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Abstract: We implement elliptic curve cryptography on the MSP430 which is a commonly used
microcontroller in wireless sensor network nodes. We use the number theoretic transform to perform
finite field multiplication and squaring as required in elliptic curve scalar point multiplication. We take
advantage of the fast Fourier transform for the first time in the literature to speed up the number
theoretic transform for an efficient realization of elliptic curve cryptography. Our implementation
achieves elliptic curve scalar point multiplication in only 0.65 s and 1.31 s for multiplication of fixed
and random points, respectively, and has similar or better timing performance compared to previous
works in the literature.

Keywords: elliptic curve cryptography; fast Fourier transform; number theoretic transform; wireless
sensor network; finite field multiplication

1. Introduction

Wireless sensor network (WSN) technology is a widespread and enabling technology that has
been rapidly penetrating our daily lives. It has environmental applications such as temperature,
humidity, pressure and fire monitoring [1,2], health applications such as patient monitoring [3],
military applications such as enemy detection and reconnaissance [4], and applications to smart
cities such as in smart grids [5]. Securing WSN applications is an important task since sensitive
information they communicate should be kept confidential from malicious third parties. A sensor
node, which is a single unit of a WSN, is a tiny, cheap and constrained embedded system that is
usually equipped with a simple microcontroller. Cryptographic solutions are needed for applications
running on constrained microcontrollers on sensor nodes [6–13]. However, due to the complex nature
of cryptographic algorithms and the constrained nature of WSN nodes, e.g., their CPU power and
memory size limitations, it is a challenge to implement cryptographic algorithms efficiently on WSN
nodes [14–18].

Among different types of cryptosystems, symmetric key cryptography comes forward as a good
choice to be used for WSNs due to its simplicity and efficiency. However, for many WSN applications,
the distribution of the private key between sensor nodes remains as a problem that needs to be
addressed. Public key cryptography (PKC) [19] provides a solution to the key distribution problem,
yet it is considered computationally expensive for constrained WSN nodes. On the other hand,
previous works prove PKC to be applicable on constrained WSN nodes for solving the key distribution
problem [20–24]. Elliptic curve cryptography (ECC) [25,26] is a popular option for PKC. It requires a
160-bit or longer key to be considered secure, while the same level of security can be achieved with
much longer key sizes with other PKC algorithms, e.g., a 1024-bit key is needed to achieve the same
level of security using the RSA cryptosystem [27]. In this work, we realize an efficient implementation
of ECC for solving the key distribution problem in WSNs. We present a novel implementation of
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ECC over an optimal extension field [28,29] by using Edwards curves [30] and the number theoretic
transform [31].

The underlying finite field has a significant influence on the performance of an ECC
implementation. An optimal extension field [28,29] is a finite field GF(pm) where p is a
pseudo-Mersenne prime of the form p = 2k − c, k is the processor word size and log2|c| <

⌊
k
2

⌋
.

Since the coefficients of a finite field element fit in a single processor word in an optimal extension field,
no multi-precision arithmetic is needed and elliptic curve point operations can be achieved efficiently.
Furthermore, an irreducible field generating polynomial of the form P(x) = xm−w, where w is a small
integer, is used in an optimal extension field, which allows the result of a finite field multiplication
operation to be reduced efficiently with only linear complexity.

The number theoretic transform (NTT), also known as the discrete Fourier transform over a
finite field, has long been known for its applications in signal processing and communications [32–37].
Recently, the use of the NTT has been explored to speed up multiplication of large operands as they
appear in RSA [38], fully homomorphic encryption [39–42] and post-quantum cryptography [43–50]
algorithms. However, the application of the NTT for ECC has been considered impractical and widely
neglected due to much shorter operands used in ECC arithmetic. There are only a few existing
ECC implementations in the literature that use the NTT and they use only partial NTT computations to
achieve finite field multiplication. Efficient low-area hardware implementations of ECC are given in [51,52]
where finite field arithmetic is achieved in the frequency domain and partial NTT computations are
performed for the modular reduction operation after a finite field multiplication. Using the same
approach, in [20] an efficient implementation of ECC is presented for constrained microcontrollers.
NTT-based multiplication is in general considered efficient only for large operands and believed to be
not feasible for constrained microcontrollers. However, it also has the unique advantage of requiring
only a linear number of word multiplications which we take advantage of in this work. Our target
platform, i.e., MSP430, is a constrained microcontroller with a 16-bit RISC architecture and used widely
in WSN nodes. While there is an on-board hardware multiplier on the MSP430, a word multiplication
operation using the hardware multiplier still takes 14 clock cycles. Whereas, a word addition on the
same microcontroller takes only a single clock cycle. Hence, by reducing the number of performed
word multiplications and exchanging them with simpler operations such as addition, the speed of
finite field multiplication can be significantly improved.

