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Abstract

Circadian clocks are endogenous oscillators that drive the rhythmic expression of a broad array of genes, orchestrating
metabolism and physiology. Recent evidence indicates that post-transcriptional and post-translational mechanisms play
essential roles in modulating temporal gene expression for proper circadian function, particularly for the molecular
mechanism of the clock. Due to technical limitations in large-scale, quantitative protein measurements, it remains
unresolved to what extent the circadian clock regulates metabolism by driving rhythms of protein abundance. Therefore,
we aimed to identify global circadian oscillations of the proteome in the mouse liver by applying in vivo SILAC mouse
technology in combination with state of the art mass spectrometry. Among the 3000 proteins accurately quantified across
two consecutive cycles, 6% showed circadian oscillations with a defined phase of expression. Interestingly, daily rhythms of
one fifth of the liver proteins were not accompanied by changes at the transcript level. The oscillations of almost half of the
cycling proteome were delayed by more than six hours with respect to the corresponding, rhythmic mRNA. Strikingly we
observed that the length of the time lag between mRNA and protein cycles varies across the day. Our analysis revealed a
high temporal coordination in the abundance of proteins involved in the same metabolic process, such as xenobiotic
detoxification. Apart from liver specific metabolic pathways, we identified many other essential cellular processes in which
protein levels are under circadian control, for instance vesicle trafficking and protein folding. Our large-scale proteomic
analysis reveals thus that circadian post-transcriptional and post-translational mechanisms play a key role in the temporal
orchestration of liver metabolism and physiology.
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Introduction

Circadian clocks are endogenous self-sustained oscillators that

drive daily rhythms of metabolism and physiology [1,2]. In

mammals the molecular mechanism underlying circadian oscilla-

tions is based on interconnected transcriptional and translational

feedback loops that ultimately regulate the rhythmic expression of

clock controlled genes [2]. Gene expression studies in central

(suprachiasmatic nucleus of the hypothalamus) and peripheral

tissues have revealed thousands of rhythmic transcripts that are

associated with daily control of metabolism [3–7]. In particular,

the hepatic clock drives transcriptional oscillations of genes that

are essential for local metabolism regulating glucose, cholesterol

and bile acids homestostasis [8,9]. In this regard, daily rhythms of

metabolites have been recently described in the mouse liver

[10,11]. In human plasma and saliva metabolite cycles are

reported to be independent of sleep and food intake [12]. In

contrast to these investigations of the transcriptome and the

metabolome, circadian protein oscillations have not been accessed

at a large scale mainly due to the technological limitations in the

measurement of protein abundance in a high-throughput and

accurate manner. For instance, a protein expression study of

mouse liver using two-dimensional (2D) gel electrophoresis at four

circadian time points detected 60 rhythmic spots, of which 39

could be identified as protein products [13]. Because recent

evidence suggests that circadian metabolism is also influenced by

post-transcriptional mechanisms [14–18], it would be desirable to

study the circadian dynamics of the proteome at a large scale.

Mass spectrometry (MS)-based proteomics [19] has developed

rapidly in recent years and its quantitative accuracy has improved

dramatically [20]. It is increasingly applied not only to cell lines

but also to more complex systems such as tissues, where accurate

quantification with technologies like Stable Isotope Labeling by

Amino acids in Cell culture (SILAC) has now become possible

[21,22]. Here we aimed to identify global daily changes in protein

abundance in the mouse liver by applying high resolution MS-

based proteomics in combination with quantification via the in

vivo SILAC mouse technology [23]. Mixing pooled livers from

fully ‘heavy’ labeled SILAC mice with liver samples collected over

two 24 h cycles enabled us to accurately quantify the abundance of

thousands of proteins. Metabolic processes were particularly well

covered and turned out to be under extensive circadian control by
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means of protein abundance. Bioinformatic analysis highlighted

significant divergence between the circadian transcriptome and

proteome, including protein abundance changes without corre-

sponding message changes and large differences in the phase of

abundance. We also focus on particular biological processes that

seem to be tightly regulated at the post-transcriptional level and

that may have practical implications such as rhythms of

detoxifying enzymes that are relevant to chronotherapy.

Results

High Throughput SILAC-Based Quantitative Proteomics
of the Mouse Liver

Liver samples were harvested from wildtype C57BL/6 mice

kept one day in constant darkness after being entrained to a 12–

12 h light-dark schedule. Protein lysates were prepared from the

mouse livers, which were collected at intervals of 3 h over two

circadian cycles (4 mice per time point; n = 64 total mice). For

each time point, protein extracts from the four livers were mixed in

equal amounts to have a single sample per time point. We decided

to use SILAC in an in vivo format for the proteomic quantification

method [23,24]. An internal, spike-in standard mix was construct-

ed by combining equal amounts of protein lysates from liver

samples of two heavy SILAC labeled mice collected in anti-phase

(see Material and Methods). The pooled lysates of each of the 16

time points was mixed with equal amounts of the internal standard

prior to digestion. Resulting peptides were then separated into six

fractions and measured on a linear ion trap – Orbitrap mass

spectrometer (Figure 1A). The experiment was performed in

technical triplicates resulting in 288 liquid chromatography (LC)-

MS/MS files that were subsequently processed in the MaxQuant

software environment [25]. The relative abundance of the liver

proteome is calculated for each time point by taking the ratio of

the mass spectrometric signal for individual proteins to the signal

of the spiked in heavy SILAC standard. For circadian analysis we

filtered out those protein groups with accurate quantification

values in less than half of the samples measured; the resulting

dataset contained 3132 protein groups (Table S1).

Reproducibility was tested by comparing the measurements to

each other and calculated Pearson correlation coefficients. For all

of the comparisons we obtained high r values (between 0.6 and

0.93) as illustrated for technical and biological replicates in

Figure 1B. The stringently quantified proteome dataset of 3132

contains proteins from a broad range of metabolic and cellular

processes. Coverage of transcription factors and cell cycle proteins

in these post-mitotic cells was relatively low, as expected. We did

not obtain quantification values for clock proteins, likely due to

their low abundance particularly at some times of the cycle.

Therefore proper entrainment of the mice was confirmed by

assessing the expression profile of Bmal1 and Per2 mRNA as well as

of PER2 protein in the collected liver samples (Figure S1).

Nevertheless, the quantified liver proteome covered extensively

many liver specific pathways like fatty acid and drug metabolism

(Figure 1C). In addition, more than 50% of coverage was observed

for more general cellular processes and components such the

ribosome, proteasome and spliceosome (Figure 1C).

