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Rapid and accurate peripheral nerve 
imaging by multipoint Raman 
spectroscopy
Yasuaki Kumamoto1, Yoshinori Harada1, Hideo Tanaka1 & Tetsuro Takamatsu2

Raman spectroscopy allows label-free, minimally invasive, and accurate detection of peripheral nerves. 
However, the conventional Raman imaging technique is time-consuming when measuring a large area 
of a sample. Establishing a method for rapidly acquiring spatial distribution of a bundle of peripheral 
nerve fibers is an essential step for Raman spectroscopy towards application in clinical surgery. Here 
we present a multipoint Raman spectroscopic technique for rapid peripheral nerve imaging. In only 
5 seconds, spectra at 32 points situated on ex vivo rat peripheral nerve bundles and adjoining connective 
tissues were acquired. Principal component regression and discriminant analysis of spectra revealed 
that the sensitivity, specificity and accuracy for nerve detection were 85.8%, 96.0%, and 90.8%, 
respectively. Of 158 peripheral nerves, 152 (96.2%) showed ratio of the number of nerve-positive 
prediction points to the total measurement points being 0.4 or larger, whereas 119 (99.2%) connective 
tissues among 120 showed ratio smaller than 0.4. Based on the ratio and a bright-field image of the 
sample, accurate visualization of peripheral nerves was implemented. The results indicated that the 
multipoint Raman spectroscopic technique is capable of rapid and accurate peripheral nerve imaging.

Injury of a bundle of peripheral nerve fibers can cause serious functional deficit of a limb or organ. Nerve-sparing 
surgery1–16 and nerve repair17–23 are essential for protecting patients who need radical resection of a tumor from 
postsurgical functional deficit and recovering patients with traumatic limb injury from functional deficit, respec-
tively. Accurate discrimination between peripheral nerve and nerve-like structures such as connective tissues is 
the key to the success of these surgical operations. Intraoperative identification of a peripheral nerve has long 
relied on the surgeon’s eyes and anatomical knowledge. However, surgeons find it hard to identify a thin bundle of 
peripheral nerve fibers less than 1 mm in thickness. Indeed, a number of patients have experienced postsurgical 
functional deficits of limbs and organs5, 7, 8, 10, 12, 15. A recurrent laryngeal nerve can be identified through electrical 
stimulation driving vocal cord movement in neck and thyroid surgeries24–26, but this technique can only detect a 
bundle containing motor nerve fibers and not one mostly composed of autonomic and/or sensory nerve fibers. 
Furthermore, it carries a risk of nerve injury due to excess current25.

In the most recent decade, several techniques have been applied for visualizing peripheral nerves, for exam-
ple, by using fluorescent peptides specifically labeling peripheral nerves27, 28, spontaneous Raman scattering29, 30,  
coherent anti-Stokes Raman scattering31, and combination of autofluorescence and second harmonic generation32–34.  
Among these, the spontaneous Raman scattering technique has several advantages for clinical use; it does not 
require tissue pretreatment such as staining, allowing use the in human body. Moreover, the tissue-type discrimi-
nation of the Raman technique is reliable since Raman scattering is an intrinsic fingerprint of a tissue and reflects 
differences in molecular composition among different tissues29, 30. Indeed, our group has previously shown that 
the Raman technique can discriminate peripheral nerves from their adjacent tissues including blood vessels, 
adipose tissue, skeletal muscle, and fibrous connective tissues29. For ex vivo detection of rat peripheral nerve, the 
sensitivity, specificity, and accuracy of the Raman technique were 94.2%, 92.0%, and 92.9%, respectively30. In 
addition, the spontaneous Raman technique allows relatively safe nerve detection, since excitation of spontaneous 
Raman scattering does not require high intensity laser as the coherent Raman scattering technique does.
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The essential step of the spontaneous Raman technique towards clinical use is to establish a technique for rapidly 
measuring the spatial distribution of thin bundles of peripheral nerve fibers. Combination with a laser-scanning 
technique can measure the spatial distribution of tissues, but it will require a long acquisition time35, 36  
since the efficiency of Raman scattering is tremendously low. The slit-scan Raman imaging technique using 
line illumination allows short-time acquisition of a tissue Raman image by reducing the number of scans37–39,  
but this technique still requires several minutes or more, which is too long a waiting time for a surgical procedure, 
for two-dimensional imaging.

