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INTRODUCTION

Physicians are often presented with large quantities of complex data and limited processing 
time. is presents barriers to the real-time analysis and prediction of patient outcomes. In 

ABSTRACT
Background: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. e use of 
machine learning (ML) has emerged as a key advancement in TBI management. is study aimed to identify ML 
models with demonstrated effectiveness in predicting TBI outcomes.

Methods: We conducted a systematic review in accordance with the Preferred Reporting Items for Systematic 
Review and Meta-Analysis statement. In total, 15 articles were identified using the search strategy. Patient 
demographics, clinical status, ML outcome variables, and predictive characteristics were extracted. A small meta-
analysis of mortality prediction was performed, and a meta-analysis of diagnostic accuracy was conducted for ML 
algorithms used across multiple studies.

Results: ML algorithms including support vector machine (SVM), artificial neural networks (ANN), random 
forest, and Naïve Bayes were compared to logistic regression (LR). irteen studies found significant improvement 
in prognostic capability using ML versus LR. e accuracy of the above algorithms was consistently over 80% 
when predicting mortality and unfavorable outcome measured by Glasgow Outcome Scale. Receiver operating 
characteristic curves analyzing the sensitivity of ANN, SVM, decision tree, and LR demonstrated consistent 
findings across studies. Lower admission Glasgow Coma Scale (GCS), older age, elevated serum acid, and 
abnormal glucose were associated with increased adverse outcomes and had the most significant impact on ML 
algorithms.

Conclusion: ML algorithms were stronger than traditional regression models in predicting adverse outcomes. 
Admission GCS, age, and serum metabolites all have strong predictive power when used with ML and should be 
considered important components of TBI risk stratification.
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computer science, complex algorithms designed to learn 
from data and create generalizations are known as machine 
learning (ML). e marked proliferation of electronic 
medical record systems during recent years has presented 
unique opportunities for ML to improve patient care. Several 
ML learning techniques have been used in clinical practice 
to predict deleterious events and alert appropriate care 
teams. is has led to an increase in the number of early 
interventions, reduced mortality, and decreased lengths of 
hospital stay.[3,9,18,20,39]

Traumatic brain injury (TBI) remains one most prevalent 
causes of death and disability throughout the world.[10,19,38] 
Robust prediction of outcomes in these patients is critical 
for clinical decision-making, family counseling, and for the 
need-based allocation of quality of care. In recent years, TBI 
research has employed several ML models for the prediction 
of patient events and outcomes; however, there exists much 
variability in their results.[40-42] Conflicting data continues to 
be reported in the literature; for example, while one study 
reported that the ML-based predictive models were more 
powerful than classic multivariate analysis in head trauma 
patients, another reported ML algorithms performed no 
better than conventional for prognostication in TBI.[15] To 
the best of our knowledge, there exists no systematic review 
comparing various ML models used for predictions in 
TBI. e present systematic review and meta-analysis were 
conducted to summarize and analyze the available clinical 
literature regarding ML-based prediction of TBI outcomes. 
We conducted a small meta-analysis of available studies to 
estimate the predictive performance of ML-based algorithms 
for TBI outcomes.

MATERIALS AND METHODS

e present systematic review and meta-analysis were 
performed per the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines.[28,32] 
Figure 1 shows the PRISMA flow diagram for the study.

Literature search strategy

We conducted a literature search of studies reporting on 
ML-based prediction of TBI outcomes published until 
March 31, 2021. We searched the following three electronic 
bibliographic databases: PubMed, EMBASE, and Cochrane 
Library. We used the following MeSH (Medical Subject 
Heading) terms in combination with Boolean Operators OR 
and AND: “machine learning” OR “artificial intelligence” OR 
“neural network” OR “naive Bayes” OR “Bayesian learning” 
OR “random forest” OR “deep learning” OR “machine 
intelligence” OR “boosting” OR “nature language processing” 
OR “decision tree” AND “traumatic brain injury” OR “head 
injury.” An additional search involving the following terms 

was also performed: “machine learning” OR “artificial 
intelligence” OR “neural network” OR “naive Bayes” OR 
“Bayesian learning” OR “random forest” OR “deep learning” 
OR “machine intelligence” OR “boosting” OR “nature 
language processing” OR “decision tree” AND “traumatic 
brain injury” OR “head injury” OR AND “outcome” OR 
“mortality” OR “morbidity.”

Inclusion and exclusion criteria

We included peer-reviewed prospective and retrospective 
cohort studies published in the English language utilizing 
ML algorithms to predict outcomes of TBI in human 
patients. Single case reports, editorials, reviews, and 
conference/meeting abstracts were excluded from the study. 
Furthermore, TBI studies that used ML for a purpose other 
than predicting outcomes were also excluded. We also 
reviewed the reference lists of the selected articles for any 
additional articles related to the topic.

Data extraction

ree independent investigators (JV., OHT., and JS.) 
reviewed the full text of the included articles and extracted 
the data on a data collection form. Any disagreement 
between the three authors was resolved by discussion. 
e following data were extracted from each study: study 
design, TBI population characteristics, ML and comparative 
regression models used, ML input variables, outcome 
variables, study results, and predictive performance of 
various models used in the study.

