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Abstract Cell death proceeds by way of a variety of “cell
death subroutines,” including several types of “apoptosis,”
“regulated necrosis,” and others. “Accidental necrosis” due
to profound adenosine triphosphate (ATP) depletion or ox-
idative stress is distinguished from regulated necrosis by the
absence of death receptor signaling. However, both acciden-
tal and regulated necrosis have in common the process of
“oncosis,” a physiological process characterized by Na+

influx and cell volume increase that, in necrotic cell death,
is required to produce the characteristic features of mem-
brane blebbing and membrane rupture. Here, we review
emerging evidence that the monovalent cation channel,
transient receptor potential melastatin 4 (TRPM4), is in-
volved in the cell death process of oncosis. Potential in-
volvement of TRPM4 in oncosis is suggested by the fact
that the two principal regulators of TRPM4, intracellular
ATP and Ca2+, are both altered during necrosis in the direc-
tion that causes TRPM4 channel opening. Under physiolog-
ical conditions, activation of TRPM4 promotes Na+ influx
and cell depolarization. Under pathological conditions, un-
checked activation of TRPM4 leads to Na+ overload, cell
volume increase, blebbing and cell membrane rupture, the
latter constituting the irreversible end stage of necrosis.

Emerging data indicate that TRPM4 plays a crucial role as
end executioner in the accidental necrotic death of ATP-
depleted or redox-challenged endothelial and epithelial
cells, both in vitro and in vivo. Future studies will be needed
to determine whether TRPM4 also plays a role in regulated
necrosis and apoptosis.
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Introduction

Transient receptor potential (TRP) melastatin 4 (TRPM4) is a
member of a large superfamily consisting of 28 mammalian
cation channels. All but two TRP channels are permeable to
divalent cations. The exceptions, TRPM4 and TRPM5, are
non-selective, Ca2+-impermeable channels that transport mono-
valent cations exclusively [76]. TRPM4 and TRPM5 are both
activated by increasing intracellular Ca2+. With TRPM4, ATP
plays a crucial role in maintaining Ca2+ sensitivity through
direct binding to the channel protein [77]. TRPM4, but not
TRPM5, is blocked by intracellular ATP, i.e., is activated by
decreasing intracellular ATP. Excellent reviews on the biophys-
ical properties and physiological regulation of these channels
have been published [40, 56, 59, 108, 110].

The best known function of TRPM4, the regulation of
Ca2+ influx, is linked to one of the principal factors that
regulates channel opening — the intracellular Ca2+ concen-
tration [55, 56, 72, 77]. TRPM4 is activated following
receptor-mediated Ca2+ mobilization, with activation caus-
ing depolarization of the cell membrane. Because the elec-
trochemical driving force for Ca2+ is determined by the cell
membrane potential, the reduction in membrane potential
induced by activation of TRPM4 reduces the driving force
for Ca2+ entry through Ca2+-permeable pathways. However,
this mechanism for regulating Ca2+ entry may be dangerous,
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as it risks Na+ overload. As discussed below, Na+ overload
plays a crucial role in cell death processes.

Surprisingly, the second major factor that regulates channel
opening, the intracellular concentration of ATP, has a more
obscure functional role. As noted above, ATP binding to the
channel helps to maintaining Ca2+ sensitivity [77]. However,
the functional role of channel block by intracellular ATP is
uncertain. It has been speculated that this property confers
sensitivity to the metabolic state of the cell [78], but whether
this occurs under physiological conditions, and what its impli-
cations might be are unclear. The concentration of ATP that
yields half-maximum open channel probability is <5 μM, far
below the normal operating levels of 1–6 mM cytoplasmic
ATP found in mammalian cells [10]. The only metabolic state
associated with such levels of ATP is one of severe metabolic
depletion bordering on cell death. This property of TRPM4
alsomay be dangerous, as it risks persistent channel opening if
metabolic conditions are not rapidly improved and cellular
levels of ATP are not adequately restored. Again, unchecked
channel opening can lead to Na+ overload and its deleterious
consequences, including cell death.

