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The heart rate during atrial fibrillation (AF) is highly dependent on the conduction

properties of the atrioventricular (AV) node. These properties can be affected using

β-blockers or calcium channel blockers, mainly chosen empirically.

Characterization of individual AV-nodal conduction could assist in personalized

treatment selection during AF. Individual AV nodal refractory periods and

conduction delays were characterized based on 24-hour ambulatory ECGs

from 60 patients with permanent AF. This was done by estimating model

parameters from a previously created mathematical network model of the AV

node using a problem-specific genetic algorithm. Based on the estimated model

parameters, the circadian variation and its drug-dependent difference between

treatment with two β-blockers and two calcium channel blockers were quantified

on a population level by means of cosinor analysis using a linear mixed-effect

approach. The mixed-effects analysis indicated increased refractoriness relative to

baseline for all drugs. An additional decrease in circadian variation for parameters

representing conduction delay was observed for the β-blockers. This indicates that

the two drug types have quantifiable differences in their effects on AV-nodal

conduction properties. These differences could be important in treatment

outcome, and thus quantifying them could assist in treatment selection.
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1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia in the world, with a

prevalence of 2–4% in the adult population Benjamin et al. (2019), reaching 7% for

those aged 65 and above Di Carlo et al. (2019). It is characterized by rapid and irregular

contraction of the atria, originating from highly disorganized electrical activity, and

associated with an increased risk of mortality, mainly due to stroke or heart failure

Hindricks et al. (2021).
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The electrical impulses in the atria are conducted via the

atrioventricular (AV) node to reach and activate the ventricles.

The AV node can block and delay incoming impulses based on its

refractory period and conduction delay properties. During AF -

when the AV node is bombarded with impulses from the atria -

blocking of impulses prevents the heart from racing, but may not

be sufficient to maintain a normal heart rate and will still result in

significant beat-to-beat variability in the ventricular activation

Corino et al. (2015b); Mase et al. (2017).

To remedy this, rate control drugs can be used in order to

modify the conduction properties of the AV node. There are two

main types of rate control drugs used for AF treatment; β-

blockers and calcium channel blockers Hindricks et al. (2021).

As the name suggests, β-blockers block the β-receptors in AV

node cells, decreasing the effect of the sympathetic nervous

system, whereas calcium channel blockers prevent the L-type

calcium channels from opening, thereby reducing the conduction

in the AV node cells. Both types of drugs have been shown

effective in reducing the heart rate during AF Ulimoen et al.

(2013). However, the optimal treatment for a given patient is

often chosen empirically. Since the two drug types have different

physiological effects on the AV node conduction properties,

assessing the drug-induced changes in these AV node

properties could provide an important step toward

personalized treatment. One of the main differences between

the two drug types is the effect on the sympathetic nervous

system, which can be quantified by the circadian variation in the

AV node conduction properties. Furthermore, previous studies

have shown a significant difference in the predominant RR

interval between day and night, without a difference in

dominant atrial cycle length, suggesting circadian variation in

the AV node conduction properties Climent et al. (2010).

Conduction properties of the AV node have previously been

characterized using mathematical models based on measurements of

the electrical activity in the heart Shrier et al. (1987); Billette andNattel

(1994); Sun et al. (1995). Several models of the AV node during AF

have been proposed; both based on invasive data from rabbits Inada

et al. (2009); Climent et al. (2011) and humans Jørgensen et al. (2002);

Mangin et al. (2005); Masè et al. (2012, 2015), and on non-invasive

data fromhumansCorino et al. (2011, 2013);Henriksson et al. (2015).

We have previously presented a network model of the AV node

capable of assessing the refractory period and the conduction delay of

the AV node from 20-min ECG segments Karlsson et al. (2021).

However, continuous assessment of AV conduction delay and

refractoriness from 24-hour ECG recordings has not previously

been performed; such assessment enables analysis of long-term

variations in AV conduction properties.

The aim of the present study is to develop a framework for

long-term ECG-based assessment of conduction properties in the

AV node, and to utilize this framework for analysis of circadian

variation and its drug-induced changes in a cohort of 60 patients

with persistent AF Ulimoen et al. (2013). To accomplish this, we

propose a problem-specific optimization algorithm able to

continuously estimate the model parameters from the

previously presented network model Karlsson et al. (2021).

Furthermore, the uncertainty of the parameter estimates is

assessed using a variant of Sobol’s method Sobol (2001), and

the drug-induced differences in circadian variation between β-

blockers and calcium channel blockers on a population level are

quantified using a linear mixed-effect model.

2 Materials and methods

A schematic overview of the methodology is given in Figure 1.