Circadian Oscillations of the Mouse Liver Proteome
To identify proteins with circadian rhythms of abundance in the

mouse liver quantified dataset we adapted a statistical algorithm

(Materials and Methods). Specifically, we determined goodness-of-

fit of the expression ratios to a cosine curve with a period of

23.6 hours, the circadian period reported for the used mouse

strain [26]. To calculate the rate of false discovery the

experimental data were repeatedly scrambled and fitted to the

cosine curve, preserving the technical triplicates in the random-

ization. This allows an estimate of the frequency that a false

observation matches the curve by chance. With this statistical

analysis, at a false discovery rate (FDR or q-value) ,0.33, we

identified 186 proteins (Table S2) from the total 3132 dataset

(Table S1) that showed circadian rhythmic profiles of abundance

in the mouse liver across two consecutive cycles. Based on this

analysis, we thus estimate that at least 6% of our mouse liver

proteome dataset shows circadian oscillations. We additionally

compared the statistical analysis performed by our method to the

JTK Cycle method, a standard method used in the circadian field

to detect rhythmicity [27]. The results indicated an excellent

correlation (Pearson r.0.9) between the two methods for q-value

estimation in the total quantified dataset (Figure S1C) as well as

phase determination of statistical significant cycling proteins

(Figure S1D). This shows that the statistical algorithm to detect

oscillations included in the Perseus software package may be

widely applicable in circadian studies.

We assessed the total abundance of each protein in the samples

by using the added peptide intensity obtained in the MS analysis

normalized to their molecular weight. The abundance profile of

the cycling proteome was very similar to the one observed for the

entire quantified proteome (Figure 2A). This indicates that cycling

proteins identified in our analysis are not biased against low

abundance. Although the amplitude of oscillations has been

studied extensively at the transcript level, there is currently no

information about the accurate fold change of the cycling

proteome. Using the logarithmic normalized expression ratios

obtained for every data point, we calculated the amplitude of the

abundance for each oscillating protein across the circadian day.

The mean of the distribution of the total fold change for rhythmic

proteins in the mouse liver is 1.38; therefore the large majority of

rhythmic proteins change less than two fold (Figure 2B). The

abundance of cycling proteins does not correlate with the

coefficient of variation of the oscillation (Pearson r = 0.018),

indicating that circadian rhythms were equally detectable in high

and low abundance proteins. Next we tested whether there were

Author Summary

The circadian clock is an evolutionary system that allows
organisms to anticipate and thus adapt to daily changes in
the environment. In mammals, the circadian clock is found
in virtually every tissue regulating rhythms of metabolism
and physiology. While a lot of studies have focused in how
circadian clocks regulate gene expression little is known
about daily control of protein abundance. Here we applied
state of the art mass spectrometry in combination with
quantitative proteomics to investigate global circadian
oscillations of the proteome in the mouse liver. We found
that approximately 6% of the liver proteins are cycling
daily and interestingly the majority of these oscillations
diverge from the behavior of their transcripts. Our data
indicates that post-transcriptional mechanisms play an
essential role in shaping the phase of rhythmic proteins
downstream of transcription regulation to ultimately drive
rhythms of metabolism. Moreover, the contribution of
post-transcriptional regulation seems to differ among
distinct metabolic pathways. Overall we not only found
circadian oscillations in the abundance of proteins
involved in liver specific metabolic pathways but also in
essential cellular processes.

Circadian Quantification of the Liver Proteome
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categorical protein annotations significantly different from the

overall fold change distribution by applying a recently developed

annotation enrichment algorithm [28]. Proteins cycling with small

amplitude are statistically enriched in those annotated as being

modified by acetylation as well as ubiquitin-like modifier proteins

whereas glycosylated proteins show cycles with large amplitudes

(Benjamini Hochberg FDR,0.05 for all; Figure S1E).

Enrichment analysis of the circadian proteome compared to the

total quantified proteome revealed that several essential liver

metabolic Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways such as drug and bile acids metabolism were over-

represented (Fisher test p,0.05) (Figure 2C, Table S3). Interest-

ingly, a significant fraction of the membrane bound proteome

(Figure 2D, Table S3) is under circadian regulation in the mouse

liver. In addition, secreted proteins from both extracellular matrix

as well as plasma- as those involved in blood coagulation- all

synthesized in the liver, are also enriched (Fisher test p,0.01) in

the circadian proteome suggesting that the circadian clock in the

liver may play a role in the generation of rhythms of plasma and

extracellular proteins (Figure 2C and 2D, Table S3).

Taken together, we report here the most comprehensive and

accurately measured circadian proteome of the mouse liver to date

and find that it is significantly enriched in essential protein

categories whose temporal regulation has not been previously

documented.

Figure 1. SILAC-based circadian proteome of the mouse liver. (A) Schematic representation of the workflow followed to perform the
quantitative proteomics analysis of mouse livers harvested sixteen times across two circadian cycles. (B) Sample replicates show high degree of
correlation. Scatter plots showing logarithmic normalized protein ratios (Light/High SILAC) in replicate measurements, technical (upper) and
biological (lower). Red line shows linear regression of the data and the calculated correlation coefficient (Pearson r) for each pair of replicates is
indicated at the bottom. (C) The quantified proteome contains proteins from a broad range of metabolic and cellular processes. Graph shows the
percentage of protein coverage for different KEGG pathways observed in the quantified dataset proteome used for the circadian analysis.
doi:10.1371/journal.pgen.1004047.g001

Circadian Quantification of the Liver Proteome
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Phase Analysis of Circadian Control of Liver Protein
Abundance

We performed phase dependent hierarchical cluster analysis of

the mouse liver circadian proteome using the normalized

logarithmic expression ratios for all sampled circadian times

(CT). The heat map representation of the ratios showed cycling

proteins with phases distributed across the two consecutive days

(Figure 3A). The overall pattern of these phases was similar to

previously reported circadian profiles of transcripts in this organ

[3–6]. The analysis resulted in two major branches in the

dendrogram which mostly segregate proteins peaking during the

day or during the night (Figure 3A, 3B). Almost 2/3 of the cycling

proteome displayed night phases (CT12 to CT24) and 1/3 day

phases (CT0 to CT12). Mice are nocturnal animals hence

behavioral and metabolic activity is predominant during the dark

phase, which may explain the larger number of night peaking

proteins in the liver. We next asked if any protein category was

statistically different in these two main clusters, using a Fisher

exact test cut-off of p,0.02. Secreted and extracellular proteins

tended to be rhythmic with abundance peak during the day while

proteins associated to membrane, to the endoplasmic reticulum

(ER) as well as to the Golgi apparatus mainly peaked at night.

Moreover, proteins from complement and coagulation cascades

oscillated with exclusively day phases (Figure 3B and S2A) while

many rhythmic proteins with nocturnal phases are involved in

drug metabolism, bile secretion and protein processing in ER

(Figure 3B and S2B).