With this work, we use the NTT to implement finite field multiplication. We show that NTT-based
finite field multiplication is feasible for small operand sizes and can be taken advantage of to speed
up ECC on WSN nodes. We introduce novel implementations of the forward and inverse NTT
computations over a finite field which exploit the Fast Fourier Transform (FFT) [53,54]. Edwards curves,
introduced in [30], are a new form for elliptic curves which provide efficient formulae for elliptic curve
point arithmetic. In our ECC implementation, we use the optimal extension field GF((213 − 1)13) and
Edwards curves with our improved formulae for point arithmetic that take advantage of NTT-based
finite field multiplication.

Our Main Contribution: We present a novel realization of ECC which uses Edwards curves for
point arithmetic and the NTT for the underlying finite field multiplication and squaring operations.
To the best of our knowledge, our work presents the first realization of ECC using the Fast Fourier
Transform (FFT) [53,54] to speed up NTT computations. Our implementation achieves similar or faster
timings for ECC scalar point multiplication compared to existing implementations in the literature and
proves that NTT-based arithmetic is feasible for ECC implementations on constrained devices such as
WSN nodes.

The paper continues as follows. In Section 2, we explain ECC using Edwards curves and also give
a detailed explanation of finite field multiplication in GF((213 − 1)13) using the NTT. In Section 3, we
give the details of our optimized implementation of ECC point multiplication which uses our improved
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Edwards curves formulae for point arithmetic and NTT-based finite field multiplication/squaring
over GF((213 − 1)13). In Section 4, we present our implementation results and comparisons with the
existing work in the literature. Finally, Section 5 includes our conclusion.

2. Background

2.1. Finite Field Multiplication Using the NTT

In elliptic curve cryptography, a large number of multiplication and squaring operations are
performed in a finite field. Elements of the finite field GF(pm) are typically represented in the time
domain as polynomials of degree m− 1 with coefficients in GF(p) [55,56]. For instance, a(x) ∈ GF(pm)

is represented as a(x) = ∑m−1
i=0 aixi = a0 + a1x + a2x2 + . . . + am−1xm−1, where ai ∈ GF(p) for 0 ≤ i ≤

m− 1. Multiplication of two GF(pm) elements, e.g., a(x) and b(x), is achieved typically by computing
the polynomial product

c′(x) = a(x) · b(x) mod p

followed by the modular reduction

c(x) = c′(x) mod P(x) ,

where P(x) is the irreducible field generating polynomial. Please note that if the field generating
polynomial can be selected as the binomial xm − 2, the cost of the modular reduction computation
becomes negligible. Due to the convolution theorem, the classical polynomial multiplication operation
in the time domain, e.g., the computation of c′(x) = a(x) · b(x) mod p, which has quadratic complexity,
is equivalent to the simple pairwise multiplication of the corresponding frequency domain sequence
coefficients which has only linear complexity [53]. Thus, the complexity of polynomial multiplication
can be reduced by performing this computation in the frequency domain.

The coefficients of a GF(pm) element form a time domain sequence. To perform the polynomial
multiplication of two GF(pm) elements in the frequency domain, the time domain sequences for the
two GF(pm) elements should be transformed into their corresponding frequency domain sequences.
This conversion is achieved by using the NTT [31]. After the polynomial multiplication operation is
completed in the frequency domain, the result can be converted back to the time domain by using the
inverse NTT computation. Algorithm 1 gives an overview of how polynomial multiplication can be
achieved in the frequency domain.

Algorithm 1: Polynomial Multiplication in the Frequency Domain Using the NTT

Input: (a) and (b), the time domain sequences for a(x), b(x) ∈ GF(pm)

Output: (c′), the time domain sequence for c′(x) = a(x) · b(x) mod p
1 (A)←− NTT((a)) //Compute the NTT of (a)
2 (B)←− NTT((b)) //Compute the NTT of (b)
3 (C′)←− PCM((A), (B)) //Pairwise Coefficient Multiplication
4 (c′)←− INTT((C′)) //Compute the inverse NTT of (C’)
5 Return (c′)

A finite field element a(x) ∈ GF(pm) can be converted to its d-element frequency domain sequence
representation, where d ≥ m, in two steps as explained below:

1. Represent a(x) = a0 + a1x + a2x2 + ... + am−1xm−1 as the following time domain sequence

(a) = (a0, a1, a2, ..., am−1, 0, 0, ..., 0) (1)

by appending d−m zeros at the end.
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2. Obtain the frequency domain sequence representation (A) = (A0, A1, A2, ..., Ad−1) for a(x) by
performing the following NTT computation over (a):

Aj =
d−1

∑
i=0

airij mod p, 0 ≤ j ≤ d− 1 , (2)

where r is a dth primitive root of unity.