Risk of bias assessment

We employed the Quality Assessment of Diagnostic Accuracy 
Studies 2 (QUADAS-2) in the Review Manager (RevMan) 
software version 5.4 to assess the quality of extracted studies 
[Figure  2]. e following four domains are included in the 
QUADAS-2: (1) patient selection; (2) index test; (3) reference 
standard; and (4) flow and timing.[46] We assessed each 
domain with regard to the risk of bias, and the first three also 
for concerns regarding applicability. We used the signaling 
questions to assess the risk of bias and applicability concerns. 
For each domain, we analyzed the risk of bias and concerns 
about applicability (the latter not applying to the domain of 
flow and timing) and rated each domain as low (+), high 
(−), or unclear (?) (could not be assessed due to missing 
information) risk. Studies rated as “low” on all domains 
regarding bias or applicability concerns were identified as 
having an overall low risk of bias or low concerns regarding 
applicability.[46] Contrarily, studies judged as having a high 
risk of bias in one or more domains were identified as having 
an overall high risk of bias or high concerns regarding 
applicability.[46]
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Quality assessment

e quality of the included studies was evaluated using 
the QUADAS-2 tool in RevMan version  5.4.1 software. 
Each study was assessed using 12 signaling questions 
(three from each domain) and three questions regarding 
study applicability (one each from the first three domains) 
[Figure  1]. e rating for each question was yes, no, or 
unclear. “No” indicates a small risk of bias, whereas “yes” 
indicates a high risk of bias for the specific question. 
“Unclear” indicates that the risk of bias could not be assessed 
due to missing information. We assessed agreement between 
both evaluators using three (yes, no, or unclear) and two (yes 
or combined unclear/no) response levels. e agreement 
was calculated for each question, for each domain, and for 
the overall assessment. Studies that were judged as “low” 
on all domains regarding bias or applicability were rated as 
having an overall low risk of bias or low concern regarding 
applicability. Studies that were judged as having a high risk of 
bias in one or more domains were rated as having an overall 
high risk of bias or high concern regarding applicability.

e domain “Patient Selection” addresses the following 
question: “Could the selection of patients or study 
participants have introduced bias?” e constitution of the 

study population is centrally important to a high-quality 
study. We distinguished three populations, study, source, 
and target. e study population is the population that 
was reported on in an article, sampled from a larger source 
population. Only two studies (Gravesteijn et al. 2020 and 
Raj et al. 2019) reported an unclear risk of bias while others 
answered a low risk of bias and only one study answered a 
high risk (Rizoli et al. 2016).[15,34,37]

e domain “Index Text” addresses the question: “Could the 
conduct or interpretation of the index test have introduced 
bias?” e index test results are one central component of a 
2 × 2 table that is evaluated in diagnostic studies. e index 
test is the assay under investigation in the study, and a study 
may evaluate one or more index tests in the same population 
or among population subsets. Among the studies cohort 
in our systematic review and meta-analysis using ML and 
comparative regression models in the prediction of TBI, 
only one study qualified as high risk (Rizoli et al. 2016), four 
studies (Amorim et al. 2019, Rau et al. 2017, Kayhanian et al. 
2019, and Raj et al. 2019) remained unclear risk while others 
reported a low risk of bias.[4,21,36,37]

e domain “Reference standard” addresses the question: 
“Could the reference standard, its conduct, or its interpretation 

Figure  1: Flow diagram of literature selection process per PRISMA guidelines in the present 
systematic review and meta-analysis. n: Number of articles; PRISMA: Preferred reporting items for 
systematic reviews and meta-analyses.



Surgical Neurology International • 2023 • 14(262) | 4

Courville, et al.: Machine learning in traumatic brain injury

have introduced bias?” Among all pooled studies, Gravesteijn 
et al. 2020, Shi et al. 2013, and Bonds et al. 2015 answered a 
high risk, Zelnick et al. 2014, Rau et al. 2018, Raj et al. 2019, 
and Feng et al. 2019 reported unclear risk while others pooled 
studies reported low risk.[7,14,15,34,36,43,49]

e domain “Flow and Timing” addresses the question: 
“Could the study flow and timing have introduced bias?” 
e methods and results sections should provide a clear 
description of clinical referral algorithms (i.e., patients who 
did/did not receive the index tests or reference standard, 
respectively) and of any patients excluded from the analyses. 

ree studies in our analysis (Zelnick et al. 2014, Gravesteijn 
et al. 2020, and Rizoli et al. 2016) reported a considerable 
risk of bias while one study (Kayhanian et al. 2019) answered 
unclear risk of bias, all others reported a low risk of bias. 
Figure 2 summarizes the overall risk of bias in our systematic 
review/meta-analysis studies.[15,21,37,49]

Statistical analysis

We recorded data from the included studies in a Microsoft 
Excel datasheet (Microsoft Corp., Redmond, Washington, 
USA). For the pooled mortality rate, we employed a 

Figure 2: e risk of bias assessment.
b

a
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random-effects meta-analysis model in R statistical software 
version  4.02 (R Foundation for Statistical Computing, 
Vienna, Austria). We measured the heterogeneity between 
the included studies employing the Higgins I2 statistic. We 
used a random-effects model due to the high statistical 
heterogeneity (defined as I2 > 25%) among studies included 
in the meta-analysis. Forest plots were generated using the 
function “metaforest” in R statistical software.[49] A meta-
analysis of diagnostic accuracy with hierarchical modeling 
was carried out for each of the ML models across the selected 
studies where the true positive (TP), false positive (FP), 
true negative (TN), and false negative (FN) values were 
reported. e sensitivity and specificity with corresponding 
95% confidence intervals (95% CIs) were calculated from 
the TP, FP, FN, and TN rates extracted through a 2 × 2 table 
from each included study. e “metandi” module in STATA 
Version 14.1 (StataCorp., 2015. Stata Statistical Software: 
Release 14. College Station, TX: StataCorp LP) was used for 
meta-analysis of diagnostic accuracy.[22,23]

RESULTS

e initial literature search identified 9180 articles. After 
removing duplicates (n = 4663) and screening the titles and 
abstracts (n = 4517), we excluded a total of 9063 studies. 
After the screening of full-text articles based on our selection 
criteria (n = 117), we included a total of 15 studies in the 
qualitative systematic review and quantitative meta-analysis. 
However, the actual number of included studies for the 
small meta-analysis varied depending on how many studies 
documented the data for a particular algorithm using a 
similar methodology. Figure 1 shows the flow diagram of the 
literature selection process per PRISMA guidelines. Figure 2 
shows the risk of bias assessment in included studies. 
Tables 1 and 2 present a review of the major relevant findings 
of the included 15 studies.