Despite its relatively recent discovery, much has been
written about this unique ion channel. Excellent reviews of a
general nature as well as specialized reviews focused on organ
systems have been published [3, 17, 29, 32, 38, 42, 79, 91,
107]. There is growing recognition that TRPM4 plays a cru-
cial role in a variety of diseases [74, 80]. Recent work has
shown that mutations in the TRPM4 gene are responsible for
certain cardiac conduction diseases [51, 60, 68, 93, 102]. In
addition, TRPM4 plays a central role in cardiac hypertrophy
[37, 39, 81], certain forms of hypertension [65], cutaneous
anaphylaxis [32, 111], certain types of cancer [5, 57, 89], as
well as spinal cord injury [35, 98]. However, one topic that has
gained relatively little attention is the role of TRPM4 in cell
death. Other transient receptor potential channels have been
implicated in cell death, typically linked to Ca2+ influx [1, 2,
66, 67, 97]. Here, we review emerging data in which specific
involvement of TRPM4 in accidental necrotic cell death has
been shown, and we speculate on potential involvement in
regulated necrosis and in apoptosis, which is theoretically
possible but has yet to be demonstrated.

Necrotic cell death

First, because of the variable usage in the nomenclature of cell
death, it is appropriate to begin with a clarification of our usage
of terms. Traditionally, different types of cell death were classi-
fied based onmorphological features and included “apoptosis,”
“necrosis” and “mitotic catastrophe” [50]. Currently, a function-
al classification of “cell death subroutines” is favored that is
defined by a series of precise, measurable biochemical features,
and includes “extrinsic apoptosis,” “caspase-dependent or -

independent intrinsic apoptosis,” “regulated necrosis,” “auto-
phagic cell death” and “mitotic catastrophe,” with these classi-
fications applying both in vitro and in vivo [33, 34].

The current functional classification of cell death [34] is
ambiguous as to whether necrosis in the context of severe
ATP depletion or oxidative stress (absent death receptor
signaling) should be termed “accidental necrosis” or “regu-
lated necrosis.” Here, in keeping with tradition, we refer to it
as accidental necrosis. The current classification does not
include the term “oncosis” [34], which has been used by
some authors to denote a form of necrotic cell death, i.e.,
necrotic death resulting from oncosis. Here, we use the term
oncosis exclusively to refer to the physiological process of
cell volume increase, in accord with the usage proffered by
the Nomenclature Committee on Cell Death [50]. In this
sense, oncosis is a process that is shared by both accidental
and regulated necrosis. Thus, accidental necrosis can result
either from oncosis (e.g., ATP depletion or oxidative stress)
or from extremely harsh physical conditions (e.g., freeze–
thaw cycles) [34].

Necrotic cells share specific morphological traits, includ-
ing an increasingly translucent cytoplasm, the osmotic
swelling of organelles, minor ultrastructural modifications
of the nucleus (the dilatation of the nuclear membrane and
the condensation of chromatin into small patches) and an
increase in cell volume (oncosis), which culminates in the
breakdown of the plasma membrane and loss of intracellular
contents [33, 47, 50]. Necrotic cells do not fragment into
discrete bodies, as their apoptotic counterparts do, nor do
their nuclei, which may accumulate in necrotic tissues.

In necrosis, opening of the mitochondrial inner mem-
brane permeability transition pore can cause irreversible
mitochondrial inner membrane depolarization and osmotic
mitochondrial lysis, impairing ATP formation and leading to
massive energy depletion [49, 88, 90]. Mitochondrial swell-
ing eventually ruptures the outer mitochondrial membrane,
releasing intermembrane proteins. Other prominent features
include formation of reactive oxygen species, activation of
non-apoptotic proteases, and a large increase of intracellular
Ca2+. Elevated Ca2+ activates Ca2+-dependent proteases,
such as calpains [61, 62], and triggers mitochondrial Ca2+

overload, leading to further depolarization of the inner mi-
tochondrial membrane and inhibition of ATP production.