To identify additional phase dependent enriched categories of

cycling proteins in the mouse liver we directly tested for phase

enrichment of categorical annotations in a wider set (838) of

cycling candidates using a loser q-value cut-off (,0.66). To

determine the significance of the cycling annotation distribution

test, we employed a Fisher Exact Test cut-off of FDR,0.02,

resulting only in categories of proteins with phases highly

significant clustered at specific time of the circadian cycle. Day-

enriched Gene Ontology Cellular Component (GOCC) protein

categories comprised mainly nuclear and extracellular proteins

while mitochondrial associated proteins peaked at the day-night

interphase (Figure S2C). In contrast, proteins associated to Golgi

displayed statistically enriched night phases. The cycling annota-

tion distribution analysis also highlighted KEGG metabolic

pathways enriched at specific times of the circadian cycle. Drug

metabolism and protein processing in ER were remarkably

enriched with nocturnal phases which agree with the exclusive

presence of proteins from these pathways in the night hierarchical

cluster described above (Figure 3A, S2B and S2D). The

complement and coagulation cascades showed, in contrast, day-

enriched phases as mentioned above too (Figure 3A, S2A and

S2D).

Together our enrichment analyses revealed that a broad range

of cellular and metabolic components are subjected to temporal

regulation by means of protein abundance. A considerable

number of cycling proteins belong to categories that have not

previously been described to be under circadian control in the

mouse liver.

Divergence between the Liver Circadian Transcriptome
and Proteome

Circadian rhythms of mRNA in the mouse liver have been

widely studied, however it still remains unresolved whether and

how the temporal changes in transcripts translate to global

oscillations of protein abundance. To this end, we compared our

circadian proteome to a microarray study of the mouse liver

transcriptome from the Hogenesch group [3]. That experiment

was performed with 1 h resolution and around 10% of the

transcriptome was found to be cycling, depending on the statistical

algorithm employed. We matched each protein group of our

quantified dataset to its corresponding Affymetrix entries which

gave us a final dataset of 3046 protein groups. Using the same

statistical algorithm that we applied to the proteome we assessed

both circadian oscillations for proteins and transcripts. By using a

cut-off of q-value,0.33 we identified 181 protein groups (6%) with

significant circadian rhythmicity, among them 151 also showed

rhythms at the mRNA level (Figure 4A, Table S4). Comparison of

q-value distributions for the total dataset of protein and mRNA

indicates that most of the cycling proteins with arrhythmic mRNA

showed q-values for their transcripts far from the applied cut-off

(Figure S3A). Thus, around 20% of cycling proteins do not seem to

be accompanied by statistical significant oscillations of their

mRNA based on the gene array data. Circadian gene expression

can also be assessed by analyzing cycling binding patterns of

CLOCK and BMAL transcription factors in promoters. There-

fore, in addition to this gene expression study we used a recently

reported set of BMAL1 target genes found by chromatin

immunoprecipitation (ChIP) [29]. In that data set, we found only

four additional genes where the corresponding protein was cycling

but the transcript did not show statistically significant oscillation.

Together our statistical analyses suggest that around 20% of the

cycling proteins do not show circadian regulation of their

corresponding transcript, implying wide-spread circadian post-

transcriptional control of protein abundance.

Given that very recent evidence indicated that post-transcrip-

tional mechanisms appear to largely determine the phase of

mRNA oscillations [16,30–32], we globally explored the distribu-

tion of phases for oscillating transcripts and proteins. We found

that phases of rhythmic transcripts matching cycling proteins in

the mouse liver were evenly distributed throughout the cycle with

higher frequency during the night (Figure 4B upper graph)

similarly to what was previously reported for the total circadian

liver transcriptome [3–6]. In contrast, the phases of cycling

proteins with rhythmic transcripts were distributed in two main

clusters, a smaller one centered at the middle of the day and a

larger one in the second part of the night. Surprisingly, very few

proteins peaked in the first hours of the day (Figure 4B lower

graph). The divergence in the distribution of transcript and

protein phase suggests that the cycles of protein abundance in the

mouse liver do not necessarily reflect mRNA changes and instead

are influenced by post-transcriptional mechanisms. For the clock

genes themselves, a characteristic time delay (usually 4–6 h)

between mRNA and protein expression has been described [17].

However, it is poorly understood whether this is a general feature

of all cycling genes and proteins. To address this question using

the quantitative nature of our circadian proteome data, we

calculated the time delay between the peak of expression of each

rhythmic transcript and its oscillating protein. The total

distribution of time delays showed with a preferential window

of 2 to 6 h between transcript and protein peaks for almost 50%

of the cycling mRNA and proteins (Figure S3C). Strikingly,

around 40% of oscillating proteins peaked more than 6 h later

than their corresponding transcripts. This data indicates that

regulation of time delay between peaks of mRNA and protein is

an important feature of circadian biology, implying general post-

transcriptional mechanisms that define the overall phase-tuning

of the proteome.

Principal component analysis (PCA) of the cycling proteome

and transcriptome showed excellent clustering of the technical

triplicates and biological replicates in the two-dimensional graph

Circadian Quantification of the Liver Proteome
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Figure 2. The liver circadian proteome. (A) Liver cycling proteins are not biased towards high abundant proteins. Graph shows the protein
abundance distribution of the quantified (black line) and rhythmic (red line) proteome of the liver calculated based on the protein intensity and
molecular weight. (B) The majority of cycling proteins change in abundance less than two fold across the cycle. Histogram of protein fold change for
the cycling liver proteome calculated based on the expression ratios obtained for each time point measured. (C) Several liver specific metabolic

Circadian Quantification of the Liver Proteome
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(Figure 4C). The graphical representation of the data on the basis

of the two main PCA components resembles an analog clock

(Figure 4D), indicating that time is the main component

accounting for the overall difference between both datasets. We

then calculated the angles corresponding to the median value for

each time point experimentally analyzed in the proteome and for

the published transcriptome. These angles directly visualize

(Figure 4D) the characteristic time delay between mRNA and

protein cycles mentioned above (Figure S3C). Very interestingly,

the length of this time lag varies across the circadian cycle

(Figure 4D). Together the comparison of the phases of the

transcriptome vs. the proteome clearly demonstrates that circadian

protein oscillations are shaped post-transcriptionally.