Prognostic factors for mortality and unfavorable outcomes

Although there was significant heterogeneity in the selected 
input variables used for the prediction of mortality and 
unfavorable outcomes, critical clinicopathological and 
imaging findings were identified from our review: abnormal 
serum glucose,[21,27,34] lactic acidosis,[21] older age and lower 
GCS at admission,[4,27,35] higher Marshall scores and decreased 
pupillary activity,[37] and high surgeon caseload and overall 
hospital workload.[43]

Diagnostic accuracy: Meta-analysis for ML algorithms

A small meta-analysis was conducted for studies using 
mortality as a primary outcome. Figure  3a illustrates the 
mortality data extracted from each study in which mortality 
was predicted using ML. A  total of 32,721  patients were 

identified from nine studies, with an overall pooled mortality 
rate of 23%. Mortality rates within the individual studies 
ranged from 6%[16] to 54%,[15] with the majority falling in the 
range of 10–30%. A  forest-funnel plot depicting mortality 
data is shown in Figure  3b, demonstrating a high degree of 
variability in the reported mortality; however, these values are 
in agreement with previously reported data.[24,48] Meta-analysis 
of diagnostic accuracy was conducted for recurring ML 
algorithms using receiver operating characteristic (ROC) 
curves. Figure  4 illustrates the findings for artificial neural 
networks (ANN), support vector machines (SVM), decision 
trees (DT), and logistic regression (LR), respectively. Meta-
analysis of diagnostic accuracy demonstrated that ANN 
results were consistent across studies and that its predictions 
were more accurate than traditional CT scanning models.[16]

In-hospital mortality

ANN and SVM have both been used to assess in-hospital 
mortality in a study containing 1620 patients.[1] e goal was 
to compare the performance of ML models to traditional in-
hospital mortality measures that use multivariate regression. 
ML prediction variables included GCS, radiologic findings, 
arrival method, and time of day of presentation, among 
others. ANN and SVM predicted in-hospital mortality with 
an accuracy of>91%; however, SVM outperformed ANN with 
an accuracy of 95.6% and an area under curve (AUC) of 96%. 
SVM also outperformed traditional multivariate LR.[1] An 
additional study assessed the efficacy of various ML models 
versus LR in predicting mortality in TBI using a retrospective 
chart review.[14] e ML predictive variables included vital 
signs and GCS at admission and discharge. Linear, cubic, 
and quadratic SVM models all demonstrated an accuracy 
of 94%, whereas LR had an accuracy of 88%. Linear and 
quadratic SVM both showed an AUC of 0.93 with cubic SVM 
demonstrating an AUC of 0.94, in comparison to LRs value 
of 0.83.[14] All SVM ML models demonstrated a sensitivity 
of 0.98 or higher, the highest among the five studies in the 
meta-analysis for ML predicting mortality.[14] ANN was also 
used to predict in-hospital mortality using retrospective 
hospital data and patient comorbidities.[43] When comparing 
ANN to comparative regression model LR, ANN had a 
higher accuracy (95.23% vs. 82.44%), AUC (0.8961  vs. 
0.7739), sensitivity (67.56% vs. 54.83%), specificity (95.23% 
vs. 92.67%), and positive (83.24% vs. 74.81%) and negative 
(89.35% vs. 87.64%) predictive values over LR. e study also 
included the Charlson comorbidity index, hospital volume, 
and surgeon volume as ML predictive variables.[43]

14-day mortality after TBI

An additional study used models to predict in-hospital and 
14-day mortality. e models assessed mortality in 517 TBI 
patients in a low-middle-income country (LMIC).[4] Comparing 
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Table 1: Summary of included study findings.

Study Outline Design/Characteristics TBI Population 
Characteristics

ML Models Comparative 
Regression 
Models

Raj et al. 2019 Development and 
analysis of two 
simple dynamic 
algorithms for 
prediction of 30-
day mortality of 
TBI patients using 
commonplace 
neuro-ICU 
measurements 
as predictive 
variables.

Retrospective multicenter 
study in Finland over range 
of 2003–2017

n=472, median age 48 
years, 69% GCS 3–8 at 
admission, 79% had light 
reactive pupils bilaterally, 
49% displayed mass lesion 
on CT 30-day mortality 
was 19% (n=92) Age 16+ 
reporting to ED within 24 
h of trauma, must have 
had ICP monitoring for a 
minimum of 24 h Excluded 
patients dying within 36h 
of admission

ICP-CPP-MAP 
– 14 dynamic 
features + 
age included, 
refreshed every 
8 h ICP-CPP-
MAP-GCS – 13 
dynamic features 
+ age included, 
refreshed every 
24 h

IMPACT-TBI 
– classified 30 
patients as likely 
to die at 50% 
success Note – 
was not initially 
intended for this 
purpose, but was 
used as a linear 
predictor for 
comparison to a 
standard method 
in the field

Matsuo et al. 
2019

Use of nine ML 
algorithms to 
determine effective 
prediction of 
poor outcome 
(based on Glasgow 
outcome score) and 
mortality.