Absent direct physical destruction, accidental necrotic
cell death, for example death due to severe ATP deple-
tion or oxidative stress, requires that two events tran-
spire: (1) the cytoskeleton first must become disrupted;
(2) intracellular pressure must act to expand the cell
volume (oncosis), resulting initially in blebbing and
culminating in cell membrane rupture. Blebbing occurs
when the cell membrane detaches from the cytoskeleton
and is forced outward by intracellular pressure [106]
(Fig. 1).
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ATP depletion

ATP depletion is a typical feature of necrosis. Initiation of
necrosis generally requires that ATP levels be depleted by 80–
85 % or more [50, 63]. ATP depletion due to factors external
to the cell, e.g., following a traumatic insult or an ischemic
event without reperfusion, results in accidental necrosis. The
situation is more complex in the case of regulated necrosis. It
is generally acknowledged that maintenance of ATP stores is
required, at least initially, to pursue any form of programmed
cell death, including regulated necrosis. Some evidence sug-
gests that ATP-depletion may not be an absolute requirement
for regulated necrosis [82]. However, in the type of regulated
necrosis induced by tumor necrosis factor (TNF), which is
called necroptosis, ATP-consuming processes including poly
(ADP-ribose) polymerase-1 (PARP1) activity, translation and
proteasome-mediated degradation persist and hence may con-
tribute to the lethal decline in intracellular ATP [58, 109]. In
addition, TNF induces receptor-interacting protein (RIP)-de-
pendent inhibition of adenine nucleotide translocase (ANT)-
mediated transport of ADP into mitochondria, which reduces
ATP production and contributes further to the lethal decline in
intracellular ATP [105]. In necroptosis induced by TNF-
related apoptosis inducing ligand (TRAIL) at acidic extracel-
lular pH, TRAIL gives rise to an early, 90 % depletion of
intracellular ATP that is PARP-1-dependent [45]. Thus, in

general, ATP depletion can be considered a characteristic
feature of both accidental and regulated necrosis.

ATP depletion has striking effects on cytoskeletal structure
and function. Disruption of actin filaments (F-actin) during
ATP-depletion reflects predominantly the severing or frag-
mentation of F-actin [115], with depolymerization playing a
contributory role [96]. Actin sequestration progresses in a
duration-dependent manner, occurring as early as 15 min after
onset of anoxia, when cellular ATP drops to <5 % of control
levels [114]. Alterations in membrane–cytoskeleton linker
proteins (spectrin, ankyrin, ezrin, myosin-1β and others)
[73, 95, 113] induced by ATP depletion weaken membrane–
cytoskeleton interactions, setting the stage for the later forma-
tion of blebs [22, 23, 70]. After 30 min of ATP depletion, the
force required to pull the membrane away from the underlying
cellular matrix diminishes by >95%, which coincides with the
time of bleb formation [27]. During ATP depletion, the
strength of “membrane retention” forces diminishes until in-
tracellular pressures become capable of initiating and driving
membrane bleb formation.

Initially, as ATP-depleted cells swell and bleb, their plasma
membranes remain “intact,” appearing to be under tension, yet
becoming increasingly permeable to macromolecules [28]. As
energy depletion proceeds, the plasma membrane becomes
permeable to larger and larger molecules, a phenomenon that
has been divided into three phases [22, 23]. In phases 1, 2, and
3, respectively, plasma membranes become permeable first to
propidium iodide (PI; 668 Da), then to 3-kDa dextrans, and
finally to 70-kDa dextrans or lactate dehydrogenase (140 kDa).
Phase 1, which is marked by an increase in permeability to PI, is
said to be reversible by reoxygenation [22, 106], an observation
that would seem to conflict with the notion that PI uptake is a
hallmark of necrotic cell death [50]. In any case, these observa-
tions on increasing permeability indicate that blebs do not
actually have to rupture in order to begin the pre-morbid ex-
change of vital substances between the intracellular and extra-
cellular compartments.

Oncosis

Regulated and accidental forms of necrosis share several
characteristic features. Not only is ATP depleted in both
forms, but both also are characterized by cytoplasmic swelling
(oncosis) and rupture of the plasma membrane [50]. Initially,
cellular injury causes the formation of membrane blebs. Later,
if the injurious stimulus persists, membrane blebs rupture and
cell lysis occurs. Blebbing and membrane rupture are two
essential features that characterize necrotic cell death [7, 47].

