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Supplementary Notes 
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University (D. Scott). Other COGA collaborators include: L. Bauer (University of Connecticut); J. 
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National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute on Drug 
Abuse (NIDA). 
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Supplementary Note 2: Ethics and sample descriptions  

GWAS results based on some of the included cases and controls have been published previously 

by the International OCD Foundation (IOCDF-GC; Stewart et al., 2013, IOCDF & OCGAS et al., 

2018) and the OCD Collaborative Genetics Association Study (OCGAS; Mattheisen et al., 2015, 

IOCDF & OCGAS et al., 2018). These data were re-analyzed for the current publication using 

newly matched control participants that were genotyped with the same microarrays as the cases, 

making up 2,828 cases and 4,887 controls. GWAS results based on a subset of the cohorts are 

currently available as preprints (	𝑁!"#$# = 14,140	, 𝑁!%&'(%)# = 562,117,		Strom et al., 2021 and 

𝑁!"#$# = 37,015	, 𝑁!%&'(%)# = 948,616, Strom et al., 2024). Of those cohorts, three (EstBB, 

FinnGen, iPSYCH) were updated to include additional OCD cases and controls compared to the 

samples in the preprints. Seven cohorts are new to this study and were not included in any of the 

previously published GWAS (𝑁!"#$# = 6,120	, 𝑁!%&'(%)# = 430,999). Here we describe each 

individual sample that was included in the OCD meta-analysis, in alphabetical order. The header 

of each sample lists study identifier, study principal investigator(s) (PI(s)), country or site name, 

and if there has been a previous publication in connection with the data, also PubMed ID(s) or 
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doi. See Supplementary Table 1 for an overview of sample sizes, number of included SNPs, 

reference panel, GWAS analysis tool, and Lambda1000 estimate for each individual cohort.  

Ethics approvals 

All relevant ethics approvals have been obtained by the respective cohort’s. 23andMe: 

Participants provided informed consent and volunteered to participate in the research online, 

under a protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent (E&I) 

Review Services. As of 2022, E&I Review Services is part of Salus IRB 

(https://www.versiticlinicaltrials.org/salusirb). AGDS: All study protocols were approved by the 

QIMR Berghofer Medical Research Institute Human Research Ethics Committee. The protocol 

for approaching participants through the DHS, enrolling them in the study, and consenting for all 

phases of the study (including invitation to future related studies) and accessing MBS and PBS 

records was approved by the Ethics Department of the Department of Human Services. BioVU: 

The Vanderbilt University Medical Center Institutional Review Board oversees BioVU and 

approved this project (IRB201609). COGA: Institutional review boards at all sites approved the 

study and all participants provided informed consent. EGOS: Ethical approvals were obtained 

from the Institutional Review Board (IRB) at the Icahn School of Medicine at Mount Sinai, New 

York, NY, and the Regional Ethical Review Board in Stockholm. EPOC: The study was in 

accordance with the revised Declaration of Helsinki and approved by the local ethics committees 

of the Charite University Medicine Berlin and the University Hospital Bonn. EstBB: At recruitment, 

participants signed a consent allowing follow-up linkage of their electronic health records (EHRs), 

thereby providing a longitudinal collection of their phenotypic information. FinnGen: The Ethical 

Review Board of the Hospital District of Helsinki and Uusimaa approved the FinnGen study 

protocol Nr. HUS/990/2017. The FinnGen project was approved by Finnish Institute for Health 

and Welfare (THL), approval numbers THL/2031/6.02.00/2017, amendments 

THL/341/6.02.00/2018, THL/2222/6.02.00/2018, and THL/283/6.02.00/2019. HUNT: The HUNT 

study was approved by the Regional Committee for Medical and Health Research Ethics, Norway 

(2015/575). IOCDF/OCGAS: This work was approved by the relevant IRBs at all participating 
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sites, and all participants provided written informed consent. iPSYCH: The study was approved 

by the Regional Scientific Ethics Committee in Denmark and the Danish Data Protection Agency. 