The ECG data (Section 2.2) is first processed in order to extract a RR

interval series and an atrial fibrillatory rate (AFR) trend, as described

in Section 2.3. The RR interval series is then divided into segments of

length N, and the AFR trend is used to estimate the atrial arrival rate

in the corresponding time interval. TheAVnodemodel (Section 2.1)

is fitted to the ECG-derived data using a tailored optimization

algorithm, as described in Section 2.4, in order to obtain model

parameter estimates. Furthermore, the Poincaré plot difference,

which quantifies the rate of change of RR series characteristics, is

used to tune hyper-parameters in the optimization algorithm during

parameter estimation. The uncertainty of the estimated model

FIGURE 1
A flowchart of the overall framework for estimating AV node conduction properties on an individual and a population level.
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parameters is investigated using a variant of Sobol’s method, as

described in Section 2.5. Finally, cosinor analysis is used to quantify

circadian variation in the model parameter trends, and a linear

mixed effects modeling approach is used to investigate drug-

dependent differences on a population level, as described in

Section 2.6.

2.1 AV node model

A network model of the human AV node, shown in Figure 2,

is used to characterize the conduction delay and refractory

period. A brief description of the model is given here, for

more details, see Karlsson et al. (2021). The model describes

the AV node as an interconnected network of nodes, each capable

of transmitting incoming impulses. The model consists of

21 nodes; divided into a fast pathway (FP) with ten nodes, a

slow pathway (SP) with ten nodes, and a coupling node. The

nodes can react to an incoming impulse either by blocking - if the

node is in its refractory state - or by conducting it to all adjacent

nodes after adding a conduction delay, after which the node

returns to its refractory state. The refractory period (Rj(n)) and

the conduction delay (Dj(n)) of node j following an impulse n are

given by,

Rj n( ) � Rmin + ΔR 1 − e
−~tj(n)
τR( ) (1)

Dj n( ) � Dmin + ΔDe
−~tj(n)
τD , (2)

where ~tj(n) is the diastolic interval preceding impulse n,

~tj n( ) � tj n( ) − tj n − 1( ) − Rj n − 1( ), (3)

and tj(n) is the arrival time of impulse n at node j. When ~tj(n) is
negative, the impulse will be blocked since the node is in

its refractory state. The parameters Rmin, ΔR, τR, Dmin, ΔD,
and τD are fixed for all nodes in the SP and

the FP, respectively. This results in the 12 model parameters

θ � [RFP
min, ΔRFP, τFPR , RSP

min, ΔRSP, τSPR , DFP
min, ΔDFP, τFPD , DSP

min,

ΔDSP, τSPD ]. For convenience, the interpretation of the model

parameters are given in Table 1. For the coupling node, the

delay is fixed to 60 ms, and the refractory period is fixed to the

mean of the ten shortest RR intervals in the data used for model

parameter estimation, RRmin.

The input to the model - representing impulses arriving from

the atria - is created using a Poisson process with mean arrival

rate λ. The output of the model represents the time points for

ventricular activation, and thus the differences between adjacent

elements in the output vector represent the RR intervals.

2.2 ECG data

The RATe control in Atrial Fibrillation (RATAF) study Ulimoen

et al. (2013) acquired 24-hour ambulatory ECGs during baseline and

under the influence of four rate control drugs; the two calcium

channel blockers verapamil and diltiazem, and the two β-blockers

metoprolol and carvedilol. The study population consists of

60 patients with permanent AF, no heart failure, or symptomatic

ischemic heart disease. The study was approved by the regional ethics

FIGURE 2
A schematic representation of the network model where the yellow node represents the coupling node, the red nodes the SP, the green nodes
the FP, and arrows the direction for impulse conduction. For readability, only a subset of the 21 nodes is shown.

TABLE 1 The interpretation of the model parameters. Superscripts
indicating the pathway (SP, FP) are omitted to avoid redundancy.

Parameter Parameter description

Rmin Minimum refractory period, attained for short diastolic intervals

ΔR Maximum prolongation of the refractory period, attained for long
diastolic intervals.

τR Time constant for the refractory period, determining the impact of
the diastolic interval

Dmin Minimum conduction delay, attained for short diastolic intervals

ΔD Maximum prolongation of the conduction delay, attained for long
diastolic intervals.

τD Time constant for the conduction delay, determining the impact
of the diastolic interval
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committee and the Norwegian Medicines Agency and conducted in

accordance with the Helsinki Declaration. The trend in the AV

node refractory period and conduction delay from these five 24-hour

ECG recordings per patient is assessed by estimations of the trends

in θ.

2.3 ECG processing

The RR interval series is extracted from the ECG, where

RR intervals following and preceding QRS-complexes with

deviating morphology are excluded from the series

Lagerholm et al. (2000). Due to excessive noise in the

ECGs, some RR intervals are missed, leading to an

unrealistically low heart rate. Thus, the data are divided

into minute-long non-overlapping segments, and all

segments with a heart rate lower than 20 bpm are

removed, occasionally resulting in gaps in the signals. The

signals with a total duration shorter than 12 h or with less

than 20 h between start and end are excluded from further

analysis. After excluding data according to these criteria, data

from 59 patients remained for inclusion in this study. The

number of patients with data considered to be of sufficient

duration for analysis and the average duration of these

recordings for the different treatments are shown in Table 2.