The loss of cytoskeletal support alone is not sufficient for
anoxic plasma membrane disruption [21, 94]. In addition, an
outward force is necessary to cause the cell to expand and for
blebs to form. This outward force is provided by osmotic

Fig. 1 Cells expressing TRPM4 are highly susceptible to ATP-
depletion-induced cell blebbing. a, b Immunolabeling for TRPM4
shows that native reactive astrocytes in situ that form a gliotic capsule
surrounding a foreign body exhibit abundant expression of TRPM4
(Simard and colleagues, unpublished). c–e Scanning electron micro-
graphs of freshly isolated native reactive astrocytes from a gliotic
capsule showing that ATP depletion (1 mM sodium azide) induces
oncotic blebbing; formaldehyde–glutaraldehyde fixed cells were im-
aged under control conditions (c), 5 min after exposure to sodium azide
(d), and 25 min after exposure to sodium azide (e); bar, 12 μm; from
Chen and Simard [24]
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pressure, and it results in the process termed oncosis [26, 106].
The greater the osmotic pressure, the more rapidly blebs
expand and rupture, resulting in frank irreversible disruption
of the cell membrane.

One certain way to increase cellular osmotic pressure is
to increase the influx of Na+ [20]. Indeed, necrosis has been
said to require a combination of low ATP and high Na+

intracellularly [7]. Because Na+ is naturally excluded from
the intracellular compartment, there normally exists a large
electrochemical driving force for its passive inward trans-
port. Increasing the influx of Na+ inevitably increases the
inward driving force for Cl–, which helps to maintain intra-
cellular electrical neutrality. The resulting increase in osmot-
ically active Na+ and Cl– ions intracellularly drives the
influx of H2O, initiating cell swelling and culminating in
membrane bleb formation.

One of several mechanisms involving altered function of
active or passive ion transporters may give rise to the in-
crease in intracellular Na+ that drives necrosis. Historically,
it was thought that a key deleterious effect of ATP depletion
was the loss in function of the active ion transporter, Na+–
K+ ATPase, which normally extrudes Na+ from the cell.
Loss of function of Na+–K+ ATPase results in a slow accu-
mulation of Na+ intracellularly that is associated with slow
depolarization. However, accumulating intracellular Na+ in
this manner is not inevitably associated with an increase in
intracellular pressure sufficient to produce necrosis. In en-
ergized cells, osmotic swelling induced by Na+–K+ ATPase
inhibition with ouabain that is sufficient to cause a doubling
of the cell volume does not produce blebbing or cell death
[46]. Moreover, the effect of ouabain on cell death may be
cell-specific. In some cells, the death signal is mediated by
an interaction between ouabain and the Na+–K+ ATPase α-
subunit but is independent of the inhibition of Na+–K+

pump-mediated ion fluxes and elevation of the [Na+]i/[K
+]i

ratio [83, 84]. Overall, Na+–K+ ATPase inhibition may
produce no death [85], only necrotic death [86], or a
“mixed” form of death, with features of both necrosis and
apoptosis in various cell types [83, 84, 87, 116, 118]. It is
clear that, by itself, Na+–K+ ATPase inhibition is inadequate
to account broadly for necrosis.

Alternatively, sodium influx may be augmented by open-
ing a non-selective cation channel such as TRPM4. Phar-
macological inhibition of non-selective cation channels
using flufenamic acid abolishes cytosolic Ca2+ overload,
cell swelling and necrosis of liver cells exposed to free-
radical donors [8]. Implicating TRPM4 specifically in ne-
crotic death makes theoretical sense, since the two principal
regulators of TRPM4, intracellular ATP and Ca2+ [40, 59,
110], are both characteristically altered during necrosis and,
moreover, are altered in the direction that causes TRPM4
channels to open: a decrease in intracellular ATP (see above)
and an increase in intracellular Ca2+ [61, 62].