Different Contribution of Circadian Post-transcriptional
Control among Diverse Metabolic Processes

Having established that the circadian clock drives liver

metabolism not only at the level of mRNA but also by precise

regulation of the phase of protein abundance, we next examined

individual metabolic processes. We found that rhythmic proteins

associated to specific functions oscillated with similar phases

regardless of whether their transcripts were cycling or, if so, when

they were expressed. This implies that circadian post-transcrip-

tional regulation coordinates individual metabolic pathways –

something that became especially obvious for the metabolism of

xenobiotics. Phases of abundance of crucial components of this

pathway tightly clustered at the end of the night while there was no

pathways are enriched among the liver cycling proteome. Histogram shows the proportion of proteins from the total quantified (blue) and rhythmic
(orange) proteome annotated in the indicated selected KEGG pathways. All the specified categories are statistically enriched in the cycling proteome
(Fisher exact test p,0.05) (D) Overrepresentation of proteins associated to cellular insoluble and extracellular fractions in the circadian liver
proteome. The graph shows the proportion of proteins annotated to the indicated selected Gene Ontology categories (left), statistically enriched
(Benjamini Hochberg FDR,0.05) in the rhythmic (orange) compared to the total quantified (blue) proteome.
doi:10.1371/journal.pgen.1004047.g002

Figure 3. Temporal profile of the mouse liver proteome across two consecutive cycles. (A) Hierarchical clustering of daily rhythmic
proteins in mouse liver according to the phase of maximal expression. Values for each protein (rows) at all the circadian times analyzed (columns) are
colored based on the abundance ratios, high (light blue) and low (yellow) values (Z-scored normalized ratios) are indicated in the color scale bar at
the bottom. Top gray bars indicate the circadian day (light gray) and night (dark gray) of the two consecutive sampled cycles. (B) Plots display the
abundance profile of proteins (grey lines) from the day (upper) and night (lower) branches of the dendrogram across the two circadian cycles. Red
line represented the calculated median profile in each cluster. Protein categories enriched (FDR,0.05) in each protein cluster are indicated on the
right side using a color to indicate the annotation database they belong to.
doi:10.1371/journal.pgen.1004047.g003

Circadian Quantification of the Liver Proteome
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obvious coordination in the phases of the cycling mRNAs

(Figure 5A). Moreover, temporal coordination of protein abun-

dance of drug metabolism in the liver was not restricted to

enzymes involved in the three phases of the detoxification

mechanism. Strikingly, it also extended to membrane transporters

responsible for the intake of xenobiotic substances from the blood

Figure 4. Divergence in the temporal profile of mouse liver proteome and transcriptome. (A) Heat maps of circadian rhythmic proteins
ordered by the phase of maximal expression as in Figure 3A (left panel) and values for their corresponding transcripts (right panel) obtained from the
data published by Hughes et al. [3]. (B) Frequency distribution of abundance phases for mouse liver rhythmic mRNAs (top panel) and their
corresponding cycling proteins (bottom panel) across the circadian day. (C) Principal component analysis of the circadian proteome (blue) as well the
transcriptome (red) based on their abundance values. Data of technical triplicate measurements of the proteome for each time point are grouped
with grey ellipses. (D) Graphical representation of the time coordinates of a 24 hour cycle (as in an analog clock) calculated based on the proteome
(red) and transcriptome (blue) data. Time delay between transcriptome and proteome can be observed with strikingly different intervals across the
circadian cycle.
doi:10.1371/journal.pgen.1004047.g004

Circadian Quantification of the Liver Proteome
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circulation into the liver and/or their subsequent secretion into

bile after being conjugated (Figure 5A and 5B). Supporting a

metabolic function of this coordinated expression, we found that

the abundance profiles of rhythmic enzymes involved in detoxi-

fication strongly correlated with the oscillations of xenobiotics

levels reported recently in a liver circadian metabolome study [10]

(Figure 5C).

A substantial number of proteins involved in complement and

coagulation pathways oscillate in abundance, with their phases

significantly clustered during the day. Their phases of abundance

did not uniformly reflect the cycling patterns of their correspond-

ing transcripts (Figure S3D).

Temporal regulation of gene expression mediated by the

circadian transcription factor heat shock factor 1 (HSF1) has been

reported for some heat shock proteins [33], however, our study

shows for the first time that the protein folding machinery in the

mouse liver is also regulated in a circadian manner at the protein

level. We found many chaperones undergoing daily oscillations of

abundance in the mouse liver with phases remarkably clustered at

night. Heat shock proteins present an interesting contrast to the

examples described above, in that protein cycles of most of them

closely mirror their transcriptional profiles (Figure S3E) showing

short time delays between mRNA and protein peaks. Thus,

circadian regulation of protein abundance for this pathway seems

to be extensively determined at the level of mRNA in contrast to

what we observed for the metabolism of xenobiotics and

coagulation cascades.

In summary, our analyses indicate that post-transcriptional

mechanisms have a large but diverse influence on the oscillation of

the proteome essential for different cellular processes. Specifically,

the contributions of this circadian post-transcriptional control

appear to differ among diverse metabolic pathways.

Discussion

For technical reasons, it has been difficult to attain high

coverage at the level of the proteome. We thus know much more

about genome-wide mRNA levels and have used these as proxies

of protein abundance. However, recent advances in mass

spectrometry and quantitative proteomics now allow studying

proteins in a much more comprehensive and high-throughput

manner that previously possible. As a result, it is becoming clear

that the relationship between transcript and protein abundance is

complex. For instance, a recent study quantifying transcripts and

proteins in a mammalian cell line suggests that translation rate is

the predominant mechanism that regulates cellular protein levels

[34].

Circadian control of metabolism has been widely studied based

on oscillations of transcripts with the general conclusion that

approximately 10% of the transcriptome oscillate daily [3–7]. New

proteomics methods now allow direct characterization of abun-

dance changes of essential metabolic proteins across the day rather

than inferring that from the corresponding RNA levels. Here we

presented the first large scale quantitative proteomic approach,

aimed at identifying circadian oscillations of protein abundance in

the mouse liver and compare them to transcript rhythms. The

proportion of the rhythmic liver proteome, around 6%, is notably

similar to that reported for the circadian transcriptome in different

mouse tissues. An earlier circadian proteome study using 2D gel

electrophoresis reported that up to 20% of the assayed soluble

proteins in the mouse liver were cycling [13]. This difference to

our results, in which we accurately quantified more than 3,000

proteins, is likely due to technical limitations of 2D gel

electrophoresis. This is also reflected in the fact that our study,

but not the 2D gel study, identified a substantial part of the

membrane proteome as cycling.

Our results indicate that circadian clocks coordinate hepatic

metabolism and other cellular processes not only by driving

transcription but by orchestrating cycles of protein abundance. In

particular, we observed significant differences in the phase

distribution between cycling transcripts and corresponding pro-

teins (Figure 4B). This denotes a key contribution of circadian

post-transcriptional regulatory mechanisms in tuning metabolism.