Retrospective single center 
study in Japan over range of 
2013–2016 Bootstrap analysis 
was used to amplify sample 
size in training sample

n=232 divided into groups 
80:20 tuning: testing, 
mean age 59.4 years, 
72.8% male, mean GCS 
9.1, approximately half 
classified as severe TBI 
(GCS 3–8) Discharge 
were 7.8% good (GOS=5), 
14.7% moderate disability 
(GOS=4), 77.6% poor 
outcome (GOS 1–3) Mean 
LOS 28.7 days, overall 
mortality 26.3% Age 
10+ reporting to the ED, 
excluded if experienced 
cardiopulmonary arrest in 
the ED, pregnant, missing 
lab findings at admission

Ridge regression 
LASSO 
regression 
RF Gradient 
boosting 
Extra trees DT 
Gaussian NB 
Multinomial NB 
SVM

N/A – 
comparison was 
made to intrinsic 
training of ML 
algorithms

Rau et al. 2018 Design a ML model 
to predict mortality 
following moderate 
and severe TBI

Retrospective study based on 
data obtained from Trauma 
Registry System between 
2009 and 2015

n=1734, 156 included 
in training set, 325 in 
test set. Hospitalized 
adult patients with head 
injuries characterized by 
Abbreviated Injury Score 
>3 points.

SVR NB ANN 
DT

LR

Amorim et al. 
2019

Design and 
compare models 
of mortality in TBI 
patients in LIMC

Prospective and 
observational study of 
patients admitted to large 
trauma center who required 
ICU admission following TBI 
between 2012 and 2015

n=517 Patients ages 14+ 
in LMIC (Brazil) with 
intracranial abnormality 
on CT requiring ICU 
admission

RF neural 
network DT 
Stochastic 
gradient boosting 
Bayesian 
generalized linear 
model Partial 
least squares 
Multivariate 
adaptive 
regression splines 
NB Penalized 
discriminant 
analysis

Regularized least 
squares Linear 
regression

(Contd...)
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Table 1: (Continued).

Study Outline Design/Characteristics TBI Population 
Characteristics

ML Models Comparative 
Regression 
Models

Feng et al. 
2019

Compare the 
efficacy of various 
ML models versus 
LR in predicting 
mortality in TBI

Retrospective chart review 
of TBI patients in an urban 
hospital in China between 
2009 and 2011

n=117 (85.5% male) 
Age 18–86 (mean 46), 
history of head injury and 
craniotomy Exclusion 
criteria: pregnancy, 
craniotomy at other site, 
hospitalization <24 h 
Mortality rate was 12% 
(n=14) Mean LOS was 
28 days Median GCS at 
admission was 8 High 
rate of hospital-acquired 
pneumonia (33.3% n=39)

Cubic SVM 
Cubic KNN 
Complex tree 
Fine Gaussian 
SVM Weighted 
KNN Medium 
tree Medium 
Gaussian SVM 
Boosted trees 
Simple tree 
Coarse Gaussian 
SVM Bagged 
trees Linear 
discriminant Fine 
KNN Subspace 
discriminant 
Quadratic 
discriminant 
Medium KNN 
Subspace KNN 
Linear SVM 
Coarse KNN 
RUSBoosted 
trees Quadratic 
SVM Cosine 
KNN

LR

Abujaber et al. 
2020

Compare 
performance of ML 
models ANN and 
SVM to traditional 
multivariate 
regression for 
prediction of in-
hospital mortality 
following TBI.

Retrospective study of 
patients who sustained TBI 
and were admitted to level 
1 trauma center (Qatar) 
between 2014 and 2019.

n=1620 (1417 survived, 203 
deceased) Age 14+ (Mean: 
34.4 years, SD 13.9) Most 
common mechanism of 
injury: fall from height (34%), 
MVA (30%) Most common 
finding: subdural hemorrhage 
(28.1%) and extradural 
hemorrhage (22.9%) 
Exclusion criteria: Pediatric 
patients (<14 years old) 
were excluded. 

ANN SVM Multivariate LR

Hale et al. 
2018

Compare the use of 
ANN to traditional 
head CT analysis 
models to predict 
adverse outcomes 
in pediatric TBI 
patients.

Retrospective study of 
pediatric patients who 
sustained TBI and were 
admitted to an urban 
teaching hospital between 
2006 and 2013

n=565 (533 favorable 
outcome and 32 
unfavorable outcomes) Age 
<18 Admitted to hospital 
for TBI and underwent 
heat CT within 24 h of 
admission Exclusion 
criteria: fatality on arrival, 
no head CT within 24 h 
Follow-up at 6 months 
post-discharge Patients lost 
to follow-up with favorable 
GCS at admission were 
assigned a GOS of 5

ANN Marshall CT 
Helsinki CT 
Rotterdam CT 
GCS

(Contd...)
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Table 1: (Continued).