MVP: The U.S. Department of Veterans Affairs (VA) Million Veteran Program (MVP) is collecting 

genetic and electronic health record (EHR) data in the U.S with ethical approval given by the 

Central VA Institutional Review Board (IRB) and site-specific IRBs. All relevant ethical regulations 

for work with human subjects were followed in the conduct of the study, and informed consent 

was obtained from all participants. MoBa: The establishment of MoBa and initial data collection 

was based on a license from the Norwegian Data Protection Agency and approval from The 

Regional Committees for Medical and Health Research Ethics. The MoBa cohort is now based 

on regulations related to the Norwegian Health Registry Act. NORDiC-SWE: This study was 

approved by the Regional Ethics Committee, Stockholm (EPN Stockholm) and the Institutional 

Review Board (IRB) at the University of North Carolina at Chapel Hill and all subjects provided 

informed consent. NORDiC-NOR: The NORDiC-NOR study was approved by the Norwegian 

Regional Committee for Medical and Health Research Ethics (IRB00001872 REK West) under 

project number 2018/52 REKVest (PI: Bjarne Hansen) and project number: 2014/75 REKVest (PI: 

Jan Haavik) and all subjects provided informed consent. OCGAS-all: Ethics approvals for the 

OCGAS study were obtained from the Hopkins Medicine Institutional Review Boards, the Butler 

Institutional Review Board, the UCLA Institutional Review Boards, the Mass General Brigham 

Human Research Committee, the Columbia University Institutional Review Boards, and the 

National Institutes of Health Institutional Review Board (NIH IRB). OCGAS-nestadt: Ethics 

approvals for the OCGAS study were obtained from the Hopkins Medicine Institutional Review 

Boards. OCGAS-ab: The study was approved by REB at Hospital for Sick Children. Ethics 

approvals for the OCGAS study were obtained from the Hopkins Medicine Institutional Review 

Boards. OCGAS-gh: Informed written consent was obtained in all cases by the participants or 

their parents. The study was approved by the ethical commissions of all involved universities in 

accordance with the latest version of the Declaration of Helsinki, including an ethical permission 

granted by the Ethic Committees from Aachen, Wuerzburg, Marburg, Freiburg, and the Cantonal 

Ethic Commission of Zuerich (Ref. Nr. 39/97, 140/3 and EK: KEK-ZHNr. 2010-0340/3). OCD-
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WWF: The study was approved by the ethics committee of the University of Wuerzburg, Germany 

and was conducted according to the ethical principles of the Helsinki Declaration. All patients 

gave written informed consent prior to participation. Psych_Broad: Both studies have been 

approved by the Clinical Research Ethics Committee (CREC) of Hospital Universitari Vall 

d'Hebron. All methods were performed in accordance with the relevant guidelines and regulations 

and written informed consent was obtained from participant parents before inclusion into the 

study. UKBB: Research on the UK Biobank is conducted under a generic Research Tissue Bank 

approval from the UK North West Multi-centre Research Ethics Committee (MREC). This 

research was approved to be conducted under that approval by the governing Research Ethics 

Committee of the UK Biobank. The analyses in this paper were performed under an approved 

extension to project 16577. Yale-Penn: Participants were recruited from eastern U.S sites and 

provided written informed consent as approved by the institutional review board at each site. 

We confirm that all necessary patient/participant consent has been obtained and the appropriate 

institutional forms have been archived, and that any patient/participant/sample identifiers included 

were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the 

research group so cannot be used to identify individuals. 

  

 

23andMe | 23andMe | USA | https://doi.org/10.1101/2024.03.06.24303776 

Samples of European ancestry were drawn from the customer base of 23andMe Inc., a private 

consumer genetics company. The 23andMe cohort has been described in detail elsewhere (Hyde 

et al., 2016). Participants provided informed consent and volunteered to participate in the 

research online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & 

Independent (E&I) Review Services. As of 2022, E&I Review Services is part of Salus IRB 

(https://www.versiticlinicaltrials.org/salusirb). The cohort was selected from participant data 
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available on 1st September 2017 and the analysis was reviewed and approved by a private 

institutional review board (www.eandireview.com). All individuals identified as cases have 

reported being diagnosed with OCD, while controls have reported not having been diagnosed 

with OCD. 30,167 OCD cases and 929,804 controls were included in the final GWAS. Of the 

cases, 10,808 (35.83%) were male and 19,359 (64.17%) were female. Of the controls, 443,336 