The liver circadian proteome contains proteins involved in a

broad range of metabolic processes. We performed a functional or

physical interaction network analysis of cycling liver proteins in the

STRING database [35], the result of which is visualized with

Cytoscape in Figure 6 (see Material and Methods). One of the

largest network clusters is comprised of interactions among

essential components of xenobiotic metabolism with remarkably

coordinated nocturnal phases as we described above. This data

indicates that circadian regulation of hepatic xenobiotic detoxifi-

cation is not only exerted by control of gene expression as

previously reported [36–38] but moreover by a precise post-

transcriptional control that ensures the presence of their essential

components at the time of the day when the pathway is

metabolically more active. By temporally driving cycles of

abundance for detoxifying enzymes with higher levels during the

night, the circadian clock can coordinate xenobiotics detoxifica-

tion in the mouse liver to cycles of metabolic needs, ensuring

proper detoxification during the nocturnal phase when mice are

feeding and thus ingesting the majority of xenobiotics. This

hypothesis is independently supported by recent metabolomics

data [10], which shows that the level of toxic metabolites in the

liver cycle in accordance with the protein rhythms characterized

here. Understanding abundance and activity cycles of detoxifying

enzymes is an essential prerequisite for the determination of

temporal variations of therapeutic responses and associated toxic

effects both ultimately crucial for proper chronotherapy.

Another prominent interaction network consists of extracellular

proteins that are synthesized in the liver (Figure 6). Some studies

have reported circadian variations in plasma levels of hemostatic

factors that seemed to be preceded by liver oscillations of their

respective mRNAs [39–41]. However it is not clear how circadian

regulation of hepatic metabolism contributes to hemostasis. The

fact that plasma components synthesized in the liver show hepatic

protein cycles indicates that the daily oscillations of essential

hemostatic components in the plasma may reflect, at least in part,

hepatic protein rhythms. Supporting such observations, hemostat-

ic variables have been shown to undergo circadian changes in

humans [42]. For instance, predisposition towards clotting in the

morning, due to increased levels of platelet aggregation and blood

coagulation, has been associated with the higher incidence of

myocardial infarctions. In contrast, fibrinolysis is enhanced in the

evening concomitant with higher levels of thrombolytic factors

[43–45]. An additional aspect of liver metabolism that seems to be

shaped by circadian post-transcriptional control is the glucose and

fatty acid metabolism. We see circadian rhythms of protein

abundance in several essential enzymes of these pathways, many of

them lacking temporal regulation at the level of transcription or

showing protein phases almost in anti-phase to their cycling

transcript (Figure 6).

In addition to specific metabolic processes we found coordinat-

ed rhythms of abundance in liver proteins involved in more

general cellular functions, such as protein folding, vesicle-mediated

transport as well as DNA and RNA metabolism (Figure 6). Thus,

an important node in our interaction network comprised a large

number of chaperones oscillating with night phases, possibly
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Figure 5. Circadian regulation of metabolism of xenobiotics is large shaped post-transcriptionally. (A) Cycling proteins involved in
metabolism of xenobiotics show concomitant phases of abundance in the middle of the night. Graph showed calculated phases of abundance for
cycling proteins (blue) involved in the detoxification pathway and their corresponding mRNA (red). Lack of mRNA data in the graph indicates an
arrhythmic transcript. At the bottom box plots representing graphically the data of the mRNA (red) and protein (blue) phases plotted in the graph.
Protein names are color coded based on their functional role in the pathway as indicated in B. We found 97 proteins involved in this pathway in the
total 3131 dataset and 15 proteins in the cycling dataset of 201. (B) Circadian oscillations are found in proteins essential for different stages of the
metabolism of xenobiotics. Scheme showing the main two phases of xenobiotic detoxification as well as the contribution of enzymes activating
cytochrome P450 proteins essential for phase I and liver transporters. (C) The abundance of rhythmic proteins from the detoxification pathway
matches remarkably the levels of xenobiotics in the liver. Expression profiles of cycling proteins (median of Z-scored log 2 normalized ratios for each
triplicate) color coded according to their functional role (as in B) and the abundance profile of several xenobiotics n the liver reported by Eckel-Mahan
et al. [10].
doi:10.1371/journal.pgen.1004047.g005
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indicating higher demand for protein folding or quality control at

this time of day (Figure S3E and Figure 6). Similarly, many key

components of vesicle trafficking oscillate in abundance in the

mouse live with synchronized phases at night, unlike their

transcripts (Figure 6). This is the case of several RAB GTPases

such as RAB1, an essential factor for ER-Golgi transport [46]

which transcript is arrhythmic, as well as for RAB10 and RAB14,

both involved in the endocytic pathway and the late endosome-

associated RAB7 protein (Figure S4A, S4B and S4C). Protein

rhythms with peak of abundance during the night were also

observed for the small GTPases SAR1 and the ADP-ribosylation

factor 5, ARF5 (Figure S4B and S4C). While SAR1 controls the

association of COPII with ER membranes [47], the conserved

GTPase ARF5 associated with coatomer, constituting the minimal

cytosolic machinery leading to COPI vesicle formation from Golgi

membranes [48]. This data indicates that key proteins involved in

both ER and Golgi vesicle formation are under circadian

regulation. Moreover, rhythms of protein abundance can be

found in the epsilon subunit of the coatomer, COPE (Figure S4B),

a coating complex crucial for intra-Golgi trafficking, retrograde

Golgi-to-ER transport of dilysine-tagged proteins as well as for the

processing, activity and endocytic recycling of LDL receptor

(LDLR) [49]. Therefore rhythms of COPE and its associated

GTPase ARF5 could determine cycles of recycling for essential

hepatic receptors as LDLR as well as the liver specific C-type

lectin asialoglycoprotein receptors ASGPR1 and ASGPR2 (all

rhythmic) ensuring proper expression during the night when the

liver receives most of the metabolic signals in mice.

The liver is a key player in the regulation of cholesterol levels. It

synthesizes cholesterol for export to other cells and removes

cholesterol from the circulation by converting it to bile salts and

excreting it into the bile. Additionally, the liver produces the

various lipoproteins involved in transporting cholesterol and lipids

throughout the body. While total cholesterol in plasma does not

seem to oscillate daily, high and low density lipoprotein cholesterol

(HLD and LDL), show circadian rhythms in plasma with a

through at the onset of the dark phase [50,51]. LDL is the major

transporter of cholesterol in plasma and in humans proper LDLR-

mediated hepatic cholesterol removal plays a crucial role in

atherosclerosis prevention. Ldlr gene expression is reported to be

circadian in rat liver [50] and in a human hepatocarcinoma cell

line via SREBP as well as CLOCK/BMAL1 direct promoter

activation [51]. Our study shows for the first time that the LDLR

also exhibits daily cycles of protein abundance in the mouse liver

with at least two-fold higher levels in the middle of the night

(Figure S4D). Interestingly the peak of the mouse hepatic LDLR

correlates with lower LDL plasma levels, similar to what has been

reported at the transcript level in rat livers [50]. The ABC

transporter ABCA1 is crucial for maintaining plasma HDL levels

due to its essential role in assembling cholesterol, phospholipids

and APOA1 into HDL. It is also rhythmic in the mouse liver with

maximum presence during the night (Figure S4D) correlating with

Figure 6. Protein interaction networks of rhythmic liver proteins. Broad range of functional categories can be depicted in the protein
interaction network of the circadian liver proteome. The analysis was done using protein interaction information from the STRING database and
visualized using Cytoscape. Each node represents a protein that is colored based on the phase of the abundance cycle as indicated in the lower color
bar. Red lined nodes designate oscillating proteins which arrhythmic transcripts. Labeled protein names indicate those with time lags between peak
of mRNA and protein longer than 6 hours. Proteins with time lags longer than 22 hours are not labeled since such a long time lag can be a result of
slightly incorrect phase determination for mRNA and/or protein.
doi:10.1371/journal.pgen.1004047.g006
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high levels of lipids in plasma [52]. Two major lipoproteins