Study Outline Design/Characteristics TBI Population 
Characteristics

ML Models Comparative 
Regression 
Models

Kayhanian 
et al. 2019

Used serum 
metabolic markers 
to program a 
ML algorithm to 
predict unfavorable 
GOS in pediatric 
TBI patients

Retrospective study of 
pediatric patients admitted to 
a UK hospital for TBI from 
2009 to 2013

n=94 Age <16 (mean 
7.3) Admitted to hospital 
for severe TBI Inclusion 
criteria: confirmed TBI 
by CT or MRI, admission 
to the PICU after 24 h, 
invasive monitoring of ICP 
or arteriovenous pressure 
Follow-up at 6 months 
post-injury Assessed for 
GOS

SVM: Focused 
(only used 
pH, lactate, 
and glucose) 
Inclusive 
(used all blood 
variables)

LR: Focused 
(only used pH, 
lactate, and 
glucose) Inclusive 
(used all blood 
variables)

Donald et al. 
2019[45]

Use of blood 
pressure values 
to develop a 
predictive model 
for hypotensive 
events in TBI 
patients in the 
neuro-ICU

Prospective phased trial of 
patients diagnosed with TBI 
across multiple centers in 
Europe between 2003 and 
2011

Training set n=104 
(2003–2005) Phase I n=30 
(2009–2010) Phase II 
Stage I n=13 (2010–2011) 
Phase II Stage II n=36 
(2010–2011) Final analysis 
group n=69 (75% male) 
Exclusion criteria: <24 h 
continuous monitoring, 
missing or incomplete 
data set Injury types: 
fall (30), car accident 
(25), pedestrian (4), 
unknown (4), sports 
related (3), assault (3)

BANN N/A Training 
sample used

Bonds et al. 
2015

Use of continuous 
VS for the 
prediction of 
secondary insult 
following severe 
TBI

Retrospective single center 
study of patients admitted to 
Level 1 trauma center with 
severe TBI GCS >9 between 
2008 and 2010

n=132 adult patients 
Mean age: 40.2 (SD: 18.09) 
96.97% blunt force trauma 
Mortality: 18 (13.63%)

NNR Regression tree 
Simple shifting 
estimation

Shi et al. 2013 Use of 
retrospective 
hospital data 
and patient 
comorbidities 
to program a 
ML algorithm 
to predict in-
hospital mortality 
of neurosurgical 
patients post-TBI

Retrospective database study 
of TBI patients undergoing 
neurosurgical treatment 
between 1998 and 2009 in 
Taiwan.

n=16956 adult patients 
Mean age 50.8 (SD 21.4) 
73.5% male Mortality 
rate 26.8% Exclusion 
criteria: multiple 
TBI procedures, 
cerebrovascular disease, 
incomplete data, age under 
18 years old

ANN LR

Rizoli et al. 
2016

Use of ML 
model to predict 
unfavorable 
outcomes at 6 
months post-TBI

Retrospective analysis of 
data from multicenter, 
double blind, randomized, 
and placebo-controlled trial 
conducted between 2006 and 
2009

n=1089 Ages 15+ Blunt 
trauma and Severe TBI 
Inclusion: GCS < 8 upon 
admission Exclusion 
criteria: mortality within 
24 h of ED admission, 
evidence of hemorrhagic 
shock

DT ROC curves

(Contd...)
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Table 1: (Continued).

Study Outline Design/Characteristics TBI Population 
Characteristics

ML Models Comparative 
Regression 
Models

Gravesteijn  
et al. 2020

Use of standard 
predictors for 
outcome of TBI 
to program ML 
on a large scale 
in comparison 
to traditional 
regression

Retrospective database 
study of TBI patients in the 
Netherlands between 1984 to 
2004 and 2014 to 2018.

IMPACT-II n=11,002 
(median age 31) 
Mortality rate 32% 
Unfavorable outcome 
rate 48% CENTER-TBI 
n=1375 (median age 
48) Mortality rate 29% 
Unfavorable outcome 
rate 54%

SVM RF GBM 
ANN

LR Lasso 
Regression Ridge 
Regression

Zelnick et al. 
2014

Secondary analysis 
of a multi-center, 
randomized, 
placebo controlled 
TBI clinical trial to 
evaluate patterns of 
missing outcome 
data, changes in 
functional status 
between hospital 
discharge and 6 
months. ree 
prognostic models 
to predict long-
term functional 
outcome from 
covariates 
available at 
hospital discharge 
(functional 
measures, 
demographics, 
and injury 
characteristics).

A secondary analysis of 
data from a multi-center, 
double-blind, randomized, 
and placebo-controlled 
trial conducted by ROC 
and administered under 
exception from informed 
consent. irteen regional 
clinical centers, 75 EMS 
agencies, and 53 hospitals in 
the US and Canada between 
May 2006 and May 2009

2 cohorts, 1 cohort with 
TBI, 1 w/hypovolemic 
shock. n=1282 enrolled 
patients w/blunt trauma, 
a prehospital GCS 
score of ≤8 and without 
hypovolemic shock. 
Patients ≥15 years old with 
blunt trauma and an out-
of-hospital GCS score ≤8 
were randomized to receive 
hypertonic saline/dextran, 
hypertonic saline, or 
normal saline in the out-
of-hospital setting.

Model 1: 
included 
discharge GOSE 
only covariate 
Model 2 
included 
discharge GOSE 
and length of 
hospital stay, 
both thought 
to be clinically 
important 
predictors 
of long-term 
functional 
outcome. 
Model 3: included  
multiple 
covariates 
selected through 
exhaustive 
search using 
AIC values 
using nine 
predictors (Age, 
sex, discharge 
disposition, 
discharge 
disability rating 
scale (range, 
0–30), discharge 
GOSE (range, 
1–8), length of 
hospital stay

3 LR Models/le 
Cessie-van 
Houwelingen 
goodness-of-
fit test Injury 
severity score 
(range, 0–75) 
Maximum head 
abbreviated 
injury severity 
score (range, 
0–6) # of days 
alive out of ICU 
through day 28. 