(47.68%) were male and 486,468 (52.32%) were female. Of the cases, 7,040 (23.34%) individuals 

were below the age of 30, 11,087 (36.75%) between 30 and 45, 7,056 (23.39%) between 45 and 

60, and 4,984 (16.52%) above the age of 60. Of the controls, 91,287 (9.82%) individuals were 

below the age of 30, 230,696 (24.81%) between 30 and 45, 257,793 (37.64%) between 45 and 

60, and 350,028 (27.73%) above the age of 60. Extraction of DNA and genotyping was performed 

by the National Genetics Institute (NGI), a CLIA licensed clinical laboratory and a subsidiary of 

Laboratory Corporation of America. Individuals were genotyped on four different genotype 

platforms. Two (V1, V2) platforms were variants of the Illumina HumanHap550+ BeadChip, 

including 25,000 custom SNPs, one platform (V3) was the Illumina OmniExpress+ BeadChip, with 

custom SNPs to increase overlap with V2, and one platform (V4) is in current use and a fully 

customized array. Individuals that failed to meet a 98.5% call rate were re-analyzed. Only 

individuals with > 97% European ancestry were included in the analysis. European ancestry was 

determined through an analysis of local ancestry using a support vector machine to classify 

individual haplotypes into one of 31 reference populations. Those classifications were then fed 

into a hidden Markov model (HMM) which accounts for incorrect assignments and switch errors, 

thereby giving probabilities for each reference population per window (100 SNPs). Simulated 

admixed individuals were then used to re-calibrate the HMM probabilities so the assigned 

ancestries were consistent with the simulated individuals. Publicly available datasets (Human 

Genome Diversity Project, HapMap (Altshuler et al., 2010), and 1000 Genomes (The 1000 

Genomes Project Consortium, 2015)) and 23andMe customers with four grandparents from the 

same country served as the reference population. Identity-by-descent (IBD) estimation was used 

to define a maximal set of unrelated individuals for each analysis. Individuals who shared less 

than 700 cM IBD were defined as unrelated (e.g., approximately less related than first cousins). 
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The merged UK10K and 1000 Genomes Phase 3 panel was used for imputation. Finch, an 

internally developed tool that implements the Beagle haplotype graph-based phasing algorithm, 

modified to separate the steps of graph construction and phasing, was used for phasing. 

Imputation was then performed as an estimated allele dosage averaged over a set of possible 

imputed haplotypes for each individual. Genetic association testing was performed using logistic 

regression, assuming an additive model for allelic effects, including age, sex, first five principal 

components (PCs), and the genotype platform as covariates. For imputed data, the imputed 

dosages rather than the best-guess genotypes were used. The association p-value was computed 

using a likelihood ratio test.  

AGDS | Martin, N. | QIMR, Brisbane, Australia 

The Australian Genetics of Depression study (AGDS) was established to recruit a large cohort of 

individuals who have been diagnosed with depression at some point in their lifetime. The purpose 

of establishing this cohort is to investigate genetic and environmental risk factors for depression 

and response to commonly prescribed antidepressants. All cases and controls were diagnosed 

with Major Depressive Disorder. OCD cases were identified based on self-reported clinical 

diagnosis for OCD while OCD controls had no self-reported clinical diagnosis for OCD and 

obtained a score below 10 on the Obsessive-Compulsive Inventory-Revised (OCI-R). A total of 

20,689 participants were recruited through the Australian Department of Human Services and a 

media campaign, 75% of whom were female. Participants were recruited to the Australian 

Genetics of Depression Study (www.geneticsofdepression.org.au) between 2016 and 2019. All 

study protocols were approved by the QIMR Berghofer Medical Research Institute Human 

Research Ethics Committee. The protocol for approaching participants through the DHS, enrolling 

them in the study, and consenting for all phases of the study (including invitation to future related 

studies) and accessing MBS and PBS records was approved by the Ethics Department of the 

Department of Human Services. The average age of participants was 43 years ± 15 years. 