Here we suggest multipoint Raman spectroscopy40–42 for rapid imaging of a bundle of peripheral nerve fibers. 
The multipoint Raman spectroscopic technique enables rapid acquisition of a number of spectra over a large area 
of a sample. Together with the multipoint Raman technique, we also suggest use of a bright-field image, where 
tissue structures of candidates for nerve bundles can be quickly revealed based on morphological information. 
For identifying and visualizing nerve bundles, concurrent analysis of multipoint Raman spectra with a corre-
sponding bright-field image is executed. The usefulness of the presented technique is evaluated by discriminating 
peripheral nerves and adjacent connective tissues, which visually resemble each other.

Results
Multipoint spontaneous Raman spectral mapping.  We measured a test sample to evaluate if the mul-
tipoint Raman spectral mapping technique (see Methods or for details) is useful for rapidly discriminating a bun-
dle of peripheral nerve fibers and another type of tissue resembling the nerve bundle. As a test sample, we used 
a thin nerve bundle and connective tissue on a skeletal muscle tissue, which mimics a tissue visible to the eyes in 
surgery. Figure 1 presents a dataset acquired by multipoint Raman spectral mapping and bright-field imaging of 
a test sample. In the bright-field image, four nerve-like structures are seen. Three relatively thin structures located 
in parallel at the middle are nerve bundles with the thickness of ~0.4 mm, and the thicker structure at the upper 
right is connective tissue with the thickness of ~0.6 mm. Identification of nerve bundles by eyes is difficult. Shown 
in Fig. 1(b) is the bright-field image of the sample irradiated with multiple laser spots for Raman excitation. The 
circular spots below numbers (1, 2, 3, …, 32) correspond to Raman measurement points. Figure 1(c) shows 
32-point individual Raman spectra obtained for 5-second signal accumulation time. The spectra show two char-
acteristic bands at 2895 and 2931 cm−1, as indicated by arrowheads. The 2895 cm−1 band is remarkable for almost 
all the spectra obtained at the nerve (points 5, 6, 11–13, 18–20, 25–27, 31, 32). This band can be assigned to CH2 

Figure 1.  (a) Bright-field image of a test sample containing bundles of peripheral nerve fibers (N), connective 
tissue (C), and a skeletal muscle tissue (M). The scale bar is 1 mm. (b) Bright-field image of the sample together 
with multiple excitation laser irradiation spots. (c) Raman spectra obtained at the laser spots seen below 
numbers in (b). The signal accumulation time was 5 seconds. N, C, and M indicate the tissue type at each 
spot position. The arrowheads indicate two characteristic bands at 2895 and 2931 cm−1. The spectra were 
preprocessed.
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asymmetric stretching mode, which is known to be particularly intense for a bundle massively containing myeli-
nated nerve fibers29, 30. On the other hand, the intense 2931 cm−1 band is seen in all the spectra. This band can be 
assigned to CH3 symmetric stretching mode and is known to be intense for nerve, connective tissue, and skeletal 
muscle tissue29, 30. For clarity of spectral difference among these three types of tissues, overlay of average spectra 
of the peripheral nerves, connective tissue, and skeletal muscle is shown in Fig. S2. Although the 2855 cm−1 band 
in previous studies29, 30 is not seen here, it could be merged into the 2895 cm−1 band due to low spectral resolution 
of the instrument.