Raj et al. 2014 Comparison of a 
simple two-variable 
predictive model 
to more in-depth 
programs to predict 
mortality in adult 
moderate-severe 
TBI patients

Retrospective database study 
of TBI patients admitted to 
the ICU in Finland from 
2003 to 2013

n=1625 (median age 
55) Overall 6-month 
mortality 33% Exclusion 
criteria: age <16 years 
old, non-neurosurgical 
hospital, admission GCS 
>13, missing data, missing 
outcome 64% of 6-month 
mortality occurred during

APACHE II 
SAPS II SOFA 
SOFA adjusted)

LR

(Contd...)
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Table 1: (Continued).

Study Outline Design/Characteristics TBI Population 
Characteristics

ML Models Comparative 
Regression 
Models

hospital stay Split into two 
cohorts for development 
and validation 
Development n=844 
(median age 56, mortality 
33%) Validation n=781 
(median age 54, 
mortality 34%)

ML: Machine learning, VS: Vital signs, LMICs: Low-middle-income countries, TBI: Traumatic brain injury, ICU: Intensive care unit, GCS: Glasgow 
coma scale, GOS: Glasgow outcome scale, EMS: Emergency medical service, BANN: Bayesian artificial neural network, CT: Computed tomography, 
ED: Emergency department, LOS: Length of stay, MVA: Motor vehicle accident, SD: Standard deviation, APACHE II: Acute physiology and chronic health 
evaluation II, SAPS II: Simplified acute physiology score II, SOFA: Sequential organ failure assessment, ICP: Intracranial pressure, MAP: Mean arterial 
pressure, CPP: Cerebral perfusion pressure, LASSO: Least absolute shrinkage and selection operator, SVM: Support vector machine, SVR: Support vector 
machine, NB: Naïve Bayes, ANN: Artificial neural networks, DT: Decision tree, NNR: Nearest neighbor regression, RF: Random forest, GBM: Gradient 
boosting machine, AIC: Akaike information criterion, GOSE: Glasgow outcome scale extended, LR: Logistic regression, ROC: Receiver operating 
characteristic, PICU: Pediatric intensive care unit, KNN: K nearest neighbor, N/A/NA: Not applicable, n: Number of patients

Figure  3: e forest (a) and funnels (b) plots of mortality data extracted from studies in which 
mortality was predicted using machine learning.
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regularized least squares and linear regression to 9 ML models, 
the models consistently demonstrated an AUC above 0.80. 
Naïve Bayes (NB) had the highest predictive performance 
model for 14-day mortality prediction with an AUC of 0.906. 
In-hospital mortality prediction was best predicted by random 
forest (RF) with an AUC value of 0.838.[4] In a separate study, 
NB was again used for mortality prediction with an accuracy of 
>90% in the training set.[36] ANN had the highest AUC (0.968) 
with a prediction sensitivity of 80.59%. In the test set, ANN 
remained the highest predictor of mortality followed by the 
additional three models used in the study: SVR, NB, and DT.[36]

30-day mortality after TBI

Two custom models were developed to predict the 30-day 
mortality of TBI patients using commonplace neurointensive 
care unit measurements as predictive variables.[34] ML model 
variables include a combination of intracranial pressure 
(ICP), mean arterial pressure (MAP), and cerebral perfusion 
pressure (CPP) all measured in 5 min medians over 5 days. 
e second model included ICP, CPP, and MAP and GCS. 
Model 1 (ICP-CPP-MAP) had an AUC that increased 
from 67% to 81% from day 1 to day 5. False positives and 
false negatives also influenced mortality prediction. ere 

were 18 false positives potentially caused by decompressive 
craniectomy, two additional false positives, and nine false 
negatives on mortality prediction. e second model 
(ICP-CPP-MAP-GCS) had an AUC that increased from 
72% to 84% from day 1 to day 5, with 1 false positive and 
4 false negatives on mortality prediction.[34] Another 
study performed a secondary analysis of a multi-center, 
randomized, placebo-controlled clinical trial of TBI patients 
to evaluate patterns of missing outcome data, and changes in 
functional status between hospital discharge and 6  months 
follow-up.[49] ree novel prognostic models were developed 
to predict long-term functional outcome from covariates 
available at hospital discharge. e ML predictive variables 
included the Glasgow outcome scale extended (eGOS) and 
the disability rating scale (DRS). An adverse outcome was 
defined as eGOS less than or equal to four. In both models, 
discharge DRS was used. ML model results included missing 
data for poor outcomes for 15% of enrolled patients. e 
model performance was excellent (C-statistic between 0.88 
and 0.91) for all three prognostic models and calibration was 
adequate for two models (P = 0.22 and 0.85). A two-variable 
predictive model was compared to more in-depth programs 
to predict mortality in adult moderate-severe TBI patients in 
a retrospective database study.[35] Notably, 64% of 6-month 
mortality occurred during hospital stay.[35] Data were split 
for development and validation. ML models used to predict 
mortality were Acute Physiology and Chronic Health 
Evaluation II (APACHE II), Simplified Acute Physiology 
Score II (SAPS II), Sequential Organ Failure Assessment 
(SOFA), and SOFA Adjusted. e reference model, LR, 
scored an AUC of 0.75 in development. During validation, 
SAPS II and APACHE II scored higher than LR, whereas 
SOFA scored AUC of 0.68. e AUC of the SAPS II was 
0.80 (95% CI 0.77–0.83).[35]