The f-waves in the ECG are extracted using spatiotemporal

QRST cancellation Stridh and Sornmo (2001). The AFR trends

are then estimated by tracking the fundamental frequency of the

extracted f-wave signal using a hidden Markov model-based

approach Sandberg et al. (2008); resulting in a resolution for

the AFR trends of one minute.

2.4 Parameter estimation

The atrial arrival rate, λ, is estimated by correcting the AFR

trend, taking the atrial depolarization time into account Corino

et al. (2013). Outliers in the estimated λ trends are excluded based

on visual inspection guided by cluster analysis. The resulting

trends are low-pass filtered using a sliding triangular window

filter with a width equal to 70.

The model parameters θ are assumed to vary over time,

making this a dynamic optimization problem. Thus, the data

are first divided into overlapping data segments of N = 1000

RR intervals; where N is chosen to give a good balance

between resolution and robustness of the estimates. Each

data segment contains one segment-specific mean arrival rate

λN(i) calculated as the mean of the λ trend in the segment

starting at RR interval i, as well as one RR interval series,

RRN(i). The estimated parameters of a data segment starting

at RR interval i is denoted by θ̂(i).
A fitness function based on the Poincaré plot - a scatter

plot of successive pairs of RR intervals - is used to quantify the

difference between observed and simulated RR series. The

Poincaré plots are binned into two-dimensional bins with a

width of 50 m, centered between 250 and 1800 m, forming a

two-dimensional histogram. The error function (ϵ), i.e., the
inverse fitness function, is then calculated from the number of

samples in the bins according to Eq. 4,

ϵ � 1
K

∑K
k�1

xN
k − N

Nsim
~xNsim
k( )2�������

N
Nsim

~xNsim
k

√ , (4)

where K is the number of bins,Nsim is the number of RR intervals

simulated with the model, and xN
k and ~xNsim

k are the numbers of

RR intervals in the k-th bin of the observed data and model

output, respectively.

A genetic algorithm (GA) is used to search for the values of

θ yielding the minimum ϵ. A GA consists of a population of

individuals that evolves based on their fitness value towards a

solution using selection, crossover, and mutation Wahde

(2008).

By assuming that a large change in the Poincaré plot relates to

a large change in parameter values, it is possible before starting

the optimization to decide when the optimization algorithm

should focus on exploration or exploitation. As a heuristic for

this, we introduce the difference in the Poincaré plots (ΔP(i)),
according to Eq. 5,

TABLE 2 The number of recordings and recording length (mean ± std) analyzed in this study following exclusion of recordings with insufficient signal
quality, as described in Section 2.3.

Drug Number of recordings Recordings length (h)

Baseline 51 20.88 ± 2.85

Verapamil 53 21.92 ± 2.39

Diltiazem 56 21.71 ± 2.44

Metoprolol 53 21.87 ± 1.98

Carvedilol 57 21.23 ± 2.65

Total 270 21.52 ± 2.59
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ΔP i( ) � 1
K

∑K
k�1

xNΔP
k i( ) − xNΔP

k i + 1000( )( )2, (5)

where xNΔP
k (i) and xNΔP

k (i + 1000) are the number of RR intervals

in the k-th bin of the Poincaré plot for the RR interval series

starting at interval i and i + 1000, respectively. Moreover, the

segment length NΔP is set to 2000. The Poincaré plot difference,

ΔP(i), is used to tune hyper-parameters in the optimization

algorithm.

The GA used for estimating θ̂(i) has a population size of

400 individuals - where each individual is a vector of values for θ -

and uses tournament selection, a two-point crossover, and creep

mutationWahde (2008). The number of generations the GA runs

before switching to the next data segment varies from 1 when

ΔP(i) < 800; to 2 when 800 ≤ ΔP(i) < 2000; to 3 when ΔP(i) ≥
2000. The step size for the sliding windows is determined by the

trade-off between the resolution and the computing cost, and is

set to 108 s; resulting in 800 steps for full 24-hour measurements.

Thus, there will be 800 estimated θ̂(i) for a 24-hour

measurement. As noted previously, there are also gaps in the

data. Thus, the step size will partly vary to match the start and

end of the RR segments, to ensure that all data are used. For

reference, estimating the θ̂(i) trend from a 24-hour RR and λ

series using a single core on a standard desktop computer (Intel®
CoreTM i7-6600U Processor, @ 2.60 GHz) requires on average

4 hours.

Since the Poisson process used to create the model input is

stochastic, ϵ varies between realizations. This variation is

dependent on the number of RR intervals generated from the

model, where more RR intervals reduce the variation but require

more computing power. To have a good balance between

computing power and stability, Nsim is set to 1500. However,

the ten fittest individuals in each generation are re-evaluated,

with Nsim = 5000, before the individual with the best fit for each

data segment, θ̂(i), is saved.
The individuals for the first generation are randomly

initialized using a latin hypercube sampling in the ranges:

{RSP
min, R

FP
min} ∈ [150, 650] ms; {ΔRSP, ΔRFP} ∈ [0, 700] ms;

{τSPR , τFPR } ∈ [40, 300] ms; {DSP
min, D

FP
min} ∈ [0, 30] ms; {ΔDSP,

ΔDFP} ∈ [0, 75] ms; {τSPD , τFPD } ∈ [40, 300] ms. These values are

also used as boundaries for the model parameters. Hence, the

difference between the upper bound and the lower bound for the

parameters is the range that the parameters can vary within, here

denoted r(p) and in vector form r, where p is the parameter index

ordered as in θ.