Participants completed an online questionnaire that consisted of a compulsory module that 

assessed self-reported psychiatric history, clinical depression using the Composite Interview 
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Diagnostic Interview Short Form, and experiences of using commonly prescribed 

antidepressants. Further voluntary modules assessed a wide range of traits of relevance to 

psychopathology. Participants who reported they were willing to provide a DNA sample (75%) 

were sent a saliva kit in the mail. In the present study, we included 757 cases and 5,368 controls 

for whom genotype data were available. Samples from the AGDS were genotyped in three 

different genotyping centers using the same array (GSAMD-24v1-0_20011747). Genotype calling 

was performed with GenomeStudio. A common set of high QC markers between the different 

genotyping batches was obtained prior to joint imputation. Marker exclusion criteria (prior to 

imputation) included: unknown or ambiguous map position and strand alignment in a BLAST 

search, missingness > 5%, HWE test 𝑃 < 	1𝑥10*+,, MAF < 1%, GenTrain score < 0.6. The 

Michigan imputation server (Das et al., 2016) was used to impute the genotypes using the 

HRCr1.1 as a reference panel. Individuals were excluded based on a high missingness (missing 

rate > 3%), inconsistent (and unresolvable) sex, or if deemed ancestry outliers from the European 

population (6 standard deviations from the first two genetic PCs. The GWAS was done employing 

a logistic regression using PLINK 1.9 (Purcell et al., 2007) and imputed dosage genotypes while 

correcting for the genotyping center and the first twenty ancestry PCs as covariates. 

BioVU | Davis, L. K. | Nashville, Tennessee, USA  

Vanderbilt University Medical Center (VUMC) is a tertiary care center that provides inpatient and 

outpatient care in Nashville, TN. The VUMC electronic health record (EHR) system was 

established in 1990 and includes data on billing codes from the International Classification of 

Diseases, 9th and 10th editions (ICD-9 and ICD-10), Current Procedural Terminology (CPT) 

codes, laboratory values, reports, and clinical documentation. In 2007, VUMC launched a 

biobank, BioVU, which links a patient’s DNA sample to their EHR. The BioVU Consent form is 

provided to patients in the outpatient clinic environments at VUMC. The form states policies on 

data sharing and privacy, and should a signature be obtained, makes any blood leftover from 

clinical care eligible for BioVU banking. The Vanderbilt University Medical Center Institutional 

Review Board oversees BioVU and approved this project (IRB201609). OCD case status was 
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determined through a combination of ICD codes, medications, and natural language processing 

for EHR notes. Using ICD codes, cases were defined as individuals with any codes for OCD 

(ICD9: 300.3, ICD10: F42, F63.3, F45.22). Additional cases were gathered by first finding 

individuals with “obsessive-compulsive”, “obsessive compulsive”, or “OCD" in clinic notes, 

problem lists, discharge summaries, or clinical communications, where the first instance occurred 

before 55 years of age. Mentions of “OCD” were excluded if the keyword “osteochondritis” or 

“osteocondritis” occurred in the same document, or if certain ICD codes related to pervasive 

developmental disorders, osteochondritis dissecans, and bariatric surgery status (ICD9: 299*, 

732.7, 649.2, 649.20, 649.21, 649.23, 649.24, V45.86, ICD10: F84*, M93.20, O99.840, O99.841, 

O99.842, O99.843, O99.844, O99.845, Z98.84) occurred on the same date as the mention. 

Keyword mentions were excluded if negating terms or terms related to familial relationships 

occurred within 30 characters on either side of the mention. Next, these individuals were required 

to have OCD medication or cognitive behavioral therapy in their EHR. Finally, individuals with 

metabolic disorder codes (ICD9: 277.89, 277.9, ICD10: E88.9, E88.89) were excluded. Controls 

were defined as any individual without OCD codes, metabolic disorder codes, “obsessive-

compulsive”, “obsessive compulsive”, or “OCD" in their clinical notes, and without evidence of 

OCD medication. The initial sample included 1062 cases (median age in years across EHR: 

32.75, 58.6% female) and 40,316 controls (median age in years across EHR: 53.57% female). 