APOA1 and APOOL also oscillated in abundance in the mouse

liver (Figure S4E) while lack rhythms at the transcripts level. Their

daytime peaks of expression are though in anti-phase to the

reported peak of APOB in plasma [52]. In addition to dietary

intake the other source of cholesterol is de novo synthesis in

hepatocytes which is under negative feedback regulation: in-

creased cholesterol in the cell decreases the expression and activity

of HMG-CoA reductase (HMGR), as well as the expression of the

lanosterol 14 -demethylase, Cyp51, both essential enzymes in

cholesterol biosynthesis and intermediate metabolites [53].

Although we did not obtained quantitative values for HMGR

our analysis identified circadian cycles of protein abundance in the

mouse liver for several key enzymes involved in cholesterol and

bile acid synthesis such as HMG-CoA synthase 1 (HMGCS1),

isopentenyl-diphosphate delta-isomerase 1 (IDI1), CYP51,

CYP7A1 and CYP8B1 (Figure 6 and S4F). The oscillation of

CYP7A1 is concomitant with the rhythm of its mRNA, however,

we observed relative long time delays between the peaks of

abundance for the other proteins compared to their respective

transcript (Table S4). In particular, CYP51 shows maximum levels

at the onset of the night completely in anti-phase to its transcript.

Together our data indicates that hepatic circadian control of

cholesterol homeostasis and bile acids biosynthesis is not only

driven at the level of transcription [9] but additionally defined

post-transcriptionally. Moreover, circadian oscillations in the levels

of these enzymes, most of them localized in the ER membrane,

could be linked to the described circadian dilation of the ER in

hepatocytes [54] which is an indication of ER stress. The ER

responds to the stress by activating the unfolded protein response

(UPR) to reduce the accumulation of unfolded proteins. Concor-

dant with this the circadian proteome has an overrepresentation of

proteins with nocturnal phases involved in the protein processing

in ER (Figure S2B and S2D). Moreover, it has recently been

established that there is a connection between the metabolite-

induced activation of the UPR, hepatic transformation of

metabolites and the circadian clock controlled feeding behavior

and all of these are essential for proper liver metabolism [55].

Another large node in our interaction network is comprised of

cycling proteins involved in DNA and RNA metabolism (Figure 6).

Among them many essential factors of the protein translation

machinery oscillated in their abundance. For example the

translation initiation factors EIF1, E1F4A2, EF4G1 and EIF5

showed concomitant rhythmic profiles of protein abundance

across the two analyzed cycles (Figure S5A). Furthermore, we

observed cycles of abundance of two indispensable components of

protein translation elongation, EEF2 and EEF1A1, in phase with

the translation initiation elements (Figure S5B). Our data thus

suggests rhythms of translation by means of protein abundance of

indispensable pathway components. In support of this hypothesis,

a study that appeared after our analysis was finished showed that

the circadian clock influences the temporal translation of a group

of mRNAs by regulating the expression and activation of essential

translation factors [15]. In particular, we observed that the cycles

of abundances of these factors with peaks at the middle of the

night, between CT19 and CT20 (Table S2), strongly correlate

with the time of the day when 70% of the circadian translationally

regulated genes are found in the polysomal fraction [15].

Furthermore, most of the mRNAs temporal translated during

the night are involved in ribosome biogenesis correlating with our

phase enrichment results for cycling ribosome proteins (Figure

S2C and S2D).

Taken together, our work highlights the importance of circadian

post-transcriptional mechanisms in shaping the phase of daily

protein oscillations in the liver thus determining cycles of

metabolism and physiology. Although the overall role of these

mechanisms has been remained elusive, recent studies have

emphasized the contribution of temporal post-transcriptional

regulation on the circadian transcriptome [16,18,32]. Only up to

approximately 30% of cycling mRNAs also showed rhythms in

transcription, implying that post-transcriptional regulation largely

defines the oscillating mRNA pool. A potential mechanism for

clock-regulated post-transcriptional regulation of mRNA is

reported by Schibler and colleagues, showing a temperature

dependent cycling of cold–inducible RNA binding protein (CIRP)

binding to and regulating the amplitude of transcripts from several

core circadian components, including Clock [18]. By assaying

protein rhythms, we move a step further along the gene expression

program. We conclude that although around 80% of the

oscillating proteins are associated with rhythmic transcripts the

phases of many of them are uniquely tuned post-transcriptionally,

suggesting a temporal mechanistic heterogeneity in this molecular

process.

This study demonstrates that the mouse liver proteome is

extensively regulated by the circadian clock, with about 6% of

proteins in our dataset significantly oscillating with peaks at a

variety of phases. The distribution of phases emphasizes the

complexity of circadian post-transcriptional mechanisms. Protein

oscillations ultimately govern circadian rhythms of cellular and

metabolic processes essential for the fitness of the organism. Our

findings point to clock regulation of many more individual proteins

and entire pathways, elucidating new networks that may be

conferring previously uncharacterized rhythms in metabolism and

physiology. In addition to protein cycles of abundance, post-

translational modifications are known to have pivotal roles in the

clock molecular machinery. The same proteomics technologies

employed here can also be used to quantify post-translational

modifications and thereby investigate to what extent and how they

also drive global circadian patterns.

Materials and Methods

Animals and Tissue Collection
All mice were bred and maintained in the animal facility of the

Max Planck Institute of Biochemistry according to institutional

guidelines and all animal experiments were approved by the

government agencies of Oberbayern. Eight-week-old C57BL/6

mice were house in light-tight boxes with free access to food and

water and entrained to a 12–12 h light-dark schedule for ten days

before being transfer to complete darkness. After one day in

constant darkness, mice were sacrificed at 3 h intervals over two

days. Prior to liver excision, mice were perfused with ice-cold PBS

to remove blood content. Livers were then quickly frozen in liquid

nitrogen followed by storage at 280uC. SILAC mice [23] were

kept in the same conditions; two animals were sacrificed in anti-

phase at CT3 and CT15, respectively, and livers excised as

described above.