Involvement of TRPM4 in cell blebbing and necrotic cell
death was shown first by Gerzanich et al. [35]. That this
study involved accidental and not regulated necrosis was
assured by the experimental design: COS-7 cells expressing
TRPM4 were depleted rapidly of ATP, down to <2 % of
control levels within 15 min, in the absence of TNFα or any
other inducer of death receptor signaling. ATP depletion
activated a 25-pS Cs+-permeable non-selective cation chan-
nel that was blocked by N-methyl-D-glucamine, characteris-
tic of TRPM4. In COS-7 cells expressing TRPM4, ATP
depletion caused marked cell blebbing, oncotic swelling
and membrane leakage, and resulted in nuclear labeling by
PI, consistent with necrotic cell death (Fig. 2).

Notably, in the study by Gerzanich et al. [35], ATP deple-
tion did not induce necrotic death in COS-7 cells that did not
express TRPM4. This finding is consistent with the observa-
tions above that the loss of cytoskeletal support or of Na+–K+

ATPase activity induced by ATP depletion is not sufficient to
obtain plasma membrane disruption. Moreover, this finding
indicates that in some cells, TRPM4 plays an obligate role as
end executioner in necrotic cell death.

A distinct feature of heterologously expressed TRPM4
channels is that, upon activation by intracellular Ca2+, currents
exhibit a fast decay due to a decrease in apparent sensitivity to
Ca2+ [56, 75, 78]. This phenomenon could, in principal, act to
protect cells from necrotic death by limiting Na+ influx.

Fig. 2 TRPM4 plays an obligate role in necrotic cell death in vitro. a
Oncotic blebbing and nuclear labeling with propidium iodide (PI; red)
induced by ATP depletion (1 mM sodium azide plus 10 mM 2-
deoxyglucose [NaAz+2DG]) in COS-7 cells transfected with EGFPN1
+ TRPM4 plasmid, but not in cells transfected with EGFPN1 plasmid
alone. b Quantification of PI-positive necrotic cell death induced
10 min after ATP depletion in COS-7 cells transfected with EGFPN1
+ TRPM4 plasmid or with EGFPN1 plasmid alone; values represent
the percentage of the transfected cells (green cytoplasm) with nuclear
PI labeling; experiments were performed in triplicate, with data from
>100 cells per experiment; ****P<0.0001; from Gerzanich et al. [35]
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However, in HEK 293 cells expressing TRPM4, H2O2 was
found to eliminate TRPM4 desensitization in a dose-
dependent manner [99]. Site-directed mutagenesis revealed that
the Cys1093 residue of TRPM4 is crucial for the H2O2-mediated
reversal of desensitization. In the same study, it was shown that
in HeLa cells, which endogenously express TRPM4, H2O2

(without ATP depletion) elicited necrosis as well as apoptosis,
and that H2O2-mediated necrosis, but not apoptosis, was abol-
ished by replacing external Na+ with N-methyl-D-glucamine or
by knocking down TRPM4 with shRNA. Thus, removing
TRPM4 desensitization by oxidative stress assures that TRPM4
will participate fully, without the impediment of desensitization,
in the process of necrotic death.

TRPM4 recently was shown to be involved in the necrotic
death of endothelial cells following exposure to lipopolysac-
charide (LPS) [9]. Exposing human umbilical vein endothelial
cells to LPS caused upregulation of TRPM4-like currents and
caused Na+ overload, cell depolarization, cell volume increase
and Na+-dependent necrotic cell death, as measured by release
of lactate dehydrogenase. The cells were protected against
LPS-induced necrotic death by 9-phenanthrol, a relatively
selective inhibitor of TRPM4, by siRNA directed against
TRPM4, as well as by suppression of TRPM4 using a dom-
inant negative mutant.

TRPM4 is involved in necrotic death in vivo as well, as
shown first by Gerzanich et al. [35]. In this study, traumatic
injury to the spinal cord was accompanied by delayed capil-
lary fragmentation, resulting in the autodestructive process
termed “progressive hemorrhagic necrosis.” Microvessels in
the penumbra of injury showed prominent upregulation of
TRPM4 mRNA and protein, which was not present in tissues
remote from the injury. Capillary fragmentation was attributed
to necrotic death of microvascular endothelial cells (Fig. 3).
TRPM4−/− mice were completely spared from capillary frag-
mentation and progressive hemorrhagic necrosis. Moreover,
rats that were subjected to a similar traumatic insult and that
were administered antisense oligodeoxynucleotide directed
against TRPM4 also were spared from capillary fragmentation
and progressive hemorrhagic necrosis. The latter series of
experiments also showed that antisense entered microvascular
endothelial cells in the penumbra almost exclusively, and
thereby prevented the destruction (fragmentation) of micro-
vessels (Fig. 3). Together, these findings are consistent with
TRPM4 playing an obligate role as end executioner in necrot-
ic cell death in vivo.