To reduce the risk of premature convergence and to maintain

a good diversity in the population, immigrants - individuals not

created from the current population - are used. These immigrants

are created using three different methods; 1) by saving and then

re-using the ten most fit individuals and their model output per

generation; 2) by running eight computationally faster GA, using

only 16 individuals and Nsim = 750, simultaneously; and 3), by

random sampling. The number of immigrants is dependent on

ΔP(i) and is created in equal proportion using the three different

creation methods. These new individuals are then introduced

into the population at the start of every new data segment by

replacing the individuals with the lowest fitness. More specific

details about the GA are found in Supplementary Material,

Section 1.

2.5 Parameter uncertainty estimation

A variant of Sobol’s method Sobol (2001) is used to derive

the uncertainty for each estimated parameter set θ̂(i). The
contribution to the output variance (v(p)) for a parameter p,

including the variation caused by its interaction with all the

other parameters, is estimated by the following procedure.

Firstly, two 30 x 12 matrices (A and B), where 30 is the

number of sampled parameter vectors, are generated by

samples from a quasi Monte Carlo procedure based on the

Latin hypercube design. Unlike Sobol’s method - which

samples in the whole parameter range - these samples are

generated within θ̂(i) ± 0.075r, hence within a hyper-

rectangle covering 15% of the total range of each

parameter. Secondly, 12 new matrices, ABp are created by

replacing the p-th column in A with the p-th from B. Thirdly,
ϵ is calculated for each parameter set in the matrices by

running the model, before the expected value of the

contribution to the output variance is estimated according

to Eq. 6 Sobol (2001).

v̂ p( ) � 1
2 · 30 ∑30

q�1
ϵAq − ϵABp,q( )2. (6)

Here ϵAq and ϵABp,q quantifies the difference between the observed

RR series and the model output as given in Eq. 4, for the

parameter sets in A and ABp, respectively.

The estimated v̂(p) are then, together with the mean (�ϵ) and
standard deviation (σϵ) of the 30 realizations of θ̂(i), used to

calculate a parameter uncertainty estimate according to Eq. 7.

u p( ) � 0.15r p( )����
v̂ p( )√

− σϵ
0.1�ϵ. (7)

Here 0.15r(p) originates from the distance between θ̂(i) and
the border of the sampled hyper-space, and

����
v̂(p)√ − σϵ from

the difference between the error variation inside the hyper-

space and at θ̂(i). Hence, the fraction relates to the slope-

intercept between the parameter distance and the

uncertainty. The remaining product relates this slope to

10% of the mean error for θ̂(i). Thus, the interpretation of

u(p) is: ‘Assuming interaction between all model parameters,

how large a step can be taken for parameter p before the

contribution to ϵ for θ̂(i) is increased by 10%‘. This was then

repeated for all θ̂(i) for all patients and drugs.

Frontiers in Physiology frontiersin.org05

Karlsson et al. 10.3389/fphys.2022.976526

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.976526


2.6 Circadian variation

The drug-dependent circadian variation for the estimated

AV node parameters is quantified using linear mixed-effect

modeling, i.e., using a statistical model comprising both fixed

effects and random effects. The model used consists of a 24-hour

periodic cosine with mean m, amplitude a, and phase ϕ, as seen

in Eqs. 8, 9, and 10.

ypat,m t( ) � mpat,m + apat,m cos
2π
24

t + ϕ( ) (8)
mpat,m � α + αm + ηpat + ηpat,m (9)
apat,m � β + βm + ξpat + ξpat,m (10)

Here ypat,m(t) represents the estimated parameter trends of patient

pat during treatment m ∈ {Baseline, Verapamil, Diltiazem,

Metoprolol, Carvedilol}. Moreover, t corresponds to the time of

the day, in hours, of the RR interval i that the estimated θ̂(i) relates
to. Furthermore, α, αm, β, and βm represent the fixed-effects; with α

and β corresponding to the mean value for the mean and amplitude

during baseline, and αm and βm to the average deviation from the

baseline values, caused by the drugs. The random effects ηpat, ηpat,m,

ξpat, and ξpat,m correspond to the individual deviation from the fixed-

effects, and are assumed to be sampled from a zero-mean gaussian

distribution. During baseline,αm, βm and ηpat,m, ξpat,m are assumed to

be zero. For a given individual, ϕ is assumed to be equal for all

12 model parameters and is estimated by means of principal

component analysis of the θ̂(i) trends. The 12 vectors created by

projecting the data onto the 12 principal components are fitted to a

cosine with mean mc, amplitude ac, and phase ϕc, where c indicates

the c-th principal component, using the simplex search method

Lagarias et al. (1998). The phase, ϕ, is set equal to the ϕc associated

with the highest ac. Moreover, for cases where apat,m is negative, a

phase-shift ofπ is added to ensure that all the amplitudes are positive.

