode, in turn, reflects PC1, the opening-closing motion, identified in the analysis of
PDZ3 ensembles (Table 3 and Figures 3, 6 and 7). For the PSD-95 ensembles, this means that the
conformational space covered by the bound, complexed state lies largely within the region spanned
by the free state, and this differential distribution occurs along PC4. Surprisingly, the bound states
in different PDZ domains populate opposite regions along PC4. This is also observed for ensembles
generated with chemical shift-based selection for two other PDZ domains and also largely by the
original PDB structures in the sense that their relative order along this motion is consistent with that
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observed for the ensembles (Figure 7). For PSD-95 PDZ3 we also used the structures recently published
by Camara-Artigas et al. [28] and these also conform with our observations but for two D332P mutant
structures (PDB ID 6QJF). The exception is the PDB structure pair 1GM1-1VJ6, corresponding to the
second PDZ domain of PTP-BL, where the original PDB-deposited ensembles are separated only along
PC3. We note that although the chemical shift-selected ensembles from the long simulations do not
exhibit better correspondence to the experimental chemical shifts than those selected from then short
simulations, they are larger and their conformational space in the PC3-PC4 dimensions is closer to the
original NMR structures.

Figure 6. Comparison of dynamic structural ensembles of the three PDZ domains of PSD-95.
(a) distribution of the PDZ1 (green), PDZ2 (magenta) and PDZ3 (red) ensembles along the PCs 1–2,
2–3 and 3–4 (from left to right, respectively) as well as (b) the overlap of PCs calculated for individual
ensembles with the combined one. (d,e) the same as (a,b) but only using the residues common to all
PDZ domains (“PDZ core”). (c) comparison of the results obtained with the two analyses showing the
overlap for the first 5 PCs.
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Figure 7. Comparison of the free and bound conformations of selected PDZ domains in the PCA
generated for the extended PDZ set. On each plot from (a–e) the same data points are shown as in
Figure 5 but only for selected domains and conformers. (a–c) PDZ domains 1–3 of PSD-95, respectively.
The dynamic ensembles are shown along with some relevant PDB structures. (d,e) ensembles for the
MAGI-1 PDZ and PTP-BL PDZ2 domains selected on the basis of chemical shift data from short and
long simulations (see Methods), along with corresponding PDB structures. (f) overlap of PCs calculated
for the PSD-95 PDZ domains only (same analysis as in Figure 6) and for the extended domain set
(shown in Figure 5).

Table 3. Correspondence of selected principal components identified for the extended PDZ set in other
PDZ sets analyzed in this study.

PC# Description PSD95 PDZ Domains PSD-95 PDZ3 Only

1 β4-α2 loop dominant 1 -
2 narrow-wide like 2 -
3 α2 seesaw - -
4 opening-closing 3 1
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3. Discussion

3.1. The PDZ3 Ensembles as Models to Describe Internal Motions

Our ensembles were generated with backbone and side-chain S2 order parameter restraints that
are not uniformly available for each of the four states. This restraining scheme generally assumes that
the structures fluctuate around a well-defined average state. In our calculations no NOE restraints were
used that generally confine the sampled conformations to be close to the experimentally determined
state. In addition, S2 restraining primarily restricts the directions and not necessarily the amplitude
of motions at given sites [39]. Therefore, our ensembles might represent motions somewhat scaled
up relative to the actual ps-ns dynamics of the PDZ3 domain. For example, the free ∆7ct ensemble
exhibits a bimodal distribution along PC1, and the opening-closing motion might be expected to occur
on a slower time scale than specifically reported by S2 order parameters. It should nevertheless be
noted that such loop motions might not be unambiguously separated to nonoverlapping, distinct time
scales. For example, in the second PDZ domain of HPTP1, loop rigidification upon ligand binding was
observed at both the ps-ns and the µs-ms time scale in the β2-β3 loop [40] In summary, we argue that
our models provide a representation of the conformational space of the PDZ3 domain that is reasonably
consistent with experimentally determined dynamical behavior and is suitable to identify the main
types of structural transitions. However, the limitations in our approach, as in any molecular dynamics
study, allow that the actual conformational motions might have somewhat different amplitudes
and distribution.