TRPM4 is not the only ion channel that can transport Na+

in a manner sufficient to cause oncosis in the context of ATP
depletion. Many other ion channels passively transport Na+

down its electrochemical gradient, either selectively, e.g.,
voltage dependent Na+ channels, or non-selectively, e.g.,
non-selective cation channels such as N-methyl-D-aspartate
(NMDA) receptor channels and some TRP channels, some
of which transport both monovalent and divalent cations.

However, with many non-selective cation channels includ-
ing NMDA and many TRP, distinguishing between effects
due to Na+ transport versus Ca2+ overload is difficult, and
indeed, pronecrotic effects of these channels are typically
attributed to Ca2+ influx. Other examples abound wherein
Na+ influx is induced and is associated with oncosis and
necrotic cell death, including such activators as venom from
the wasp, Nasonia vitripennis [92] and a cytotoxic antibody
that kills undifferentiated human embryonic stem cells
[104]. However, none of these channels exhibits the unique
combination of properties seen with TRPM4 of being acti-
vated by a decrease in ATP and an increase in Ca2+. Addi-
tional work will be required to determine the role of many of

Fig. 3 TRPM4 plays an obligate role in necrotic cell death in vivo. a
Upper panel: fluorescence image of the penumbra 24 h after spinal
cord injury (SCI) in a rat administered CY3-conjugated TRPM4 anti-
sense (AS) oligodeoxynucleotide (red) by constant infusion post-SCI,
showing that AS preferentially targets microvessels after SCI; rat
perfused to remove intravascular contents; nuclei labeled with 4′,6-
diamidino-2-phenylindole (DAPI; blue); arrows point to capillaries;
lower panel: immunohistochemistry for TRPM4 in tissues obtained
24 h post-SCI from rats administered TRPM4-sense (SE) or TRPM4-
AS, showing reduced TRPM4 expression with AS. b Spinal cord
sections from an untreated control rat (CTR) and rats administered
TRPM4-SE, TRPM4-AS or flufenamic acid (FFA), showing necrosis-
induced capillary fragmentation in the controls (CTR and SE) and
preservation of intact capillaries with gene suppression or pharmaco-
logical block of TRPM4; from Gerzanich et al. [35]
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these channels specifically in passive Na+ transport that is
requisite for necrotic cell death.

Apoptotic cell death

Unlike accidental necrosis, apoptosis is a metabolically active,
energy demanding process that maintains cellular ATP levels
and plasma membrane integrity until late in the cell death
process. Comprehensive reviews on the molecular machinery
involved in apoptosis have been published. Here, we focus on
the role of Na+ influx and the potential involvement of TRPM4.

Like necrosis, apoptotic cell death has features of Na+

dependence and cell membrane depolarization [12–15, 31,
87]. A variety of apoptotic stimuli result in an early transient
increase in intracellular Na+ that is associated with marked
plasma membrane depolarization that occurs prior to and after
cell shrinkage [15]. In thymocytes, Na+ influx plays a major
role in the rapid phosphatidylserine exposure induced by
P2X7 receptor activation [25]. In Jurkat cells, inhibition of
Na+ influx by ion substitution reduces Fas-induced apoptosis
[13]. An initial Na+ influx is necessary for cell shrinkage, but
not for the activation of the cell death effectors, whereas K+

efflux is critical for cell shrinkage and death by apoptosis.
Downstream mechanisms activated by the rise in Na+ are not
completely elucidated, but may include activation of a Na+–
Ca2+ exchanger, resulting in Ca+ overload [11, 54, 69]. In
addition, Na+ overload may be involved in opening of the
mitochondrial inner membrane permeability transition pore
and mitochondrial swelling, resulting in cytochrome c release
and activation of the caspase-3-dependent apoptosis [30].