With ϕ estimated, α, αm, β, βm, ηpat, ηpat,m, ξpat, and ξpat,m are

fitted using the linear mixed-effects model function ‘fitlme ()’ in

MATLAB (The MathWorks Inc. Version R2019b); using the full

covariance matrix with the Cholesky parameterization and the

maximum likelihood for estimating parameters of the linear

mixed-effects model with trust region based quasi-Newton

optimizer as settings.

An assessment of the goodness of fit for the linear mixed-

effect model is calculated as the RMSE between the modeled

cosine and the estimated parameters. For easier comparison

between parameters, the RMSE for each parameter is

weighted by their respective range, r(p).

2.7 Statistic analysis

The estimated parameters θ̂(i), as well as AFR and HR, were

averaged for each recording, and significant difference between the

averages at baseline and under the four drugs were assessed one-by-

one using the paired two-sided Wilcoxon signed rank test Woolson

(2007) with the Benjamini–Hochberg correction Benjamini and

Hochberg (1995). Patients with missing recordings (cf. Table 2)

at baseline or the drug in questionwere excluded from the analysis. A

p-value below 0.05 after correction was considered significant.

3 Results

Figure 3 illustrates the advantages of using the GA proposed in

Section 2.4 for parameter estimation by comparing it to a standard

version of theGA. For the standardGA, all hyper-parameters, as well

as the number of generations per data segment, are fixed and thus do

not take advantage ofΔP(i). To highlight the differences between the
algorithms, we zoom in on a three hour long segment where the RR

series characteristics change rapidly. It is clear that ϵ increases along
with ΔP(i) for the standard GA, in contrast to the proposed GA.

From the GA we acquire one estimate per data segment, for all

59 patients and all drugs, resulting in a total of 175,640 θ̂(i). To give
the reader a sense of the match between the model output and RR

interval series obtained from the ECG, we present two examples of

Poincaré plots and histograms together with the associated RR

interval series. One corresponds to the median ϵ, and one where ϵ
is higher than 95% of all ϵ, as shown in Figure 4. It is evident that the
histograms and Poincaré plots from the model output and data are

similar for both cases, indicating a good match to data in most data

segments. However, there is a considerable difference on a beat-to-

beat level, as indicated by the RR interval series. Moreover, θ̂(i) for
one patient at baseline is shown in Figure 5, where clear changes over

time can be seen.

FIGURE 3
Mean (colored lines) and standard deviation (colored areas) of
the error ϵ for 100 segments for the proposed genetic algorithm
(blue) and a standard genetic algorithm (red) together with the
Poincare difference ΔP(i) (black line), defined in Eq. 5, for data
from one patient at baseline during 3 hours. The standard
deviation and mean are based on ten runs of the algorithms. Note
that ΔP(i) is scaled with 1

5 for readability.
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Recording averages of estimated model parameters, AFR, and

HR at baseline and during treatment with the four different drugs are

shown in Table 3. Significant differences, as described in Section 2.7,

are indicated in the table by ‘*’. This shows a significant increase in

the refractory period in the FP for all drugs, as well as a significant

decrease in heart rate and AFR for all drugs.

3.1 Uncertainty estimation

The average u(p), as explained in Eq. 7, normalized with r(p), are

shown in Figure 6. From this, it is evident that the model parameters

relating to the SP are more robustly estimated than their FP

counterpart, and that the model parameters relating to the

FIGURE 4
The Poincaré plot with associated histogram and RR interval series of data (blue) and model output (orange) for the θ̂(i) corresponding to the
median ϵ (left) and to the θ̂(i) which ϵ is higher than 95% of all ϵ (right).

TABLE 3 Recording averages of estimated model parameters, AFR, and HR at baseline and during treatment with the four different drugs (mean ±
standard deviation). Differences from baseline are evaluated using the Wilcoxon signed rank test with the Benjamini–Hochberg correction;
significant difference from baseline for the drugs, with false discovery rate at 0.05, is indicated with *.