Tissue-type discrimination at individual Raman measurement points.  To quantitatively discrim-
inate tissue type at individual Raman measurement points, we employed principal component regression and 
discriminant analysis, an analytical method powerful for discriminating data groups with multicollinearity30, 43. 
The first to fourth principal components (SPC1, SPC2, SPC3, SPC4) of training data composed of nerve, connective, 
and muscle tissue spectra (n = 1000 for each) are shown in Fig. 2(a). Shown in Fig. 2(b) are results of regression of 
the training data with the 4 principal components, being two-dimensional plots of regression coefficients (cPC1 vs 
cPCm: m = 2,3,4). Clearly, individual Raman spectra represented by individual dots for nerve, connective, and mus-
cle tissues are well discriminated along the cPC1 axis. In addition, along the cPC2 axis, spectra of peripheral nerve 
bundles and connective tissues can also be discriminated from those of skeletal muscle tissues. On the other hand, 

Figure 2.  (a) The first to fourth principal components of training dataset composed of 1000 peripheral nerve 
spectra, 1000 connective tissue spectra, and 1000 skeletal muscle tissue spectra (sPC1 to sPC4). Horizontal dashed 
lines indicate zero intensity for individual principal components. (b) Principal component regression coefficient 
plots of the training spectra. cPC1, cPC2, cPC3, and cPC4 are regression coefficients to the four principal components 
shown in (a) (sPC1, sPC2, sPC3, and sPC4, respectively). (c) Discriminant curves discriminating the Raman spectra 
groups of peripheral nerve from skeletal muscle tissues (left), peripheral nerve from connective tissues 
(middle), and connective tissues from skeletal muscle tissues (right) in the space of cPC1 to cPC2 plot. (d) A graph 
overlaying all the discriminant curves in (c) and three distinct areas assigned to nerve-positive prediction region 
(light red), connective-tissue-positive prediction region (dark yellow) and muscle-positive prediction region 
(light green). Individual areas were derived from the M/N and C/N discrimination curves, the C/N and C/M 
discrimination curves, and the M/N and C/M discrimination curves in (c), respectively. (e) Results of principal 
component regression of the 3840 test spectra with the four principal components shown in (a). The tissue-type 
partitions are overlaid. N: peripheral nerve bundle. C: connective tissue. M: skeletal muscle tissue.
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the three groups cannot be discriminated along the cPC3 and cPC4 axis. Thus, we found that the two-dimensional 
plot of cPC1 to cPC2 was useful for tissue type discrimination. To quantitatively discriminate individual Raman 
spectra into corresponding tissue types, discriminant analysis was performed. The resultant curves discriminat-
ing each two spectra groups (i.e., N from M, N from C, and C from M) are individually presented in Fig. 2(c). The 
curves overlaid on the graph have enabled us to assign the space into nerve-positive, connective-tissue-positive, 
and muscle-positive prediction regions, as shown in Fig. 2(d).

In total, 3840 spectra (N: 851, C: 821, M: 2168) were measured from 120 test samples. The overlay of principal 
component regression coefficients of the test spectra and the tissue discrimination regions are shown in Fig. 2(e). 
Among the 3840 test spectra, 814, 699, and 2327 spectra were predicted as nerve, connective tissue, and muscle, 
respectively. Table 1 summarizes the results of tissue-type discrimination. Of 851 spectra obtained at the nerve 
bundles, 730 were truly predicted as nerve, deriving the nerve detection sensitivity of 85.8%, and 788 out of 821 
spectra at connective tissues were predicted as connective tissue or muscle with the nerve detection specificity of 
96.0% on connective tissues. The nerve detection accuracy is thereby calculated to be 90.8%.

Tissue-type mapping and its overlay with a bright-field image.  Representative results of tissue-type 
mapping, which was implemented by overlaying tissue-type discrimination results at individual Raman meas-
urement points and a corresponding bright-field image, are shown in Fig. 3. In Fig. 3(a), two relatively thin 
structures located at the middle are nerve bundles, while the relatively thick structure at the top is connective 
tissue. These tissues were measured at 15 points indicated by arrowheads. Nerve-positive prediction points and 
connective-tissue-positive prediction points only appear at peripheral nerve and connective tissue, respectively, 
meaning that tissue type discrimination of this sample is completely accurate. However, this is not the typical 
case, but false positive and/or negative predictions often arise in many cases. In Fig. 3(b), a relatively thin struc-
ture located at the middle is a peripheral nerve tissue, while the relatively thick structure at the bottom right is 
connective tissue. The nerve bundle and connective tissue were measured at 10 points indicated by arrowheads. 
The point indicated by the arrowhead at the top is falsely discriminated as skeletal muscle tissue. In Fig. 3(c), the 
upper two relatively thin structures are peripheral nerves bundles, while the relatively thick structure at the mid-
dle is connective tissue. The peripheral nerve bundles and connective tissue were measured at 16 points indicated 
by arrowheads. The center-left point on the connective tissue is falsely discriminated as peripheral nerve bundle.