Unfavorable outcomes at 6 months

DT was used as the ML model to predict unfavorable 
outcomes at 6  months post-TBI.[37] e comparative model 
was ROC curves. ML predictive variables included various 
vital signs, pupil reactivity, AIS severity, initial CT scan, 
and Marshall score (scale of 1–6). When considering eGOS 
6 months post-injury, an acceptable outcome was labeled as 
an eGOS score of greater than four indicating moderate or 
no disability. A  poor outcome indicated a severe disability 
or death, a score of four or less. e proposed model had a 
specificity of 62.5%, which was higher than the core model 
(47.7%) and extended model (44.3%).[37] e proposed model 
had the highest positive predictive value of 74.0% and the 
extended model had a negative predictive value of 80.4%. e 
sensitivity was also higher in the extended model (92.7%) 
when compared to the proposed model (72.3%) and core 
model (83.8%).[37] ML and LR were used to assess mortality 
as an unfavorable outcome using the GOS score of <4.[15] ML 

Figure  4: (a-d) Meta-analysis of diagnostic accuracy with 
hierarchical modeling for machine learning models across the 
selected studies. ANN: Artificial neural network, SVM: Support 
vector machine, DT: Decision tree, LR: Logistic regression.
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predictive values include vital signs, GCS, pupillary response, 
and CT Classification. Prediction of mortality was measured 
using internal-external cross-validation, with all regressions 
and ML models scoring 0.81 except RF, which scored 0.79. 
e cross-validation of unfavorable outcomes included all 
regression models scoring 0.81 and all ML models scoring 
0.80 except RF, which scored 0.79.[15] Various ML models 
were used to predict unfavorable outcomes and mortality in 
an additional study.[27] Unfavorable outcomes were defined as 
a GOS score of 1–3 (death = 1, persistent vegetative state = 2, 
and severe disability = 3). e RF ML model was the most 
effective at predicting poor outcomes (100% sensitivity, 
72.3% specificity, 91.7% accuracy, and 0.895 AUC). Ridge 
regression (RR) was most effective at predicting mortality 
(88.4% sensitivity, 88.2% specificity, 88.6% accuracy, and 
0.875 AUC).[27]

Prediction of outcomes in the pediatric population

ANN was compared to traditional head computed 
tomography (CT) analysis (i.e., Marshall CT, Helsinki CT, 
and Rotterdam CT) and GCS to predict adverse outcomes 
and mortality in pediatric TBI patients.[16] ML predictive 
variables included GCS, serum glucose, serum hemoglobin, 
pupillary response, and admission head CT results: subdural 
hematoma, intracranial hemorrhage, intraventricular 
hemorrhage, cistern integrity, and midline shift. e AUC 
using ANN was 0.9462 when predicting mortality and 
adverse outcomes, defined as a 6-month GOS ≤3.[35] e CT 
results ranged from an AUC of 0.781–0.838. e GCS had an 
AUC of 0.920.[16] An additional study used serum metabolic 
markers to program an ML algorithm to predict unfavorable 
GOS in pediatric TBI patients with both SVM and LR.[21] 
Both models were programmed as both a focused (only 
used pH, lactate, and glucose) and an inclusive algorithm 
using serum metabolic markers for prediction. AUC was not 
calculated for SVM. When predicting favorable outcomes, 
SVM scored a specificity of 0.99 and sensitivity of 0.80 using 
the focused model. e inclusive model for SVM had higher 
specificity with a value of 1 and the sensitivity was lower with 
a value of 0.63. LR predicted favorable outcomes using the 
focused model with an AUC of 0.83, specificity of 0.99, and 
sensitivity of 0.75.[21] e LR inclusive model scored higher 
across AUC, specificity, and sensitivity.

Prediction of secondary insults: ICP, hypotensive events, 
and shock index (SI)

Two studies used vital signs as outcome variables for ML. 
Bayesian Artificial Neural Network (BANN) was used to 
assess blood pressure values to develop a predictive model 
for hypotensive events in TBI patients in the neuro-intensive 
care unit.[45] Hypotensive events were described as an SBP 
≤90  mmHg and MAP ≤70  mmHg sustained for at least 

5  min. A  hypotensive event ceases when blood pressure 
returns to a level above threshold/baseline for at least 5 min.
[45] Vital signs were also used for the prediction of secondary 
insult following severe TBI.[7] Using the Nearest Neighbor 
Regression (NNR), ML model predictive variables such as 
SI and ICP were assessed.[7] Both studies assessed HR, SBP, 
and MAP. AUC values for BANN were as follows: test set 
0.74, false-positive correction 0.68, without false-positive 
correction 0.63. Finally, the target sensitivity of >30% and 
specificity of >90% were achieved.[45] Using NNR, the other 
study found good agreement in predicting actual ICP with 
a bias of 0.02 (±2 standard deviation [SD] = 4 mm Hg) for 
the subsequent 5 min and −0.02 (±2 SD = 10 mm Hg) for the 
subsequent 2  h. e patient’s vital signs were continuously 
collected on 132 adult patients over a minimum of 3 h/patient 
(5,466 h total; 65,600 data points).[7] However, ANN was the 
most effective model for the prediction of hypotensive events 
in critical care patients.[45]

DISCUSSION

In the present systematic review and meta-analysis, we 
evaluate the predictive power of various ML algorithms 
for unfavorable outcomes and mortality in patients with 
TBI. Several studies have demonstrated the utility of ML 
in medicine; however, most TBI studies were focused on 
diagnosis and classification.[17,30,44,48] e 15 studies included 
in this review sought to expand the use of ML in TBI 
patients with a focus on mortality and unfavorable outcome 
prediction. ML algorithms encountering in this review 
including SVM, ANN, RF, NNR, and NB.