3.2. PDZ3 Internal Motions and Their Modulation

An interpretation of our observations can be that the presence of helix α3 shifts the conformational
equilibrium towards the wide state. This, in turn, affects the opening-closing motion, especially in the
absence of the ligand, whereas ligand binding stabilizes the closed conformation. This explanation
is consistent with the one offered by Mostarda et al. [22], namely, that the presence of helix α3
would quench the flexibility of the loops surrounding the binding site. However, our model offers a
wider framework with dissecting the different motions and factors and suggests a regulation based
primarily on population shift between different states, in line with dynamic models of ligand binding
and allostery [41]. Accordingly, the peptide ligand and helix α3 exert an antagonistic effect on the
conformational landscape by shifting the dynamic equilibria to different states. Zhang et al., have
shown that phosphorylation of Tyr397 in helix α3 reduces ligand binding 4-fold and this was suggested
to be consistent with 50% undocking of the helix from the PDZ domain. Thus, C-terminal truncation
would mimic the effect of this phosphorylation to some extent. Tyr397 is in close proximity to Ser339,
a key member of the residue network identified by contact analysis in sheet β3. Ser339 is also one
of the residues exhibiting the largest chemical shift perturbations upon Tyr397 phosphorylation [6].
Our model obtained from the investigation of the full and ∆7CT variants is compatible with the effect
of docking helix α3 to the domain as described above and in another study on Tyr397 phosphorylation
and α3 helix deletion [24]. Specifically, they found that deleting helix α3 alters the interactions between
residues in the β2-β3 loop and the ligand. Our model puts these local interactions in a larger framework
of motions identified by principal component analysis; namely, we suggest that the interactions with
helix α3 modulate the narrow-wide transition of the domain that involves coupled motions of the
β2-β3 loop and helix α2. In turn, this rearrangement influences the extent of the opening-closing
motion that is the primary one connected to ligand binding.

In the context of the full PDZ3-SH3-GK supramodule or the full-length PSD-95 molecule,
such modulative interactions are expected to be more extensive. A full model of the PDZ3-SH3-GK
supramodule based on NMR data suggested that the canonical peptide site and loop β2-β3 of PDZ3
is in weak contact with the SH3 domain [7]. Implications of a possible direct insertion of some
linker residues (Leu411 and Met412) into the PDZ peptide binding site further suggest a complex
interplay between neighboring structural elements. There are many different attempts in the literature
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to delineate a residue network in PSD-95 PDZ3—and also in other PDZ domains—responsible for
intradomain allosteric communication. Our approach is solely based on the residue–residue contacts
observed in the structural ensembles of PDZ3. We note that with the exception of Phe325, all residues in
our network are located in the “PDZ core”, identified independently from the network itself (Table S5).
It means that the contacts formed by these residues are formed between the structural elements
common to most, if not all, PDZ domains rather than in the variable loop regions.

3.3. Motions in the Light of Other PDZ Domain Structures

Our analysis reveals that there is a clear distinction between structural differences between
different PDZ domains and the characteristic internal motions (Figure 8). These differences are located
in the region connecting strand β6 (PSD-95 PSDZ3 notation) with helix α2, flanking the ligand-binding
site opposite to the β2-β3 loop. This observation further reinforces the important role of this loop and
the possible modulation of its structure and dynamics by yet another factor besides ligand binding [22],
interactions with helix α3 [24] and interdomain interactions [4,7]. The other structural difference is
the distance between the α2 helix and the β2 strand. Although this rearrangement seems qualitatively
similar to the narrow-wide transition identified for PDZ3, the quantitative overlap between these
modes is weak (Figure 6d), partly because of the different movement of the N-terminal part of helix α2
(Figure S5).

Figure 8. Summary of the most important structural rearrangements/differences within PDZ domains
identified in this study. For the structure transitions in PSD-95 PDZ3, PC1 and PC2 refer to the principal
components shown in Figure 3 and for the structural differences between domains, PC1 and PC2 refer
to the PCA shown in Figure 5.

Our most unexpected finding was that the free and bound structures are distributed differently
with respect to the opening-closing motion for different PDZ domains. For some domains, like PSD-95
PDZ3, the closed form is preferred in the bound state, whereas in PDZ1 and PDZ2, the opposite
seems to be the case. The validity of this result is supported by the distribution of the corresponding,



Int. J. Mol. Sci. 2020, 21, 8348 13 of 18

deposited PDB structures along this motional mode, which in all cases reflects the order exhibited
by the dynamic ensembles. In the case of the chemical shift-selected MAGI-1 and PTP-BL PDZ2
ensembles, the same overall trend can also be observed, albeit the size of these ensembles is much
smaller and their diversity is not necessarily directly comparable to those generated by restrained MD.

It also should be noted that when the individual ensembles are analyzed, the conformational
differences responsible for the highest variability—as identified by PCA—do not necessarily
correspond to the opening-closing motion described here. This observation, most prominently seen for
PSD-95 PDZ2, does not falsify our notion that the structures differ along this motional mode, rather,
along with the differences in the free and bound states highlighted above, points to the structural and
dynamical variability of the PDZ domain family.