Several mechanisms have been postulated to account for
the early rise of intracellular Na+ in apoptosis, including
diminished function of Na+–K+ ATPase, augmented func-
tion of voltage-dependent Na+ channels, and augmented
function of non-selective cation channels (see review by
Franco et al. [31]). In general, changes in Na+ and K+ fluxes
typical of apoptosis are likely to be caused by a complex
interplay of several mechanisms, including a decrease in
Na+–K+ ATPase activity, Na+–Cl− co-transport and an in-
crease in Na+ channel permeability [112].

Reflecting on the potential involvement of voltage-
dependent Na+ channels is instructive. Unlike Na+–K+ ATPase
and non-selective cation channels, voltage-dependent Na+

channels are highly selective passive transporters of Na+, leav-
ing little doubt about the event that triggers apoptosis. Activa-
tion of voltage-dependent Na+ channels during oxygen
deprivation leads to apoptotic neuronal death that is reduced
by the highly specific Na+ channel blocker, tetrodotoxin [6].
Veratridine, which prevents inactivation of voltage-dependent
Na+ channels, increases influx of Na+, causes cell depolariza-
tion, and induces apoptosis of neuronal cells [19, 36, 44, 117].
Following global cerebral ischemia in the gerbil, administration

of the Na+ ionophore, monensin, or of the Na+ channel blocker,
tetrodotoxin, results in an increase or a decrease, respectively, in
apoptotic neuronal death in the hippocampus [16]. A gain-of-
function mutation [the N(1325)S mutation] in the cardiac Na+

channel gene SCN5A results in an increase in apoptotic cell
death of ventricular myoctes [119]. Such studies demonstrate
the crucial role played by an early rise in Na+ in the cell death
subroutine of apoptosis.

In some cases, a non-selective cation channel such as
TRPM4 may be responsible for the early rise in intracellular
Na+ involved in apoptosis. The involvement of non-selective
cation channels in apoptosis has been widely reported in many
cell types following exposure to various apoptotic stimuli [41,
43, 48, 52, 53, 64, 71, 101, 103]. However, most of the studies
on non-selective cation channels attributed cell death signaling
to a rise in intracellular Ca2+, with little consideration for the
potential role of intracellular Na+ or of cell membrane potential.

A number of cells have been found to express a channel with
properties of TRPM4 that could mediate an early rise in Na+

that may trigger apoptosis. H2O2, an inducer of apoptosis in
epithelial cells [4, 18], increases the activity of a 24 pS Ca2+-
activated, non-selective cation channel in a bronchial epithelial
cell line [43], and of a 19 pS Ca2+-activated, ATP-sensitive non-
selective cation channel in a liver-derived epithelial cell line
[100]. Both of these studies are reminiscent of the effect of
H2O2 on TRPM4 in endothelial cells [99]. Conversely, H2O2-
induced apoptosis in HeLa cells, which express TRPM4, is not
blocked by inhibiting Na+ influx with ion substitution [99].
Despite theoretical data pointing to a potential role of TRPM4
in triggering apoptosis, to our knowledge, there has been no
molecular demonstration of this to date.

Summary

Cell death is extraordinarily complex, with new molec-
ular insights continuing to emerge at a rapid pace. The
molecular events involved in apoptosis have been ex-
tensively studied, but by comparison, the molecular
basis for necrosis is less well understood. Much prog-
ress has been realized during the last decade, not the
least important of which is the recognition that necrosis
may proceed by accidental as well as by regulated
pathways, with both requiring Na+ influx to drive onco-
sis that is responsible for membrane blebbing and rup-
ture. A variety of TRP channels have been implicated in
apoptotic and necrotic cell death, typically related to
Ca2+ influx [1, 2, 66, 67, 97]. Emerging evidence indi-
cates that the monovalent cation channel, TRPM4,
which under physiological conditions promotes Na+ in-
flux and cell depolarization, plays a crucial role as end
executioner in the accidental necrotic death of ATP-
depleted or redox-challenged endothelial and epithelial
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cells, both in vitro and in vivo. TRPM4 may also play a
role in regulated necrosis and apoptosis, although future
studies will be required to elucidate this.
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