Parameter Baseline Verapamil Diltiazem Metoprolol Carvedilol

RFP
min (ms) 435 ± 139 488 ± 134* 518 ± 118* 489 ± 126* 476 ± 123*

ΔRFP (ms) 403 ± 195 478 ± 190* 488 ± 202* 495 ± 180* 483 ± 172*

τFPR (ms) 175 ± 59 165 ± 63 163 ± 64 162 ± 58 167 ± 57

RSP
min (ms) 241 ± 102 280 ± 125* 287 ± 124* 260 ± 114 269 ± 123

ΔRSP (ms) 231 ± 176 274 ± 201 301 ± 215* 312 ± 187* 274 ± 186*

τSPR (ms) 180 ± 60 183 ± 62 171 ± 63 176 ± 62 176 ± 63

DFP
min (ms) 5.3 ± 4.5 5.4 ± 4.8 5.4 ± 4.7 5.9 ± 4.5 5.3 ± 4.5

ΔDFP (ms) 18.9 ± 16.9 21.7 ± 17.2 22.1 ± 17.3 21.8 ± 16.7 21.4 ± 16.9

τFPD (ms) 141 ± 54 144 ± 50 145 ± 53 149 ± 50 142 ± 53

DSP
min (ms) 21.0 ± 5.3 21.6 ± 5.1 22.5 ± 5.2* 21.7 ± 4.8 21 ± 5.2

ΔDSP (ms) 26.3 ± 21.4 23.8 ± 20.9 19.6 ± 20.7* 22.6 ± 21.2 21.5 ± 20.8

τSPD (ms) 185 ± 68 184 ± 57 183 ± 65 186 ± 58 180 ± 65

HR (bpm) 95 ± 13 80 ± 12* 74 ± 10* 81 ± 10* 84 ± 11*

AFR (Hz) 4.96 ± 0.34 4.56 ± 0.45* 4.71 ± 0.44* 4.86 ± 0.40* 4.81 ± 0.51*
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refractory period are more robustly estimated than their conduction

delay counterpart.Most noteworthy is the lower uncertainty forRSP
min

and ΔRSP, suggesting a higher impact on the output of the model.

The uncertainty estimates, u(p), for one patient are shown

as red background for each θ̂(i) in Figure 5, where again u(p)

for the refractory parameters in the SP is lower. There is also a

clear difference in u(p) between nighttime and daytime, where

the uncertainty is much lower at night.

3.2 Circadian variation

In Figure 5 we also show an example of the circadian

variation (blue lines) for the aforementioned patient, as

explained in Eqs. 8, 9, and 10, where a clear distinction

between night and day can be seen for most parameters. The

average RMSE for the 12 model parameters seen in Figure 5 is

0.22, which can be compared with the average RMSE for all

patients and treatment of 0.16 ± 0.03 (mean ± std).

The mean and standard deviation of the circadian variation

phase ϕwas 1.03 ± 0.74 rad; corresponding to an extreme value at

approximately 04:00 am ± 2.8 h.

The fixed-effects αm and βm and their respective 95% confidence

interval, normalizedwith r(p), are shown in Figure 7, where the fixed-

effects represent the average difference in effect with respect to

baseline that the drugs have on the population. It is evident from

αm in Figure 7 (top panel) that all rate control drugs on average

increase the refractory period in both pathways; with a significant

increase (p < 0.05) in RFP
min and ΔFP for all drugs, in RSP

min for all but

metoprolol, and in ΔRSP for all but verapamil. Moreover, differences

between the β-blockers and the calcium channel blockers can be

observed. Most noticeably for the amplitude (βm) of ΔDFP and ΔDSP,

where the two β-blockers have a distinctly negative effect in

comparison with the two calcium channel blockers.

Detailed results for the estimated fixed and random effects

can be found in the Supplementary Material, Section 2.

4 Discussion

In this study, we have presented a mathematical

framework able to continuously estimate model parameters

representing the conduction delay and refractory period of

the AV node during 24 h for patients with permanent AF

from ECG data. Trends in the estimated model parameters

were analyzed using a mixed-effects model to study the

circadian variation, where drug-dependent differences

could be seen.

FIGURE 5
Estimated model parameters θ̂(i) (black dots), with corresponding uncertainty estimates PU (red areas), along with the fitted cosine (blue lines)
used for the circadian variation, for one patient during baseline. In each panel, the RMSE is reported as a measure of goodness of fit between θ̂(i) and
the fitted cosine. Left column shows the parameters relating to the minimum conduction delay or refractory period, the middle column the
parameters relating to the maximum prolongation, and the right column to the time constants. For further explanation of the model
parameters, see Table 1.
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The model has previously been shown to be able to represent

measured data in the form of histograms and Poincaré plots for

20-min long segments Karlsson et al. (2021). However,

continuously estimating model parameters representing the

refractory period and conduction delay in the AV node has

previously not been possible. A previous study of the RR interval

series has indicated that one interval delay in the autocorrelation

gives sufficient information to replicate the dynamics of the RR

interval series Karlsson et al. (2021). Hence, the Poincaré plot was

chosen as a basis for the fitness function in order to take the one

interval delay of the RR interval series into account, something

that is not possible with an one-dimensional distribution

representation such as the histogram. Moreover, since the

model describes the impulses from the atria as a stochastic

process, it is not possible to have a beat-to-beat level of detail

in the fitness function, as evident by the RR interval series in

Figure 4.