Please note that in order to obtain the time domain sequence (a) back from the frequency domain
sequence (A), the inverse NTT computation can be used as follows:

ai =
1
d
·

d−1

∑
j=0

Ajr−ij mod p , 0 ≤ i ≤ d− 1 . (3)

In Algorithm 1, since c′(x) = a(x) · b(x) mod p may have up to 2m− 1 coefficients, representing
it in the frequency domain with a sequence of length shorter than 2m − 1 may result in its value
being corrupted. Therefore, for Algorithm 1 to always generate the correct result, one should have
d ≥ 2m− 1 as the NTT length. We now describe with an example the execution of Algorithm 1 for
computing c′(x) = a(x) · b(x) mod p where a(x), b(x) ∈ GF(p13). As described in (1), the polynomials
a(x) = a0 + a1x + a2x2 + . . . + a12x12 and b(x) = b0 + b1x + b2x2 + . . . + b12x12 are first converted into
their corresponding 26-element time domain sequence representations as

(a) = (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and

(b) = (b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

Secondly, the NTT is applied to (a) and (b), as described in (2), to obtain the following frequency
domain sequences:

(A) = (A0, A1, A2, . . . , A23, A24, A25) ,

(B) = (B0, B1, B2, . . . , B23, B24, B25) .

Thirdly, the coefficients of (A) and (B) are pairwise multiplied in the frequency domain, i.e., by
computing C′i = AiBi mod p for 0 ≤ i ≤ 25, and thus the following sequence is obtained in the
frequency domain:

(C′) = (C′0, C′1, C′2, C′3, C′4, C′5, . . . , C′21, C′22, C′23, C′24, C′25) ,

which corresponds to c′(x) = a(x) · b(x) mod p in the time domain. Finally, the inverse NTT is applied
to (C′), as described in (3), to obtain the following time domain sequence for c′(x) = a(x) · b(x) mod p:

(c′) = (c′0, c′1, c′2, c′3, c′4, c′5, . . . , c′21, c′22, c′23, c′24, 0) . (4)

Please note that since c′(x) is a polynomial of degree 24, c′25 is zero and the first 25 coefficients of
(c′) give us the polynomial c′(x) = a(x) · b(x) mod p , given as follows:

c′(x) = c′0 + c′1x + c′2x2 + · · ·+ c′22x22 + c′23x23 + c′24x24 . (5)

As a final step in GF(p13) multiplication, the polynomial c′(x) needs to be reduced modulo the
field generating polynomial by computing c(x) = c′(x) mod P(x), which has only linear complexity.
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2.2. Elliptic Curve Cryptography Using Edwards Curves

The main operation in ECC is scalar point multiplication, i.e., computing s · P for an integer s and
a point P on the elliptic curve. ECC scalar point multiplication involves performing several ECC point
addition and doubling operations. To achieve ECC point multiplication, the binary method [57] can
be used, where the bits of the scalar s are scanned one bit at a time starting with the most significant
bit, and for each scanned bit, a point doubling operation is performed, in addition to a point addition
operation if the scanned bit is 1. However, the binary method is both inefficient and vulnerable against
simple power analysis [58]. As an alternative to the binary method, and in order to help mitigate its
drawbacks, the NAF4 and Comb methods can be used for ECC scalar point multiplication of random
and fixed points, respectively. NAF4 and Comb require computing a significantly reduced number
point additions and doublings compared to the binary method [59].

Edwards curves, proposed in [30], are a new form for elliptic curves and defined by the
following equation:

x2 + y2 = c2(1 + dx2y2) .

The ECC point addition of the two distinct points P1 and P2 on an Edwards curve is computed as

P3(x3, y3) = P1(x1, y1) + P2(x2, y2) ,

where x3 =
x1y2 + y1x2

c(1 + dx1x2y1y2)
and y3 =

y1y2 − x1x2

c(1− dx1x2y1y2)
.

The ECC point doubling operation on the point P1(x1, y1) on an Edwards curve is computed as

P2(x2, y2) = 2 · P1(x1, y1) ,

where x2 =
2x1y1c
x2

1 + y2
1

and y2 =
(y2

1 − x2
1)c

2c2 − (x2
1 + y2

1)
.

The above ECC point operations can be achieved in projective coordinates [59–61] to avoid costly
inversions. For the Edwards curve x2 + y2 = c2(1 + dx2y2), with c = 1, d random and d · c4 6= 1, the
formulae for ECC point doubling and addition in projective coordinates over prime fields are given in
Algorithms 2 and 3, respectively [62].

Algorithm 2: Elliptic curve point doubling in projective coordinates over prime fields using
Edwards curves [62]

Input: P1(X1 : Y1 : Z1)

Output: P2(X2 : Y2 : Z2) = 2 · P1

1 T1 ← X1, T2 ← Y1, T3 ← Z1

2 T4 ←− T1 + T2

3 T1 ←− T2
1

4 T2 ←− T2
2

5 T3 ←− T2
3

6 T4 ←− T2
4

7 T3 ←− 2 · T3

8 T5 ←− T1 + T2

9 T2 ←− T1 − T2

10 T4 ←− T4 − T5

11 T3 ←− T5 − T3

12 T1 ←− T3 · T4

13 T3 ←− T3 · T5

14 T2 ←− T2 · T5

15 X2 ← T1, Y2 ← T2, Z2 ← T3

16 Return (X2 : Y2 : Z2)
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Algorithm 3: Elliptic curve point addition in projective coordinates over prime fields using
Edwards curves [62]