Protein Sample Preparation
Protein extracts from mouse livers were obtained as previously

described [56,57]. Briefly, homogenization of 1 mg of liver was

done in 1 ml of 0.1 mM Tris-HCl pH 7.6 supplemented with

complete protease and phosphatase inhibitor cocktails (Roche)

using an Ultra Turbax blender (IKA) at maximum speed at 4uC
for 30–60 seconds. Sodium dodecyl sulfate (SDS) and dithiothre-

itol (DTT) were added to the homogenates to a final concentration

of 4% and 0.1 mM, respectively, followed by brief sonication to

reduce viscosity. After 5 min incubation at 95uC the mixture was
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then cleared by centrifugation at 16,0006 g at room temperature

for 10 min. Protein content was determined by measurements of

tryptophan fluorescence as previously described [56]. Sixteen

protein extract pools, corresponding to the samples collected at

different circadian times, were obtained by mixing equal amounts

of protein liver extracts from each of the four mice sacrificed at

any given time point. Similarly the SILAC protein liver mix was

obtained by adding equal amounts of the protein extracts obtained

from the two SILAC liver samples collected in anti-phase.

Protein Digestion and Anion Exchange Peptide
Separation

For sample preparation we used 100 mg of protein extract from

each circadian time pool mixed with 100 mg of SILAC protein

pool. The protein mixes were concentrated in 30 k Microcon

filtration devices (Millipore) to a final volume of 30 ml and then

processed by the FASP procedure [57]. Briefly, the samples were

mixed with 0.2 ml of 8 M urea in 0.1 M Tris/HCl pH 8.5 (UA),

loaded into 30 k Microcon filtration devices (Millipore) and

centrifuged at 14,0006 g for 15 min. The concentrates were

diluted in the devices with 0.2 ml of UA solution and centrifuged

again. After centrifugation the concentrates were mixed with

0.1 ml of 50 mM iodoacetamide in UA solution and incubated in

the dark at room temperature for 30 min. After centrifugation for

15 min the concentrate was diluted with 0.2 ml UA solution and

concentrated again by centrifugation. This step was repeated

twice. Next, the concentrate was diluted with 0.1 ml of 40 mM

NaHCO3 and concentrated again twice. Subsequently, 2 mg of

Lysyl Endopeptidase (Wako Chemicals) in 40 ml of 40 mM

NaHCO3 was added to the filter and the samples were incubated

at room temperature overnight. The peptides were collected by

centrifugation of the filter followed by two additional 30 ml washes

with 40 mM NaHCO3. The concentration of peptides was

determined by UV-spectrometry using an extinction coefficient

of 1.1 for 0.1% (g/l) solution at 280 nm.

Peptides were dissolved in 200 mL in Britton & Robinson buffer

composed of 20 mM CH3COOH, 20 mM H3PO4, and 20 mM

H3BO3, and NaOH, pH 11. The peptides were separated by a

pipette-based anion exchanger method [57]. Briefly, the pipette

based column was assemble by stacking 6 layers of a 3M Empore

Anion Exchange disk (Varian, 1214-5012) into a 200 ml micropi-

pette tip. For column equilibration and elution of fractions Britton

& Robinson buffer titrated with NaOH to the desired pH was

used. Peptides were loaded at pH 11 and fractions were

subsequently eluted with buffer solutions of pH 8, 6, 5, 4, and 3,

respectively.

Mass Spectrometric Analysis and Data Processing
All mass spectrometric (MS) experiments were performed on a

nanoflow HPLC system (Proxeon Biosystems, now Thermo Fisher

Scientific) connected to a hybrid LTQ-Orbitrap (Thermo Fisher

Scientific, Bremen, Germany), equipped with a nanoelectrospray

ion source (Proxeon Biosystems, now Thermo Fisher Scientific).

Peptide mixtures were separated by reversed phase chromatogra-

phy using in-house-made C18 microcolumns with a diameter of

75 mm packed with ReproSil-Pur C18-AQ 3-mm resin (Dr. Maisch

GmbH, Ammerbuch-Entringen, Germany) in 4 hours LC gradi-

ent from 3% to 75% acetonitrile in 0.5% acetic acid at a flow rate

of 200 nl/min and directly electrosprayed into the mass

spectrometer. The LTQ-Orbitrap was operated in the positive

mode to simultaneously measure full scan MS spectra (from m/z

300–1650) in the Orbitrap analyzer at resolution R = 60 000

following isolation and fragmentation of the ten most intense ions

in the LTQ part by collision-induced dissociation. Raw MS files

were processed with MaxQuant (version. 1.1.1.9), a freely

available software suite. Peak list files were searched by the

ANDROMEDA a search engine, incorporated into the Max-

Quant framework [58], against the IPI-mouse (version 3.68)

containing both forward and reversed protein sequences. Initial

maximum precursor and fragment mass deviations were set to

7 ppm and 0.5 Da, respectively, but MaxQuant achieved sub-

ppm mass accuracy for the majority of peptide precursors. The

search included variable modifications for oxidation of methio-

nine, protein N-terminal acetylation and carbamidomethylation as

fixed modification. Peptides with at least six amino acids were

considered for identification specifying as enzyme LysC allowing

N-terminal cleavage to proline. The false discovery rate, deter-

mined by searching a reverse database, was set at 0.01 for both

peptides and proteins. Identification across different replicates and

adjacent fractions was achieved by enabling matching between

runs option in MaxQuant within a time window of 2 minutes.

Quantification of SILAC pairs was performed by MaxQuant with

standard settings using a minimum ratio count of 2.

Bioinformatics Analysis
All bioinformatic analyses were performed with the Perseus

software (http://www.perseus-framework.org/). To determine the

subset of cycling proteins, each protein expression profile is fitted

to a cosine with a fixed period of 23.6 h and the amplitude and

phase as free parameters. Profiles are ranked by their variance

ratio. This is the part of the variance explained by the fit divided

by the contribution to the variance that is not accounted for by the

fit. Based on this ranking we determine a permutation-based false

discovery rate by repeating the same procedure 1,000 times on the

same profiles but with scrambled time labels, except for the

technical replicates that were preserved. This permutation based

procedure is similar to the one applied to FDR calculations for

differential expression analysis in [59]. Hierarchical clustering was

done in a phase-preserving way by restricting the order of elements

to the one determined by the output of the cosine model-based

fitting. During the growth of the tree in hierarchical clustering,

only those links were permitted that conserve this order. While

obviously the order of the terminal branches is not an outcome of

the algorithm, the cluster structure is still a non-trivial result of the

clustering.

Principal Component Analysis (PCA)
A standard PCA analysis was performed in the Perseus software.

The expression data matrix has protein groups as rows and

samples as columns and contains logarithms of ratios. Missing

values were imputed by drawing random numbers from a normal

distribution to simulate signals from low abundant proteins. The

width parameter of this normal distribution was chosen as 0.3 of

the standard deviation of all measured values and the center was

shifted towards low abundance by 1.8 times this standard

deviation. These parameters were empirically determined to result

in good performance over many different proteomics data sets.