The choice of segment length N is a trade-off between

robustness and time-resolution. The segment length N was set

to 1000 RR intervals, corresponding to a time duration of 11 :

53 ± 03 : 28 (mm:ss), to capture changes in RR series

characteristics on this time-scale while allowing sufficient

estimation accuracy. As a consequence of the choice of N =

1000, the bin size of 50 m was used for the Poincaré plot-based

error function. A smaller bin size would allow a more detailed

match between model output and data, but would require more

RR intervals.

From Figure 4, it is evident that the model and workflow can

replicate the histogram and Poincaré plot of obtained RR interval

series even for the case with the 95% highest ϵ. This was made

possible by using the problem-specific GA presented in Section

2.4. Evolutionary algorithms - such as GA - and particle swarm

optimization are the most common optimization algorithms

used for solving dynamic optimization problems Yazdani

et al. (2021); Mavrovouniotis et al. (2017).

One of the main challenges with dynamic optimization

problems is the balance between exploration and exploitation,

i.e., between searching for different promising regions of the

search space, or searching for the optimal solutions within an

already promising region. To keep a good level of exploration, the

diversity in the population - usually defined as the average

Euclidean distance between the individuals in the population -

is often monitored. Thus, diversity loss is one of the most critical

challenges Yazdani et al. (2021). A great number of methods have

been developed to address this diversity loss, often based on

randomizing individuals in the population that are too similar to

others. For example, crowding - letting new individuals replace

FIGURE 6
Mean (circles) ± one standard deviation (bars) of the
parameter uncertainty estimates u(p) over all recordings and all
patients, normalized with the parameter ranges r(p). Note that the
model parameters RSP

min and ΔRSP have a lower uncertainty,
indicating a higher impact on the resulting model outcome.

FIGURE 7
The fixed effects with corresponding 95% confidence intervals for the cosinor meanm (top) and cosinor amplitude a (bottom) for each model
parameter (cf. Table 1) and drug. Confidence intervals not overlapping zero indicate significant difference from baseline (p <0.05).
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the most similar individual in the population Kordestani et al.

(2014) - or based on the age of the individuals Das et al. (2013).

For GA, it is also possible to combat diversity loss by regulating

the mutation rate. However, maintaining a good level of

exploration using diversity does not take any information

about the data into account. In contrast, changing the

mutation rate, the number of immigrants, and the number of

generations per segment using ΔP(i) - as was done in this study -

takes information about the data directly into account.

Additionally, the number of immigrants in the proposed GA

ranges from 10–70%, which limits the initialization’s effect on the

overall results. Moreover, the results in Figure 3 indicate that the

proposed problem-specific optimization method yields a better

fit compared to the standard approach when the characteristics of

the data change rapidly. On the other hand, when the

characteristics of the data change slowly, the performance is

similar even though the proposed algorithm is using fewer

generations per segment. The number of RR intervals

simulated with the model for each parameter set, Nsim, was set

to 1500 in the GA based on a trade-off between computational

complexity and variation based on the stochastic input sequence

to the model. A simulation study relating the variation in ϵ and
Nsim which was used to guide the decision is shown in the

Supplementary Material, Section 1. Moreover, the thresholds

for ΔP to determine howmany generations are to be run per data

segment were set so that approximately 55% are run for

1 generation, 30% are run for 2 generations, and the

remaining 15% are run for 3.

A variation of Sobol’s method was used to estimate the

contribution to output variance for each model parameter, which

was related to an increase in error by 10%. This more complex

methodologywas preferred over a one-at-a-time approach due to the

large effect that interaction between model parameters has on the

model output. Note that, unlike more traditional uncertainty

estimates, this is not directly connected to a probability, since the

error function used does not have a proper probabilistic

interpretation. Thus, the uncertainty shall only be interpreted as a

relative measure between the model parameters, between patients,

and between the time of day. For example, it is evident in Figure 5

that the uncertainty for this patient is much lower during nighttime

than daytime.

A linear mixed-effect model based on a cosinor analysis was

used to derive the circadian variations. This method was used to

quantify the circadian variation for the different drugs over the

whole population, as well as the individual response to the drugs.

The focus of this study is on the population effects of the different

drug types in order to understand the drug-dependent

differences in the conduction properties, something that needs

to be understood before the method could be applicable on an

individual level. Even though the focus of this study is on the

population level, the individual responses are still of interest,

especially for future work. For example, to predict individual

responses to different drugs. As shown in Figure 5, the individual

match is not optimal, thus a better tool for capturing the

circadian variation is believed to be needed before robust

analysis on an individual level is feasible. However, the

cosinor analysis is an established model for characterizing

circadian variation and has previously been used on the

RATAF data-set to study heart rate variation Corino et al.

(2015a).

From Table 3, in the parameters RFP
min and ΔRFP, we see a

significantly increased refractory period relative to baseline in the

FP for all four drugs. In addition, a significant increase in the SP

for either RSP
min, or ΔRSP could also be seen for all drugs. This

increase is also visible in the fixed effect parameters αm in

Figure 7, top panel. Electrophysiological studies of the two

calcium channel blockers verapamil and diltiazem as well as

the β-blocker metoprolol have shown that the drugs increase the

refractoriness in the AV node Leboeuf et al. (1989); Talajic et al.