Input: P1(X1 : Y1 : Z1) and P2(X2 : Y2 : Z2)

Output: P3(X3 : Y3 : Z3) = P1 + P2

1 T1 ← X1, T2 ← Y1, T3 ← Z1, T4 ← X2, T5 ← Y2,
T6 ← Z2

2 T3 ←− T3 · T6

3 T7 ←− T1 + T2

4 T8 ←− T4 + T5

5 T1 ←− T1 · T4

6 T2 ←− T2 · T5

7 T7 ←− T7 · T8

8 T7 ←− T7 − T1

9 T7 ←− T7 − T2

10 T7 ←− T7 · T3

11 T8 ←− T1 · T2

12 T8 ←− d · T8

13 T2 ←− T2 − T1

14 T2 ←− T2 · T3

15 T3 ←− (T3)
2

16 T1 ←− T3 − T8

17 T3 ←− T3 + T8

18 T2 ←− T2 · T3

19 T3 ←− T3 · T1

20 T1 ←− T1 · T7

21 X3 ← T1, Y3 ← T2, Z3 ← T3

22 Return (X3 : Y3 : Z3)

3. Our ECC Implementation Using the NTT and Edwards Curves

We implement ECC over an optimal extension field [29,63], namely GF(pm) with the Mersenne
prime field characteristic p = 213 − 1 and the prime field extension degree m = 13. Please note that
ECC over a prime extension field of the form GF(pm) is considered secure when the finite field is
sufficiently large and its extension degree m is a prime number [59]. We select the field characteristic p
such that polynomial coefficients fit in a single processor word, in our case a 16-bit word, eliminating
the need for performing multiprecision arithmetic. We use the binomial x13 − 2 as the field generating
polynomial which facilitates efficient modular reduction. For finite field multiplication and squaring,
we use the NTT and use the approach described in Algorithm 1. For NTT computations, we use the
NTT length of d = 26 and the 26th primitive root of unity as r = −2. We use the FFT [53,54,64] to
speed up NTT computations. For ECC point doubling and addition, we use our improved versions of
Algorithms 2 and 3, respectively. Finally, we use the NAF and Comb methods, with a 4-bit window,
to perform ECC scalar point multiplication with random and fixed points, respectively [59].

3.1. Finite Field Multiplication and Squaring in GF((213 − 1)13) with the NTT

As explained in Algorithm 1, polynomial multiplication, which is the main operation in
GF((213 − 1)13) multiplication, can be achieved using the NTT in three stages: (1) Forward NTT
Computation, (2) Pairwise Coefficient Multiplication, (3) Inverse NTT Computation. We apply the
FFT [53,54,64] to speed up our NTT and inverse NTT computations.

Forward NTT for Converting GF((213 − 1)13) Elements to the Frequency Domain:

As described in (2), the frequency domain sequence representation (A) = (A0, A1, A2, . . . , A25)

of a(x) ∈ GF((213 − 1)13) is obtained by computing the NTT of the corresponding 26-element time
domain sequence (a) = (a0, a1, a2, . . . , a12, 0, 0, . . . , 0) as

Aj =
25

∑
i=0

airij mod p, 0 ≤ j ≤ 25 , (6)

where p = 213 − 1 . The above NTT computation can be optimized by applying the FFT as

Aj =
12

∑
i=0

a2i(r2)ij + rj
12

∑
i=0

a2i+1(r2)ij mod p (7)
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and

Aj+13 =
12

∑
i=0

a2i(r2)ij − rj
12

∑
i=0

a2i+1(r2)ij mod p , (8)

for 0 ≤ j ≤ 12 [64]. Please note that the first summations in (7) and (8) are the same NTT computation.
Likewise, the second summations in (7) and (8) are also the same NTT computation. Both NTT
computations are of length 13. Hence, using the FFT, the computation in (6), which is a 26-element
NTT computation, is reduced to the computation of roughly two 13-element NTT computations. Since
ai = 0 for 13 ≤ i ≤ 25, we compute the summations in (7) and (8) only for i running from 0 to 6 in the
first NTT computation, and from 0 to 5 in the second. Our optimized algorithm for computing the
forward NTT of a(x) ∈ GF((213 − 1)13) on the MSP430 is given in Algorithm 4.

Algorithm 4: Forward NTT Computation on the MSP430 Using the FFT
Input: (a) = (a0, a1, a2, . . . , a10, a11, a12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), the time domain sequence for

a(x) ∈ GF(p13) where p = 213 − 1. R0, R1...R6 are microcontroller registers. E0, E1...E6 and
O0, O1...O6 are variables.