Peripheral nerve detection using the ratio of the number of nerve-positive prediction points 
to the total measurement points.  We counted the number of nerve-positive prediction points (NN) on 
individual peripheral nerves and connective tissues (Fig. S3). Of 160 measured nerve bundles, 144 contained 
three or more nerve-positive prediction points, whereas only 1 of the measured connective tissues contained 
three or more nerve-positive prediction points. Peripheral nerve and connective tissues can be discriminated at 
the threshold of NN = 2 with high sensitivity, selectivity, and accuracy. However, NN is not necessarily a reliable 
index for predicting the type of a given tissue since the total number of Raman measurement points on individual 

N (n = 851)

measured tissue

C (n = 821) M (n = 2168)

discrimination result

N (n = 814) 730 33 51

C (n = 699) 18 578 103

M 
(n = 2327) 103 210 2014

Table 1.  Results of tissue-type discrimination of the 3840 test spectra. N: peripheral nerve tissue. C: connective 
tissue. M: skeletal muscle tissue.

Figure 3.  Representative results of tissue-type mapping overlaid with bright-field images. Colored circular 
spots exhibit Raman measurement points, that is, tissue-type discrimination points. At red, yellow, and green 
points, tissues are discriminated as peripheral nerve bundle, connective tissue, and skeletal muscle tissue, 
respectively. The scale bar is 1 mm. N, C and M denote myelinated nerve bundle, connective tissue and skeletal 
muscle tissue, respectively.
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peripheral nerve and connective tissues are not always constant. The ratio NN/Ntotal seems to be a better index. 
NN/Ntotal of all the measured peripheral nerve and connective tissues are shown in Fig. 4. Among 160 nerve 
bundles, 2 were removed from analysis since they each had a single Raman measurement point and were no 
longer included in the results of multipoint Raman spectroscopy. Table 2 summarizes the number of true positive, 
false positive, true negative, and false negative nerve predictions of individual tissues when various thresholds 
of NN/Ntotal are set to discriminate peripheral nerve from connective tissues. When tissues with NN/Ntotal = 0.4 
or larger are determined as peripheral nerve, 96.2% of analyzed nerve tissues and 99.2% of analyzed connective 
tissues are successfully discriminated, deriving the best tissue discrimination accuracy, 97.5%.

Then we combined the tissue type discrimination results based on the ratio with morphological informa-
tion obtained from bright-field images so that bundles of peripheral nerve fibers in samples are visualized. The 
overlay of morphology-highlighted images and the tissue type maps for samples shown in Fig. 3 are presented in 
Fig. 5(a–c). Tissue-type discrimination based on the criterion of NN/Ntotal= or >0.4 successfully visualized the 
nerve bundles in samples, as shown in Fig. 5(d–f).

Discussion
The multipoint Raman spectroscopic technique has enabled rapid acquisition of a number of Raman spectra 
over a sample containing peripheral nerve bundle and connective tissue. Tissue-type mapping through discri-
minant analysis of Raman spectra, followed by its overlay with a bright-field image, and tissue discrimination 
using NN/Ntotal allowed accurate imaging of peripheral nerve bundles. We found that peripheral nerve discrimi-
nation from connective tissue by using the presented technique is better than that at individual Raman measure-
ment points, i.e., sensitivity: 96.2%; specificity: 99.2%; accuracy: 97.5% for the presented technique vs sensitivity: 
85.8%; specificity: 96.0%; accuracy: 90.8% for the single-point measurement. The tissue discrimination results at 
individual points are identical to those obtained from single-point Raman measurement of a tissue.