(1992); Rizzon et al. (1978). Moreover, carvedilol has been shown

to increase the effective refractory period in the atria during AF

Kanoupakis et al. (2004). However, to the best of our knowledge,

no studies have been conducted to determine the effect of

carvedilol specifically for the refractory period in the AV

node. Furthermore, conduction properties in the atria

influence the model through the mean arrival rate λ, and thus

affect the estimated parameters.

In addition, from Figure 7 bottom panel, it is shown that

the two β-blockers reduce the circadian variation of the

conduction delay more than the calcium channel blockers,

as evident by ΔDFP and ΔDSP. Stimulation of the β1-receptors

- regulated by the autonomic nervous system - have been

shown to increase the conduction velocity in the AV node

Gordan et al. (2015). Hence, blocking this receptor using β-

blocking drugs might decrease the autonomic nervous system

effect, and thus reduce the circadian variation, yielding the

presented results.

Also seen in Figure 7, the model parameters for the two β-

blockers often behave similarly. However, the model parameters

for the calcium channel blockers verapamil and diltiazem do not

always align. In fact, the values for αm and βm for verapamil are in

several cases - most noticeably for RFP
min for αm and ΔRFP, ΔRSP,

and DFP
min for βm - similar to those of the two β-blockers.

Interestingly, it has previously been proposed that the

pharmacological effects of verapamil may partly be due to

some degree of β-blockade Drici et al. (1993).

Moreover, the large confidence intervals in Figure 7,

where the majority includes zero, are most likely due to

the high inter-patient variability in parameter values. A

confidence interval that includes zero would indicate that

there is no significant difference from baseline. The high

inertia and simplicity of the cosine are other factors in this.

For example, some patients have more than one section with

parameter values close to those during the night - possibly

due to periods of sleep during the day - which a cosine with a

period of 24 h could not capture.
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4.1 Study limitations and future
perspectives

The present model of the AV node accounts for dual pathway

physiology and rate dependent changes in conduction delay and

refractoriness and can simulate retrograde conduction. However,

it is not able to simulate some physiological interesting

phenomena such as AV node re-entry.

A limited range for the model parameters was used to make

the optimization more efficient. The choice of the boundaries was

guided by electrophysiological measurements from previous

clinical studies while keeping a conservative range to not

exclude realistic values. The maximal refractory period for the

model - given as the sum of Rmin and ΔR - lies in the range [150,

1350] ms and was set to include the effective refractory period of

the AV node, which has been reported as 361 ± 57 and 283 ±

48 m for the FP and SP, respectively Natale et al. (1994).

Furthermore, the conduction delay of the whole model is

given by the sum of Dmin and ΔD multiplied by the number

of nodes, which lies in the range [0, 1050] ms. Thus, it includes all

realistic PR intervals, which rarely exceed 200 m Schumacher

et al. (2017). Even though the boundaries were conservatively

chosen, we cannot exclude the possibility that a different choice

would have affected the resulting parameter values. Moreover,

since the parameters might be hard to interpret, combining the

model parameters associated with the same conduction property,

i.e., the two refractory periods and the two conduction delays, to

create more interpretable representations, is interesting.

As mentioned before, high inertia and simplicity of the cosine

are limiting factors for the assessment of circadian variation.

However, the cosinor analysis is an established model for

characterizing circadian variation and is thus important for

clear and interpretable results. Using the estimated uncertainty

to weight the estimated parameters is one possible approach to

make the cosine fit the estimates better. Other methods to capture

the differences in the AV node parameters over time, such as

time-frequency analysis of the estimated parameter trends,

should also be investigated.

It should be noted that the estimated model parameters are not

clinically validated for assessment of AV node refractoriness and

conduction delay.Hence, the clinical significance of the results should

be interpreted with caution. However, the overall findings for the

different drugs on the whole population are, as discussed above, in

accordance with electrophysiological studies. Another limitation is

the sample size of 60 patients in combination with the high inter-

patient variability in parameter values, as seen in the large standard

deviation in Table 3. This makes the population estimates more

uncertain, partly causing the large confidence intervals seen in

Figure 7.

A natural continuation of this work is to analyze the

estimated model parameters during baseline, possible in

combinations with other factors such as age or gender, to

predict the mean heart rate under the influence of the

different drugs. This in turn could be used to assist in

personalized treatment selection during AF.

5 Conclusion

We have presented a framework - including a mathematical

model and a genetic algorithm - which for the first time enables

characterization of the refractory period and the conduction

delay of the AV node during 24 h for patients with

permanent AF, solely based on non-invasive data.

With ECG from AF patients during baseline and under the

influence of different rate control drugs, a mixed-model

framework was used on the estimated model parameters to

compare the impact on circadian variation between drugs.

From this, differences in conduction delay could be identified

between β-blockers and calcium channel blockers, which was

previously unknown.
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