Output: (A) = (A0, A1, A2...A25), the frequency domain sequence for a(x) .
1 for i← 0 to 6 do
2 Ri ←− a2i
3 end
4 E0 ←− R0 + R1 + ... + R6 mod p
5 for i← 1 to 12 do
6 for j← 1 to 6 do
7 Rj ←− Rj · 22j mod p
8 end
9 Ei ←− R0 + R1 + ... + R6 mod p

10 end
11 for i = 0 to 5 do
12 Ri ←− a2i+1
13 end

14 O0 ←− R0 + R1 + ... + R5 mod p
15 A0 ←− E0 + O0 mod p
16 A13 ←− E0 −O0 mod p
17 for i = 1 to 12 do
18 for j = 0 to 5 do
19 Rj ← Rj · 22j+1 mod p
20 end
21 Oi ← R0 + R1 + ... + R5 mod p
22 Ai ← Ei + (−1)i ·Oi mod p
23 Ai+13 ←− Ei − (−1)i ·Oi mod p
24 end
25 Return (A0, A1, A2...A25)

We implement Algorithm 4 with an assembly routine and optimize it by using microcontroller
registers as much as possible to minimize the number of memory read/write operations. For the
additions in lines 4, 9, 14 and 21, there is no need to do modular reduction after every addition.
We reduce the number of modular reductions by accumulating the sums and deferring modular
reduction as much as possible.

Multiplication of a GF(213 − 1) element with a power of 2, e.g., in lines 7 and 19 of Algorithm 4,
corresponds to a bitwise left rotation of the GF(213 − 1) element. For instance, for R ∈ GF(213 − 1),
2jR mod 213 − 1 can be computed by rotating the bits of R by j mod 13 bits to the left. We realize
multiplications of GF(213 − 1) elements with powers of 2 with an optimized assembly routine.

Please note that for multiplying two distinct GF((213 − 1)13) elements with Algorithm 1,
Algorithm 4 needs to be executed twice, i.e., once for each input operand to obtain its frequency
domain sequence representation. On the other hand, for squaring a GF((213 − 1)13) element,
Algorithm 4 needs to be executed only once for the single input operand. Hence, squaring using
Algorithm 1 is faster than multiplication.

Pairwise Coefficient Multiplication of GF((213 − 1)13) Elements in the Frequency Domain:

Polynomial multiplication of two GF((213 − 1)13) elements can be achieved in the frequency
domain with only linear complexity by multiplying pairwise their frequency domain sequence
coefficients. Let a(x), b(x) ∈ GF((213 − 1)13), and let (A) = (A0, A1, · · · , A25) and (B) =
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(B0, B1, · · · , B25) be their 26-element frequency domain sequence representations obtained using
Algorithm 4. The following 26 pairwise coefficient multiplications generate the 26-element frequency
domain sequence representation (C’) of the product c′(x) = a(x) · b(x) mod p :

C′i = AiBi mod p , 0 ≤ i ≤ 25 . (9)

The frequency domain sequence (C′) can be converted back to the time domain, by applying the
inverse NTT, to give us the coefficients of the polynomial product c′(x) = a(x) · b(x) mod p .

The multiplications in (9) are the only GF(p) multiplications required for computing the
polynomial product c′(x) = a(x) · b(x) mod p in the NTT-based multiplication approach. Please note
that only 26 coefficient multiplications are performed here, which is significantly less than the 169
coefficient multiplications required in the classical schoolbook method for multiplication.

Inverse NTT for Converting the Frequency Domain Product to a Time Domain GF((213 − 1)13) Element:

As described in (3), the time domain sequence representation (c′) = (c′0, c′1, c′2, . . . , c′25) of c′(x) =
a(x) · b(x) mod p can be obtained by computing the inverse NTT of the corresponding 26-element
frequency domain sequence (C′) = (C′0, C′1, C′2, . . . , C′23, C′24, C′25) as follows

c′j =
1

26

25

∑
i=0

C′ir
−ij mod p , 0 ≤ j ≤ 25 . (10)

The above inverse NTT computation can be optimized by applying the inverse FFT as

c′j =
12

∑
i=0

C′2i(r
2)−ij + r−j

12

∑
i=0

C′2i+1(r
2)−ij mod p (11)

and

c′j+13 =
12

∑
i=0

C′2i(r
2)−ij − r−j

12

∑
i=0

C′2i+1(r
2)−ij mod p , (12)

for 0 ≤ j ≤ 12 [64]. Please note that the first summations in (11) and (12) are the same inverse NTT
computation. Likewise, the second summations in (11) and (12) are the same inverse NTT computation.
Furthermore, both inverse NTT computations are of length 13. Hence, using the inverse FFT, the
computation of (10), which is a 26-element inverse NTT computation, is reduced to the computation of
roughly two 13-element inverse NTT computations. Since c′25 = 0, we compute the second summations
in (11) and (12) only for i running from 0 to 11. Our inverse FFT algorithm for computing the inverse
NTT of (C′), the frequency domain sequence corresponding to c′(x) = a(x) · b(x) mod p, and for
obtaining c(x) = c′(x) mod P(x), where P(x) = x13 − 2, is given in Algorithm 5.

Please note that, unlike in the inverse NTT computation in Algorithm 1, in Algorithm 5 (lines 35−
42) we embed the modular reduction of c′(x) = a(x) · b(x) mod p by the field generating polynomial
P(x) = x13 − 2. Hence, for a(x), b(x) ∈ GF((213 − 1)13), while the output of Algorithm 1 is a
polynomial of degree 24 (with 25 coefficients in GF(213 − 1)), the output of Algorithm 5 is an element
of GF((213 − 1)13) with 13 coefficients.