Figure 4.  Histogram summarizing the ratio of the number of nerve-positive prediction points (NN) to that of 
total Raman measurement points (Ntotal) at individual nerve bundles (N: red) and connective tissues (C: yellow). 
The total number of analyzed peripheral nerve and connective tissues is 158 and 120, respectively.

lowest NN/Ntotal for nerve detection 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TP 158 156 155 152 152 148 143 128 118 93 93

FN 0 2 3 6 6 10 15 30 40 65 65

TN 0 93 111 116 119 119 120 120 120 120 120

FP 120 27 9 4 1 1 0 0 0 0 0

Sensitivity (%) 100 98.7 98.1 96.2 96.2 93.7 90.5 81.0 74.7 58.9 58.9

Specificity (%) 0 77.5 92.5 96.7 99.2 99.2 100 100 100 100 100

Accuracy (%) 56.8 89.6 95.7 96.4 97.5 96.0 94.6 89.2 85.6 76.6 76.6

Table 2.  Results of peripheral nerve detection using NN/Ntotal. TP: true positive. FN: false negative. TN: true 
negative. FP: false positive. Note: The average and the standard deviation of Ntotal for the total 278 tissues were 
6.0 and 1.9, respectively.
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The threshold value for the most accurate peripheral nerve detection in this study is NN/Ntotal = 0.4. However, 
we should note that threshold value depends on the sample and/or measurement conditions change. How to 
determine the threshold value of NN/Ntotal is the key of the presented technique. The quasi-optimal value can be 
estimated from the sensitivity and specificity of peripheral nerve detection at individual Raman measurement 
points. Of the total Raman measurement points at connective tissues 4.0% were nerve-positive prediction points 
since the nerve detection specificity of the overall individual points was 96.0%, whereas 85.8% (=the nerve detec-
tion sensitivity) of the total Raman measurement points at peripheral nerve tissues were nerve-positive prediction 
points. It is expected that peripheral nerve and connective tissues can be well discriminated when the threshold 
value of NN/Ntotal is set at the average of these two values (i.e. (0.04 + 0.858)/2 = 0.449). Setting NN/Ntotal = 0.449 as 
the threshold value for detecting peripheral nerves derived the nerve detection sensitivity, specificity, and accu-
racy of 93.7%, 99.2%, and 96.0%, respectively. This result is close to the result obtained with the optimal threshold 
value of NN/Ntotal = 0.4 (i.e. sensitivity: 96.2%; specificity: 99.2%; accuracy: 97.5%).

Raman spectroscopic detection of peripheral nerve tissues may also be conducted by means other than 
NN/Ntotal. For example, cancer was reportedly discriminated by a mean spectrum over the tissue42, 44–46. As shown 
in Table S1 for mean spectra of individual tissues, the sensitivity, specificity, and accuracy for nerve detection were 
93.7%, 99.2%, and 96.0%, respectively, values superior to those of the single-point measurement. This is because 
averaging derives a spectrum with higher signal-to-noise ratio than the original individual spectra. The sensi-
tivity for nerve detection using a mean spectrum, on the other hand, is inferior to that for the present method 
using NN/Ntotal, indicating that a surgeon may cut a peripheral nerve by misidentification with the mean modal-
ity more frequently than the ratio one during surgery. Additionally, a mean spectrum tends to be affected by a 
measurement point giving an intense signal, and therefore, tissue discrimination using the mean spectrum can be 
ruined by a single measurement point emitting an intense false signal (i.e. adipose-tissue-like Raman spectrum 
at a peripheral nerve) and/or intense autofluorescence. Contrarily, the advantage of this method is that there is 
no need for optimizing the threshold value, that is, simplicity. In surgery, combination of these two analytical 
methods, which can compensate for the drawbacks of each other, may assist in reliable, accurate detection of 
peripheral nerves.