3.4. Common Motifs and Unique Properties of PDZ Domains Relative to PSD-95 PDZ3

The versatility of PDZ domains with regards to their structure and function has long been
recognized. Many domains contain unique extensions that have a role in partner binding. The diversity
of partner protein motifs and other molecules is also a well-known phenomenon in this domain family.
Our analysis of internal motions in PSD-95 PDZ3 revealed a conformational rearrangement that can be
found in practically all PDZ domains investigated, namely, the opening-closing motion of the peptide
binding site. This motion affects primarily the β1-β2 loop and the C-terminal part of the α2 helix.
This motion seems to be modulated by the narrow-wide transition of the binding site, which is, in turn,
modulated by the interactions with the additional α3 helix. Our analysis of the extended domain set
suggests that although the opening-closing motion is universal, its redistribution upon ligand binding
can be different for distinct domains. Thus, the dynamical aspects of ligand binding, connected to
recognition as well as to changes in conformational entropy, can well be another domain-specific
feature despite the common architecture and principal motional mode in different PDZ domains.

4. Materials and Methods

4.1. Datasets and Structures

The starting structures of the simulation were prepared from PDB structures 1BFE and 1BE9,
corresponding to the free and complex forms of rat PSD-95 PDZ3 [42]. First, manual modification of the
files was performed to match the constructs described in [21], including completion of the side-chain
of Asp322, modifying the side-chain of Ile328 to Val and truncating the C-terminus to residue 402
(considered the full-length form, matching that investigated in [21]) or 395 (corresponding to the ∆7CT
construct). Missing residues (301–306) at the N-terminus of 1BFE were modeled based on those in 1BE9
for the complex form. The obtained structures were subjected to energy minimization with GROMACS
4.5.5. [43] Backbone and side-chain S2 order parameters for the free and bound states of the full and
truncated froms, described in [21] were kindly provided by Dr. Andrew Lee.

4.2. Restrained Molecular Dynamics Simulations

Restrained molecular dynamics simulations were performed with an in-house modified
version [44] of GROMACS 4.5.5 [43] with S2 restraining implemented [33]. The protocol used was
similar to that described in [44], except that no NOE restraints were available. The AMBER99SB
force field and TIP4P water model were used. After neutralization and equilibration for 1 ns, 20 ns
long ensemble-based simulations were run with 8 parallel replicas for each of the four (free/bound,
full-length/truncated) states using the corresponding S2 restraints. The first 10 ns of the simulations
were discarded, resulting in 808 conformations for each state. Besides generating ensembles with
both backbone and side-chain order parameter restraining, exploratory calculations of 4 ns with
only backbone or side-chain S2 restraints were also performed to check the effect of restraint
inclusion/omission. As Thr385 of the truncated free form has an unusually low backbone S2 value,
control simulations with the omission of a restraint based on this particular parameter were also
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performed. The differences in the ensembles did not influence the findings and conclusions of the
study. Correspondence of the obtained ensembles to experimental order parameters was verified using
the CoNSEnsX+ web server [45].

4.3. Generation of Small Ensembles with Chemical Shift-Based Selection

We have performed additional molecular dynamics simulations for our extended PDZ set.
We have chosen 8 PDB structures (2KPL, 2LC6, 2LC7, 2LOB, 1GM1, 1OZI, 2KPK, 1VJ6, 1UM7)
for short simulations using GROMACS 4.5.5 and a protocol similar to the one described above.
These unrestrained short simulations were 20 ns long on 8 parallel replicas, with models sampled
from 6 ns. From these, 2 pairs of free and complexed structures (PDB models 1GM1—1VJ6 and
2KPK—2KPL) were further analyzed using long, 500-ns single-replica simulations with GROMACS
2020. Here, the AMBER99SB-ILDN force field [46] was used with the spc/e water model and NVT
and NPT position-restrained equilibration was included before the production run. Structures were
extracted every 10 ps. From both the long and short simulations, subensembles were selected based on
Cα and Hα chemical shifts with the CoNSEnsX+ web server [45]. The most important data on these
ensembles is summarized in Table S3.

4.4. Conformational Entropy Calculations

Conformational entropy of the PDZ3 ensembles was estimated using GROMACS (scripts g_covar
and g_anaeig) with backbone as the fit group, only nonhydrogen atoms (group “Protein-H”) and
mass weighted approximation. Only atoms found in all systems were considered, thus, the ligand
and the C-terminal extension, if present, were omitted to make the results directly comparable.
Entropy values were calculated using the quasi harmonic method [36] and the Schlitter formula [37].
The two calculations yielded comparable results and we choose to report the results obtained with
the Schlitter formula. We calculated the ratio (Scd − S f d)/(Sc f − S f f ) for the whole ensembles of
808 conformers and also their truncated variants containing gradually more structures to check the
robustness/convergence of the value (Figure S2). This ratio was compared to the analogous value
obtained from experimental data described in [21].