Similar to our implementation of Algorithm 4, we implement Algorithm 5 with an assembly
routine and optimize it by using microcontroller registers exhaustively to minimize the number of
memory read/write operations. We reduce the number of performed modular reductions in lines
4, 9, 14, 19, 24, 29, 34 and 40 of Algorithm 5 by accumulating the sums and deferring the modular
reduction computation as much as possible.

Division of a GF(213 − 1) element by a power of 2, e.g., in lines 7, 17, 27 and 38 of Algorithm 5,
can be achieved with a bitwise right rotation. For instance, for R ∈ GF(213 − 1), R/2j mod 213 − 1 can
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be computed by rotating the bits of R by j mod 13 bits to the right. We realize this bitwise rotation
operation with an optimized assembly routine.

Algorithm 5: Inverse NTT Computation on the MSP430 Using the FFT
Input: (C) = (C0, C1, C2...C25), the frequency domain sequence representation of

c(x) = a(x) · b(x) mod p, where a(x), b(x) ∈ GF(p13) and p = 213 − 1. R0, R1...R6 are
microcontroller registers. E0, E1...E6 and O0, O1...O6 are variables.

Output: c(x) mod P(x) ∈ GF(p13), where P(x) = x13 − 2 is the field generating polynomial.
1 for i← 0 to 6 do
2 Ri ←− c2i
3 end
4 E0 ← R0 + R1 + ... + R6 mod p
5 for i← 1 to 12 do
6 for j← 1 to 6 do
7 Rj ←− Rj/22j mod p
8 end
9 Ei ← R0 + R1 + ... + R6 mod p

10 end
11 for i← 7 to 12 do
12 Ri−7 ←− C2i+1
13 end
14 E0 ← E0 + R0 + R1 + ... + R5 mod p
15 for i← 1 to 12 do
16 for j← 7 to 12 do
17 Rj−7 ←− Rj−7/22j mod p
18 end
19 Ei ← Ei + R0 + R1 + ... + R5 mod p
20 end
21 for i← 0 to 6 do
22 Ri ←− c2i+1

23 end
24 O0 ← R0 + R1 + ... + R6 mod p
25 for i← 1 to 12 do
26 for j← 0 to 6 do
27 Rj ←− Rj/22j+1 mod p
28 end
29 Oi ← R0 + R1 + ... + R6 mod p
30 end
31 for i← 7 to 12 do
32 Ri−7 ←− c2i+1
33 end
34 O0 ← O0 + R0 + R1 + ... + R5 mod p
35 c0 ←− (3 · E0 −O0) · 7876 mod p
36 for i← 1 to 12 do
37 for j← 7 to 12 do
38 Rj−7 ←− Rj−7/22j+1 mod p
39 end
40 Oi ← Oi + R0 + R1 + ... + R5 mod p
41 ci ←− (3 · Ei + Oi · (−1)i−1) · 7876 mod p
42 end
43 Return c0 + c1x + c2x2 + ....c12x12

3.2. ECC Point Arithmetic with NTT Based Multiplication and Squaring

For ECC operations, we use the Edwards curve x2 + y2 = c2(1 + dx2y2), with c = 1, d random
and d · c4 6= 1, over the 169-bit prime extension field GF((213 − 1)13), and use our optimized versions
of the elliptic curve point addition and doubling formulae given in Algorithms 2 and 3. We improve
Algorithms 2 and 3 by taking advantage of NTT-based multiplication and squaring operations. Our
improved algorithms are given in Algorithms 6 and 7.

Algorithm 6: Elliptic curve point doubling in projective coordinates over prime fields using
Edwards curves and NTT-based multiplication/squaring

Input: P = (X1 : Y1 : Z1), R1 and R2 are temporary registers.
Output: 2P = (X2 : Y2 : Z2)

1 R1 ←− NTT(X1) + NTT(Y1) //NTTs stored
2 R1 ←− R1

2

3 X1 ←− X1
2

4 Y1 ←− Y1
2

5 Z1 ←− 2Z1
2

6 R2 ←− X1 + Y1

7 Y1 ←− X1 −Y1

8 R1 ←− R1 − R2

9 Z1 ←− R2 − Z1

10 X2 ←− Z1 · R1 //NTT o f Z1 stored
11 Z2 ←− Z1 · R2 //NTT o f R2 stored
12 Y2 ←− Y1 ·R2

13 Return (X2 : Y2 : Z2)

Algorithm 6 is a reordered and optimized version of Algorithm 2. It takes advantage of NTT-based
finite field multiplication and squaring computations. In line 1 of the algorithm, the NTTs of X1 and
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Y1 are computed, and then added in the frequency domain to find the NTT of R1 = X1 + Y1. The
computed NTTs of X1, Y1 and R1 are stored. The stored frequency domain representations of X1, Y1

and R1 are used in lines 2− 4 (marked bold) for the three finite field squarings. Please note that for
these three finite field squarings, a total number of only two forward NTT computations are performed,
i.e., NTT(X1) and NTT(Y1) in line 1, instead of three as required in Algorithm 1. Furthermore, in line
10, the computed NTT of Z1 is stored and reused in line 11 (marked bold). Similarly, in line 11, the
computed NTT of R2 is stored and reused in line 12 (marked bold). Please note that each time the
stored result of an NTT computation is reused, a forward NTT computation is saved in Algorithm 1.