This study used Raman spectra accumulated as quickly as in 5 seconds. The readout time of the detector, the 
calculation time of data preprocessing, principal component regression, discriminant analysis, tissue-type map-
ping, and bright-field imaging in total took about three seconds. For switching Raman mapping and bright-field 
imaging, highlighting morphological information from a bright-field image, counting NN and Ntotal on individual 
tissues, and tissue-type discrimination of individual peripheral nerve and connective tissues, our manual opera-
tions were time-consuming. These operations, when automated, will take a few seconds. Overall, peripheral nerve 
detection using the present technique will be complete in around 10 seconds.

The presented multipoint Raman spectral mapping and following analyses have some other advantages over 
the single-point Raman measurement of a tissue. Illumination at the boundary of structures may generate a mix-
ture spectrum of two different tissues, leading to inconstant and inaccurate tissue prediction. Peripheral nerve 

Figure 5.  Visualizing the nerve bundles by morphology-highlighted images, the tissue type maps, and the 
nerve detection criterion on the NN/Ntotal. (a–c) The overlay of morphology-highlighted images, and tissue type 
maps of samples shown in Fig. 3. At red, yellow, and green points, tissues are discriminated as peripheral nerve, 
connective, and skeletal muscle tissues, respectively. (d–f) The nerve bundles highlighted in red according to the 
nerve detection criterion of NN/Ntotal = or >0.4.
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detection using the multipoint Raman technique and the following analysis using NN/Ntotal is not necessarily 
affected by a spectrum at the boundary, because it can eliminate the influence of the ambiguous spectrum by 
thresholding.

Finally, we describe the limitations of the present technique. First, thin peripheral nerve bundles and 
nerve-bundle-like structures often can be out of illumination. Indeed, 4 peripheral nerve bundles out of 160 and 1 
connective tissue out of 120 had only 1 or 2 Raman measurement points in this study. Thinner structures (i.e. 0.1–
0.2 mm in thickness) will be frequently out of illumination with the instrument used. For detection of such a thin 
nerve bundle, narrow spacing between illumination spots is preferred, but just narrowing spaces may decrease 
the field of view of measurement unless the number of illumination spots is increased. However, the maximum 
number of illumination spots allowable is limited to the pixel number of the detector array of a camera installed 
in the spectrograph along the long axis of the entrance slit of the spectrograph (Npixel), i.e., 400 for a 1340 × 400 
pixels CCD camera). When the diameter of detection fibers (Dfiber) is larger than the pixel length (Lpixel), this could 
be Npixel × Lpixel/(Dfiber + Sfiber), where Sfiber is the separation between fibers arranged along the slit. At present, the 
maximum number of illumination spots allowable is 60, and the illumination pattern of an 8 × 8 square lattice 
with 60 illumination spots (excluding corners) and 0.4 mm separation between neighboring spots, covering the 
field of view of 3.4 mm, is implementable. This illumination pattern, which can be good enough for detecting thin 
nerve bundles, will resolve the issue. Second, accuracy of tissue prediction at individual Raman measurement 
points can depend on measurement objects and conditions. For instance, in situ measurement will have more 
false positive or negative prediction due to other substances (e.g. blood, body fluid) than ex vivo measurement. 
The tissue prediction accuracy also depends on the amount of myelin in a bundle29, 30. Thickness of a nerve bun-
dle may also affect the prediction accuracy. These factors can be eliminated by optimizing the threshold value of 
NN/Ntotal for individual measurement objects and conditions. Finally, some multiple illumination spots cannot 
properly be focused at target tissue when the surface of the tissue is not orthogonal to the optical path axis or the 
surface has a degree of roughness. Gently pushing the surface with a flat coverslip with liquid immersion made 
the sample surface relatively flat and orthogonal to the optical path axis adequately enough for proper focusing of 
multiple illumination spots. We have developed a multipoint Raman measurement probe with the head covered 
by a flat glass plate (patent pending). Despite these limitations, the present multipoint Raman spectral mapping 
and following analyses will be useful for accurate and rapid detection of thin bundles of peripheral nerve fibers 
during surgery.