4.5. Analysis of the Ensembles

Principal component analysis of the ensembles was performed with ProDy [47]. Interresidue contact
areas were calculated using Voronota [48]. The raw outputs were processed using in-house Perl
scripts to calculate the average and standard deviation of each contact in the different states and/or in
conformations falling into different regions of the PCA plots. Residue–residue contacts were considered
to be discriminative between conformations/states when the difference between the average contact area
for the two states is larger than the sum of their respective standard deviations. Basic network analysis
of contacts thus selected was done with Cytoscape [49]. Visualization and superposition of the structures
were done with MOLMOL [50] and UCSF Chimera [51].

4.6. Comparative Analysis of a Large Set of PDZ Domains/Ensembles

PDZ domains selected for the study were chosen after a literature survey. Two NOE-based
ensembles of PSD-95 PDZ 1 and 2, published previously by our group [4], were included in the
analysis. In addition, small ensembles were generated for a set of PDZ domains with available
chemical shifts. The ensembles were selected using the CoNSEnsX+ service for they correspondence to
Hα and Cα chemical shifts from a pool of conformers generated by unrestrained MD runs. To define a
common core that can be used in a comparative analysis, a multiple structure alignment of all included
PDZ domains was created using MAMMOTH-Mult [52]. For this, the first model from NMR structures
and a single chain with the PDZ domain from multichain entries was selected. Structures containing
tandem PDZ domains were split and the two domains were handled separately. To account for
a recently described structural variability in PDZ3 domain variants, we have included all PDZ3
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structures reported in [28]. As MAMMOTH-Mult cannot handle all 168 structures in a single run,
multiple rounds of alignments were generated and then the resulting alignments were concatenated
using a structure common to all alignments. The alignment was converted to a mapping of the original
residue numbering in the input PDB files and the residues common to the investigated domains,
referred to as the “PDZ core”. Table S4 contains mapping information for PSD-95 PDZ3 and the
full MAMMOTH-Mult alignment is provided as a supplementary file in FASTA format (Data set
S1). Using this mapping, all PDB structures and ensembles were converted to contain only the core
residues. For the PCA analysis, all models in the NMR ensembles were considered. All steps were
performed with in-house Perl and Python scripts similar to those used for the analysis described earlier
for parvulins [39].

5. Conclusions

To our knowledge, our analysis of PSD-95 PDZ3 differs from previous ones in several important
aspects. First, it is based on experimentally determined mobility data, namely, backbone and side-chain
S2 order parameters from NMR relaxation measurements. Thus, our ensembles reflect experimentally
observed dynamics better than those obtained from unrestrained (“conventional”) molecular dynamics
calculations. Second, we apply principal component analysis on the ensemble combined for the four
states and focus on the internal parts of the domain, discarding flexible tail regions. Our approach
makes it possible to detect subtler but functionally important and generally occurring structural
transitions. Third, to identify residue networks, we use direct contact analysis and identify residue
pairs for which a significant change occurs between the states identified by the principal component
analysis. Last but not least, we put these observations into the context of other PDZ domain ensembles
and PDB structures by defining a common set of residues, the PDZ core.

We have identified the opening-closing motion in PDZ3 that corresponds to the displacement of
helix α and loop β1-β2 and is most influenced by ligand binding. Another motion, the narrow-wide
transition, affecting the distance between helix α2 and strand β2, is modulated by the presence of the
additional helix α3. Our analysis suggests that the capability of structures to explore regions along
the opening-closing motion is dependent on their state along the narrow-wide transition, offering a
population shift-based interpretation of dynamic allostery in the domain.

We have identified a network of residues whose physical contacts change upon these structural
transitions and span the entire width of the domain along the ligand biding site. These residues connect
the site of interaction of helix α3 with the structural elements identified in the motions described above.

We have shown that in a large set of PDZ domains, interdomain structural diversity can
be separated from intradomain motions. Analysis of PDZ ensembles reveal the presence of the
opening-closing transition in different PDZ domains but also suggests that the redistribution of
conformations along this motion is not uniform in different PDZ domains, representing yet another
aspect of diversity besides known structural and functional divergence in PDZ domains.
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size. Figure S3: Additional details of the PSD-95 PDZ3 principal component analysis. Figure S4: Principal
component analysis of PSD-95 PDZ3 ensembles combined with recently publishes X-ray structures of the domain.
Figure S5: Amplitude plots of the movements along PC2 for the individual PDZ3 domain and the extended
PDZ set. Table S1: Correlation of backbone and side-chain S2 order parameters as a function of restraints used.
Table S2: Back-calculated backbone and side-chain S2 order parameters for the 20 ns ensembles of PSD-95 PDZ3.
Table S3: Summary of the ensembles selected based on chemical shifts. Table S4: Residues of PSD-95 PDZ3 used
in the comparisons. Table S5: Residue networks in PSD-95 PDZ3 identified in different studies, Data set S1:
Structure-based alignment of the PDZ domains used in the study.
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