TBI remains one of the leading causes of death and disability 
throughout the world.[10,19,38] It is estimated that as many as 
50 million people experience TBI each year.[10,13,19,25] TBI is 
a trimodal class of injury, affecting young children (falls), 
adults (motor vehicle accidents), and the elderly (falls) at 
high rates compared to other injuries.[13,24,31,47] TBI can result 
in multiple deficits, ranging from motor to sensory, and 
often affects cognition and memory.[33,47] Causes of brain 
damage can also include hemorrhagic infarct, cerebral 
edema, and crush injuries to the brain and brainstem.[31,47] 
Clinical practice has also shown that immediate treatment 
is dependent on clear and accurate neuroimaging, and ML 
algorithms have been designed to diagnose and classify TBI 
using radiological findings.[8,44] Depending on the severity of 
the injury, deficits from TBI can be permanent, or require 
intensive care and extensive rehabilitation.[24,29,31,47] However, 
neurointensive care and rehabilitation are expensive, time-
consuming, and require significant effort from both the 
patient and their caregivers. In addition, TBI mortality is 
high, reaching up to 30–40% in severe TBI, and lifelong 
deficits are reported in approximately 60% of patients who 
recover.[5,6,11,13,24-26,29,47]
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ML algorithms including RF, RR, and NB were all identified 
as effective prediction models for the unfavorable outcome or 
in-hospital mortality in TBI patients.[4,12] SVM was identified 
in multiple studies as more effective than LR in predicting 
mortality and unfavorable outcome using GOS.[2,14,21] 
Interestingly, using the NNR model, ICP fluctuations were 
more effectively predicted compared to traditional LR 
models.[7] ANN outperformed LR and other ML models in the 
prediction of mortality in moderate and severe TBI patients.
[36,43] A large-scale database study identified no difference in 
the predictive power of both SVM and ANN; however, the 
authors did hypothesize that the predictive power identified 
in other studies may be population-dependent.[15]

e use of scoring algorithms SAPS II, APACHE II, and 
SOFA was found to have increased predictive power of in-
hospital mortality over LR, but no significant difference with 
overall 6-month mortality.[35] ese results indicate that the 
benefit of ML in the prediction of outcomes may be limited 
to short-term complications such as in-hospital mortality 
and major complications. However, this information is still 
valuable when making clinical decisions surrounding how to 
treat these patients. In addition, these models outperformed 
the predictive power of the IMPACT II TBI database. 
However, these models found little influence from the input 
of MAP values. Furthermore, the inclusion of GCS improved 
the accuracy.[34] e C-statistic of models for prediction 
of eGOS at 6  months after discharge improved with the 
addition of new input variables. Discharge eGOS was used 
as a baseline, and with the addition of hospital length of stay 
as well as age, predictive power improved.[29] ese findings 
lend further support to the importance of age and admission 
GCS in TBI prognosis.

e heterogeneity of input variables between ML models 
and studies limits the potential for cross-comparison. 
ose studies that had compatible methodologies were 
included in a small meta-analysis in an attempt to draw a 
quantitative conclusion regarding which model best predicts 
mortality. However, with the heterogeneity of input variables, 
inconsistency of outcome measurement, and variable criteria 
for TBI classification, this cannot be generalized to all TBI 
mortality predictions. A further prospective study with an 
increased sample size is necessary to definitively state, in 
which ML model is objectively most effective at mortality 
prediction. Furthermore, future studies should seek to 
standardize the necessary input variables for the operation 
of ML models. ere is great inconsistency among the 
presented studies in the selection of input variables, with 
some studies only utilizing a few simple serum studies. 
While convenient for the provider, this limited input data 
may fail to capture a complete picture of the patient’s current 
condition. On the other hand, multiple studies employ a 
myriad of input variables including information that may 

not be easily accessible in an emergent situation, such as 
detailed radiological findings and hospital staffing statistics.
[21,24,26,27] While many of these variables are employed for 
training the model, in practice, this level of detail is not 
feasible in emergent cases where these models could be most 
beneficial, such as emergency room triage. Based on the 
common variables between the analyzed studies and their 
individual analysis of which variables were most impactful, 
we would recommend studying the efficacy of models when 
programmed with patient age, admission GCS, serum 
lactate, and serum glucose.[18-22] While multiple studies 
within the review employed blood pressure measurements 
for programming, these were not found to be significant 
prognostic factors when programming the ML models to 
predict adverse events.[19]

CONCLUSION

TBI continues to be one of the leading causes of death and 
disability worldwide. is study reiterates the clinical utility 
of ML as an adjunct in patients with TBI. e use of ML to 
predict outcomes following TBI is entering clinical practice at 
an increasing rate and the present study reinforces the utility 
of these models. Using these models, simple admission data 
can be used to accurately predict the prognosis for individual 
patients. is can ultimately enhance the clinical decision-
making process in terms of whether surgical intervention, 
medical management, or palliative care is most appropriate. 
ere was a lack of consistency among the investigated studies 
with the selection of input variables used for predictive 
models; as a result, some models simply had more data to 
utilize for prediction, making inter-study comparisons more 
difficult. Further, research should utilize the core prediction 
variables identified in this review and apply these markers 
across a wide range of models and in multiple clinical 
settings. Given that the described models have demonstrated 
a robust ability to predict outcomes, there exists a significant 
degree of untapped potential in implementing ML to aid in 
neurosurgical decision-making. It is conceivable that these 
tools can be further expanded to guide and optimize patient 
treatment and perhaps alert neuro-care providers of patients 
at high risk of early neurological deterioration. Despite the 
increased use and predictive power of ML, it remains to be 
seen whether clinicians will routinely incorporate these 
models to guide clinical care following TBI.
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