Methods
Animals.  All animal experiments were conducted with the approval of and in accordance with guidelines 
from the Committee for Animal Research, Kyoto Prefectural University of Medicine. Adult male Wistar rats (11–
17 weeks, n = 4) with a weight of 310–480 g were analyzed. Animals were purchased from Shimizu Laboratory 
Supplies Co. Ltd. (Kyoto, Japan). After euthanasia of a rat, surgical operation was started; 0.5 ml heparin sodium 
solution (Ajinomoto, Co. Inc.) was injected into the inferior vena cava. Bundles of sciatic nerve, facial nerve, 
saphenous nerve, intercostal nerves, and celiac nerves, leg tendons (i.e. Achilles tendon), and femoral skeletal 
muscle tissues were sampled. The excised tissues were rinsed with physiological saline (0.9% NaCl aqueous solu-
tion), and were kept in physiological saline on ice until measurement.

Test sample.  As a test sample, peripheral nerve and connective tissues located on skeletal muscle tissues 
were used. Nerve tissues were fresh excised intercostal nerve, saphenous nerve, or femoral nerve, which are 
mostly composed of myelinated nerve fibers. The average diameter is 0.5 mm with the standard deviation of 0.18. 
Connective tissues were fresh excised tendons cut into thin structures mimicking thin connective tissues, which 
are hard to discriminate from peripheral nerve during surgery. The average diameter of the slimmed tendons was 
0.98 mm with the standard deviation of 0.24. Skeletal muscle tissues were fresh excised femoral muscle blocks cut 
to around 2 cm × 2 cm. A whole sample was placed on a microscope slide. To avoid drying, tissues were immersed 
in physiological saline and covered with a coverslip (No.1; Matsunami Glass, Inc.). The total number of analyzed 
nerve bundles, thin connective tissues, and skeletal muscle tissue blocks was 160, 120, and 4, respectively.

The type of a given tissue in a test sample where we located known nerve and connective tissue on a skeletal 
muscle tissue was judged by the position and morphology.

Training sample.  Fresh excised bundles of sciatic nerve, saphenous nerve, and facial nerve, which are mostly 
composed of myelinated nerve fibers, leg tendons, and femoral skeletal muscle tissue blocks were placed on a 
microscope slide as a training sample of peripheral nerve, connective, and skeletal muscle tissues, respectively. 
To avoid drying, tissues were immersed in physiological saline and covered with a coverslip (No.1; Matsunami 
Glass, Inc.).

Multipoint Raman spectral measurement.  A single-frequency diode-pumped solid state laser with the 
wavelength of 532 nm and the output of 300 mW (DPSS laser series, LASOS Lasertechnik) was used as Raman 
excitation light source. A multimode optical fiber (Thorlabs) transferred the laser beam to the apparatus body. 
A microlens array (Edmund Optics) generated multiple excitation laser spots at a conjugate plane of the sample 
plane. The multiple laser spots were projected to the tissue surface by a couple of lenses including an achromatic 
doublet lens with NA = 0.34 as the objective lens. The sample irradiation pattern was a 6 × 6 square lattice with 
32 irradiation spots (excluding corners) and the spot separation of 0.7 mm, covering the field of view of 4.1 mm. 
The total laser power of 32 irradiation spots was 27–28 mW as measured with Si photodiode (Thorlabs). Each 
irradiation spot had the diameter of 50 µm. Backward Stokes Raman scattering from a sample was separated from 
the excitation beam by a shortwave pass dichroic mirror (Edmund Optics). The remaining Rayleigh scattering 
component was removed by a longwave pass edge filter (Edmund Optics). Raman scattering was focused by an 
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f = 20 mm imaging lens into 32 fibers with the diameter of 100 µm. One fiber collected Raman scattering gener-
ated at one sample irradiation spot. The fibers at the other side were rearranged with a separation of 10 µm in a 
line parallel to the longer axis of the entrance slit of a spectrograph (Holospec f/1.8, Andor Technology), so that 
the Raman scattering from different fibers was independently imaged on a CCD camera (Newton 920, Andor 
Technology) mounted to the spectrograph. The pixel size of the detector (26 µm x 26 µm) is much smaller than the 
fiber diameter so that Raman scattering from individual spots was not significantly mixed at a pixel of the detec-
tor. The spectrograph was equipped with a transmission grating (HS-HFG-650, Andor Technology) providing the 
spectral resolution of 7 cm−1. Raman spectra of individual Raman measurement points were results of binning 3 
or 4 pixels at the detector in the direction of the longer axis of the slit.