The row means were subtracted from the matrix. Then the PCA

was performed by singular value decomposition.

Western Blotting
Total cell protein extracts were prepared as mentioned above

and 50 mg of protein was used for western blotting performed

according to standard protocols. Antibodies used were PER21A

from Alpha Diagnostics International, RAB1 from Sigma-Aldrich,

SARA1; GAPDH and RAB10 from Cell Signaling. The density of

the bands obtained in the western blots was calculated with the

freely available gel analyzer program ImageJ.

Circadian Quantification of the Liver Proteome

PLOS Genetics | www.plosgenetics.org 12 January 2014 | Volume 10 | Issue 1 | e1004047



RNA Extraction and Quantitative Real-Time PCR
RNA extraction from liver was done using the RNeasy kit

according to manufacturer’s protocol (Qiagen). cDNA was

synthesized from 2 mg of liver total RNA using First Strand

cDNA Synthesis kit following the supplier’s instruction (Fermen-

tas). Quantitative PCR reactions were done by amplifying ten per

cent of the cDNA with Sybr Green master mix (Applied

Bioscience) on a CFX96 Real Time System (BioRad). Mean

values were calculated from triplicate PCR assays for each sample

and normalized to those obtained for Gadph transcript.

Interaction Network Analysis
Interaction network analysis of the cycling proteome was

performed with the STRING search tool (version 9.0) using

medium to high confidence (0.5–0.7) and with co-expression and

experiments as active prediction methods. Using these parameters

we obtained interaction scores for approximately 70% of the liver

rhythmic proteins. Data visualization was done with Cytoscape

2.8.2 where we then combined interaction scores with phases of

protein abundance.

Data availability: The mass spectrometry proteomics data have

been deposited to the ProteomeXchange Consortium ( http://

proteomecentral.proteomexchange.org ) via the PRIDE partner

repository [60] with the dataset identifier PXD000601.

Supporting Information

Figure S1 Proper entrainment of the mice. (A) Quantitative

reverse-transcriptase PCR assay showing the temporal expression

profiles of Bmal1 (left) and Per2 (right) mRNA in the liver samples

used for the proteomic analysis. Shown are mean and S.E.M.;

N = 3. Data were normalized to Gapdh mRNA expression. (B)

Western blots detecting PER2 protein in the liver samples used

for the proteomic analysis. Loading control is shown with anti-

GAPDH antibody. Specific band is indicated with an asterisk.

(C) Scatter plot showing the correlation between q-values

calculated with our Perseus package and JTK_cycle for the

protein dataset containing valid values in all measured samples

(1888). Blue dots correspond to common statistical significant

cycling proteins after using a cut off of q-value,0.33 (dashed

bars) in both methods. Green dots are those statistical significant

in only one of the two methods. The horizontal and vertical

effect observed in the lower values is due to the discretization of

the permutation-based calculation of the q-value. (D) Plot

showing the correlation of phases estimated with Perseus and

JTK_ cycle of the cycling proteome. (E) Histograms show the

distribution of fold change of acetylated (left panel), conjugated

to ubiquitin-like modifier proteins (middle panel) and glycosilated

(right panel) proteins (green) in the total cycling (blue) liver

proteome.

(TIF)

Figure S2 Phase dependent enrichment analysis of the liver

circadian proteome. (A–B) Distribution of phases of abundance for

all cycling proteins (blue) and for those annotated in the indicated

KEGG category (red) which shown statistical significant phase

enrichment (Benjamini Hochberg FDR,0.05) at day (A) or night

(B). (C–D) Protein annotations from Gene Ontology Cellular

Component (GOCC) (C) and KEGG pathways (D) enriched in a

phase dependent manner in the cycling proteome plotted based on

their calculated phase and p-value from the enrichment analysis.

(TIF)

Figure S3 Characteristic time delay between the phase of

rhythmic proteins and their corresponding transcripts. (A) Scatter

plot showing the correlation between the calculated q-values for

cycling proteins and mRNAs in the total quantified dataset (3132).

The horizontal and vertical effect observed in the lower values is

due to the discretization of the permutation-based calculation of

the q-value. Red dots correspond to common statistical significant

cycling proteins after using a cut off of q-value,0.33 (dashed bars)

in both datasets. (B) Scatter plot representing the correlation of

phases for cycling proteins and their corresponding mRNAs. (C)

Distribution of time delays between peak of mRNA and protein

abundances for the liver circadian proteome with rhythmic

transcripts. Please note that time dimension is circular with

maximum at 24 h as the length of the day. (D–E) Graph shows the

phases of liver rhythmic proteins (blue) and their corresponding

mRNAs (red) of secreted proteins (D) (11 in 201 cycling versus 29

in 3131 total dataset) as well as chaperones (C) (8 in 201 cycling

versus 75 in 3131 total dataset). Lack of mRNA data indicates an

arrhythmic transcript. Box plots at the bottom of each graph

represent graphically the data of the mRNA (red) and protein

(blue) phases.

(TIF)

Figure S4 Coordinated abundance cycles of proteins involved

in essential cellular processes. (A) Profiles of protein abundance,

across the two sampled cycles, of cycling RAB GTPases in the

mouse liver. Represented values correspond to the median of the

normalized log2 z-scored ratios for each triplicate and their

respective SEM. (B) Phases of cycling proteins (blue) and its

correspondent mRNA (red) components of vesicle trafficking.

Lack of mRNA data indicates arrhythmic transcript. (C) Western

blots detecting RAB1, SARA1 and RAB10 in the samples of the

first collected day. Loading control is shown with anti-GAPDH

antibody. Numbers at the bottom indicate the relative density of

the signal for each specific antibody at each time point

normalized by GAPDH signal. (D–F) Profiles of abundance in

the mouse liver for cycling proteins essential for cholesterol

metabolism: hepatic receptors (D), apolipoproteins (E) and

metabolic enzymes (F). Represented values correspond to the

median of the normalized log2 z-scored ratios for each triplicate

and their respective SEM.

(TIF)

Figure S5 Circadian oscillations of abundances for crucial

translation factors in the mouse liver. (A–B) Profiles of protein

abundance across the two sampled cycles for essential initiation (A)

and elongation (B) translation factors.

(TIF)

Table S1 Total quantified protein dataset with normalized log2

ratios for all measured samples and q-values from the cycling

analysis.

(XLSX)

Table S2 Proteins with statistically significant circadian oscilla-

tions of abundance in the mouse liver. For each time point values

are shown as the median of the triplicates z-scored normalized

log2 ratios.

(XLSX)

Table S3 Enriched protein categories among the circadian liver

proteome. Underlined categories are represented in Figure 2C and

2D.

(XLSX)

Table S4 Circadian rhythmic proteins with oscillating mRNA in

the mouse liver.

(XLSX)
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