Algorithm 7: Elliptic curve point addition in projective coordinates over prime fields using
Edwards curves and NTT-based multiplication/squaring

Input: P = (X1 : Y1 : Z1) , Q = (X2 : Y2 : Z2) , R1 and R2 are temporary registers.
Output: P + Q = (X3 : Y3 : Z3)

1 Z1 ←− Z1 · Z2

2 R1 ←− NTT(X1) + NTT(Y1) //NTTs stored
3 R2 ←− NTT(X2) + NTT(Y2) //NTTs stored
4 R1 ←− R1 ·R2

5 X1 ←− X1 · X2

6 Y1 ←− Y1 · Y2

7 R1 ←− R1 − X1

8 R1 ←− R1 −Y1

9 R1 ←− R1 · Z1 //NTT o f Z1 stored
10 R2 ←− d · X1 ·Y1 //NTTs o f X1 and Y1 stored

11 Y1 ←− Y1 − X1 //NTT o f Y1 stored
12 Y1 ←− Y1 · Z1

13 Z1 ←− Z1
2

14 X1 ←− Z1 − R2

15 Z1 ←− Z1 + R2

16 Y3 ←− Y1 · Z1 //NTT o f Z1 stored
17 Z3 ←− Z1 · X1 //NTT o f X1 stored
18 X3 ←− X1 · R1

19 Return (X3 : Y3 : Z3)

Algorithm 7 is a reordered and optimized version of Algorithm 3. It takes advantage of NTT-based
finite field multiplication and squaring computations. In lines 2− 3 of the algorithm, the NTTs of
X1, X2, Y1 and Y2 are computed and stored. Only two addition operations are performed in the
frequency domain on the stored NTTs to readily obtain the NTTs of R1 = X1 + Y1 and R2 = X2 + Y2.
The NTTs of R1 and R2 are also stored. The stored NTTs of R1, R2, X1, X2, Y1 and Y2 are readily used in
lines 4− 6 (denoted with bold color) for the three finite field multiplication computations. Thus, for
three finite field multiplications, a total number of only four forward NTT computations are performed,
instead of six as required in Algorithm 1. Furthermore, in lines 11− 13 of the algorithm, the stored
NTTs of Y1, X1 and Z1 are reused (marked bold). Similarly, in line 16, the NTT of Z1 is computed and
stored. The stored NTT of Z1 is reused in line 17 (marked bold). Likewise, in line 17, the NTT of X1 is
computed and stored, and reused in line 18 (marked bold).

4. Implementation Results

We use Texas instrument’s MSP430 microcontroller, which is commonly used in wireless sensor
nodes, and select version MSP430F1611 [65]. Our target device, MSP430F1611, is a 1-series low power
microcontroller which runs at 8 MHz clock frequency, and has a 48 kB flash memory in addition
to a 10 kB RAM. We develop our code in the C language but also use the assembly language for
computationally intensive and/or commonly performed operations. We use the IAR Workbench IDE
as our development environment [66]. We obtain timings by using the IAR Workbench IDE’s clock
cycle counter in debug mode. The detailed timing figures for our ECC implementations are given in
Table 1.

In Table 2 and Figure 1, we present our timings for ECC random point multiplication on the
MSP430F1611 as well as the timings of the related work in the literature on the same microcontroller.
Liu et al.’s work, which uses a 159-bit Montgomery curve, presents the fastest timing for random
point multiplication on the MSP430 microcontroller [67]. They use the Montgomery ladder method
and achieve random point multiplication in 3, 460, 000 clock cycles which is equivalent to 0.48 s at
8 MHz clock frequency. Gouvêa et al.’s work, which uses the 160-bit curve secp160r1 that has a slightly
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smaller elliptic curve group order than ours, achieves ECC random point multiplication in 0.58 s [68].
Our previous ECC implementation over GF((213 − 1)13) on the MSP430F149, a similar microcontroller
to the MSP430F1611, achieves random point multiplication in 1.55 s [20]. Please note that our ECC
random point multiplication implementation in this work, which exploits the NTT-based finite field
multiplication/squaring and the FFT, is more than 18% faster than our previous implementation on the
same elliptic curve. Wang et al.’s implementation of elliptic curve random point multiplication over a
160-bit elliptic curve has a timing value of 3.51 s which is significantly worse than our timing result [69].
In a later work, the same authors improve their timing to 1.60 s; however, their new implementation is
still 22% slower than our work [24]. Please note that the timing figure for our ECC implementation
is for a 169-bit elliptic curve with a higher security level, whereas the others’ works use the smaller
ordered 159-bit and 160-bit elliptic curves.