See Fig. S1 for the schematic of the multipoint Raman setup.

Bright-field imaging.  For bright-field imaging, a sample was illuminated from every direction with four 
LEDs surrounding the sample. The scattering light was collected with the same objective lens as used for Raman 
scattering excitation and collection, and guided to a CMOS camera (Thorlabs) installed in the Raman measure-
ment system. The field-of-view of the bright-field image is 5.2 mm.

Spectral preprocessing.  Data preprocessing was performed on MATLAB (Mathworks). The high wav-
enumber region containing high signal-to-noise ratio Raman signals (2563–3204 cm−1) was used. All the 
measured Raman spectra were smoothed by taking moving average of 5 pixels. Baseline in each spectrum was 
corrected with subtraction of fluorescent background, which was numerically derived by 100-times iterative, 
8th-order alternative weighted polynomial fitting with the fitting weight of 0 for 2816–2988 cm−1 and 1 for 2563–
2816 and 2988–3204 cm−1 to the high wavenumber region of each spectrum. The 2780–2988 cm−1 region was 
used for discriminant analysis. Before discriminant analysis, each spectrum was normalized by its euclid norm.

Principal component regression and discriminant analysis.  For discriminating tissue type at each 
Raman measurement point, principal component regression and discriminant analysis30, 43 was utilized. A 
discrimination model was constructed from 3000 training spectra sets, including 1000 spectra acquired from 
excised sciatic, facial, and saphenous nerves, 1000 spectra acquired from excised femoral muscle tissue, and 1000 
spectra acquired from excised leg tendons. The model can discriminate a tissue based on regression coefficient 
CPC = (cPC1, cPC2, …, cPCn), which is calculated from the following equation:

= ⋅ ⋅ ⋅ −C S S S S( ) (1)PC sample PC
T

PC PC
T 1

where Ssample is a Raman spectrum measured from a sample, SPC is a spectra set composed of arbitrary Eigen vec-
tors which are obtained from principal component analysis of the 3000 training spectra set. For the 3000 training 
spectra, SPC = (sPC1, sPC2), where sPCi is the ith Eigen vector, gave the tissue prediction results with the 99.6% accu-
racy through the leave-one-out-cross-validation method and quadratic discrimination algorithm.

Principal component analysis and discriminant analysis were performed on MATLAB. Principal component 
analysis used “pca” function. The discriminant analysis used “fitcdiscr” function for making the discrimination 
model out of the training spectra set and “classify” function for discriminating sample spectra set. Drawing dis-
crimination curves used “fitcdiscr” function.

Tissue-type mapping.  For tissue-type mapping based on measured Raman spectra and following principal 
component regression and discriminant analysis, the morphology of tissues on sample is first highlighted. One 
of the authors (Y. K.) carefully traced the boundary of tissue structures by using computer software. Then, the 
spatial coordinates of the center of individual laser spots were determined from a bright-field image of a sample 
irradiated with multiple excitation laser spots.

After the tissue morphology was highlighted, the tissue discrimination results were overlaid with the 
bright-field and morphology-highlighted images.

Finally, Y. K. carefully counted the numbers of Raman measurement points and nerve-positive prediction 
points on individual tissues. The total number of Raman measurement points on a given peripheral nerve bundle 
varies between 1 and 13, with the average of 5.4 and the standard deviation of 1.7. The total number of Raman 
measurement points on a given connective tissue varies between 3 and 15, with the average of 6.8 and the stand-
ard deviation of 1.9.
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