Table 1. Our timings for GF((213 − 1)13) arithmetic and ECC operations on MSP430F1611 @ 8 MHz.

Operation Timing

Forward NTT (Algorithm 4) 0.21 ms
Inverse NTT (Algorithm 5) 0.44 ms
NTT Squaring 0.78 ms
NTT Multiplication 1.02 ms
ECC Point Doubling (Algorithm 6) 5.63 ms
ECC Point Addition (Algorithm 7) 9.64 ms
NAF4 ECC Random Point Multiplication 1.31 s
Comb4 ECC Fixed Point Multiplication 0.65 s

Table 2. Timings for ECC random point multiplication.

Microcontroller Field Method Timing

MSP430F1611 @ 8 MHz [67] FP159 Montgomery ladder 0.48 s
MSP430F1611 @ 8 MHz [68] FP160 4NAF 0.58 s
MSP430F1611 @ 8 MHz (This work) F(213−1)13 4NAF 1.31 s
MSP430F149 @ 8 MHz [20] F(213−1)13 4NAF 1.55 s
MSP430F1611 @ 8 MHz [24] FP160 - 1.60 s
MSP430F1611 @ 8 MHz [69] FP160 - 3.51 s

In Table 3 and Figure 2, we present our timings for ECC fixed point multiplication on the
MSP430F1611 as well as the timings of the related work in the literature on the same microcontroller.
Liu et al.’s work, which uses a 159-bit twisted Edwards curve, presents the fastest timing for fixed
point multiplication on the MSP430 microcontroller [67]. They use the Comb method and twisted
Edwards curves to achieve fixed point multiplication in 1, 920, 000 clock cycles which is equivalent to
0.24 s at 8 MHz clock frequency. Gouvêa et al.’s work, which uses the 160-bit elliptic curve secp160r1
and the 4NAF method, achieves ECC fixed point multiplication in 0.52 s [68]. Liu et al.’s timing for
160-bit ECDSA signature generation (considered to have around the same timing value as elliptic curve
fixed point multiplication) is 1.58 s, which is twice slower than our implementation that uses a larger
169-bit elliptic curve. Wang et al.’s work on the same microcontroller achieves elliptic curve fixed point
multiplication in 1.44 s over a 160-bit elliptic curve. Wenger et al.’s implementation of elliptic curve
fixed point multiplication on a 160-bit elliptic curve takes 8, 779, 931 clock cycles which is equivalent to
1.09 s at 8 MHz clock frequency [70]. Szczechowiak et al.’s work achieves elliptic curve fixed point
multiplication in 0.72 s using a 160-bit elliptic curve over a prime field [22] and in 1.04 s using a 163-bit
elliptic curve over a binary field [22]. Our timing for elliptic curve fixed point multiplication over a
larger ordered 169-bit elliptic curve is slightly better than their results. Please note that the timing
figure for our ECC implementation is for a 169-bit elliptic curve with a higher security level, whereas
the others’ works use the the smaller ordered 159-bit, 160-bit and 163-bit elliptic curves.
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Table 3. Timings for ECC fixed point multiplication.

Microcontroller Field Method Timing

MSP430F1611 @ 8 MHz [67] FP159 Comb 0.24 s
MSP430F1611 @ 8 MHz [68] FP160 4NAF 0.52 s
MSP430F1611 @ 8 MHz (This work) F(213−1)13 Comb 0.65 s
MSP430F1611 @ 8 MHz [22] FP160 Comb 0.72 s
MSP430F1611 @ 8 MHz [22] F2163 Comb 1.04 s
MSP430F1611 @ 8 MHz [70] FP160 - 1.09 s
MSP430F1611 @ 8 MHz [24] FP160 Sliding Window 1.44 s
MSP430F1611 @ 8 MHz [71] FP160 Sliding window 1.58 s

Figure 1. Comparison for random point multiplication timings.

Figure 2. Comparison for fixed point multiplication timings.

5. Conclusions

We implemented ECC on the MSP430 microcontroller, which is a widely used microcontroller
in WSNs, by using Edwards curves for point arithmetic and the number theoretic transform for
the underlying finite field multiplication and squaring operations. In our work, we realized a
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novel implementation of the fast Fourier transform over GF((213 − 1)13) to speed up the number
theoretic transform on the MSP430 microcontroller. Furthermore, for the point addition and doubling
operations on Edwards curves, we introduced optimized formulae where some arithmetic operations
are eliminated by taking advantage of the number theoretic transform. Our ECC implementation
resulted in comparable or better timing values than the existing work in the literature on the
same microcontroller. Please note that the techniques introduced in this paper can be applied to
ECC implementations over other elliptic curves with more efficient formulae for point arithmetic.
We identify the application of the introduced techniques to ECC implementations on other elliptic
curves, such as Montgomery curves or twisted Edwards curves, as directions for future research.
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