We obtained genotype information on 94,474 BioVU individuals genotyped on the Illumina MEGA 

EX array. Using PLINK v1.95 (Purcell et al., 2007), genotypes were filtered for SNP and individual 

call rates, sex discrepancies, and excessive heterozygosity. We selected individuals of European 

ancestry using principal component analysis (PCA) implemented in FlashPCA (Abraham & 

Inouye, 2014) and confirmed the absence of genotyping batch effects through logistic regression 

with batch as the phenotype. Autosomes were imputed to the HRC panel using Michigan 

Imputation Server (Das et al., 2016) in five batches. After imputation, genotypes were converted 

to hard calls with PLINK using the default threshold settings. SNPs with multiple alleles or 

imputation quality less than R² of 0.3 were excluded. Next, SNPs with minor allele frequency 

(MAF) less than 0.005 or genotyping rates less than 0.98 were excluded. Individuals with call 
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rates less than 0.98 were excluded. We ran a series of PCA to determine BioVU individuals of 

European genetic ancestry. First, we performed PCA using FlashPCA on BioVU combined with 

CEU, YRI, and CHB reference sets from 1000 Genomes Project Phase 3 (The 1000 Genomes 

Project Consortium, 2015). PCs were scaled so that the axes could be interpreted as proportions 

of genetic ancestry. We selected BioVU individuals who were within 40% of the CEU cluster along 

the CEU-CHB axis and within 30% of the CEU cluster on the CEU-YRI axis, generating a once-

PCA filtered European set. To ensure subsequent steps would remove SNPs associated with 

reduced quality rather than cryptic population substructure, we filtered the previously identified 

BioVU European cluster to identify individuals falling within the CEU, TSI, and GIH 1000 genomes 

populations, producing a twice filtered European set. Using the twice-filtered European set we 

conducted a series of SNP checks. First, we filtered individuals with IBS greater than 0.2 and 

calculated PCs to use as covariates. Next, we checked for imputation batch effects by conducting 

pairwise logistic regression of the five imputation batches using sex and top 10 PCs as covariates. 

SNPs with p-values less than 0.001 in the additive model were flagged. We then compared MAF 

between BioVU and the CEU reference population. Any SNPs with a MAF difference greater than 

0.1 were flagged. SNPs with a Hardy-Weinberg Equilibrium (HWE) p-value less than 1𝑥10*-+ 

were flagged. Finally, the flagged SNPs from the batch effect, MAF difference, and HWE were 

excluded from the once-PCA filtered BioVU European set, resulting in 9,386,383 SNPs for 

analysis. The final dataset consisted of 1041 cases and 38,613 controls. To account for the large 

case-control imbalance, we used SAIGE (Zhou et al., 2018) for the GWAS. Covariates included 

were sex, median age across medical records, and top 10 PCs.  

Children’s Hospital of Philadelphia (CHOP) | Hakonarson, H; Gur, R. E. | USA | 

25840117, 2588255 

Data were collected in the Philadelphia Neurodevelopmental Cohort (PNC) from the Children’s 

Hospital of Philadelphia (CHOP) (Satterthwaite et al., 2016). 9428 participants aged 8-21 years 

completed a computerized structured screener based on the Kiddie-Schedule for Affective 
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Disorders and Schizophrenia (K-SADS) called GO-ASSESS (Calkins et al., 2014, 2015), which 

asked about the lifetime presence of any obsessive or compulsive symptoms as well as the 

severity, level of impairment and age of onset of symptoms. Samples were genotyped using 

Illumina Human610-Quadv1_B BeadChip array. As previously described (Burton et al., 2021), 

QC filtering was done using standard methods including removing SNPs with MAF < 0.01, and 

imputation quality < 0.6. GWAS was conducted using R (v3.5.1) with a logistic regression and 

using age, sex, and 3 PC scores as covariates. 

 

COGA | Porjesz, B.; Foroud, T.; Agrawal, A. | USA | 31270906, 31090166 
 
Participants of the Collaborative Study on the Genetics of Alcoholism (COGA) were recruited from 

7 sites across the U.S. Institutional review boards at all sites approved the study and all 

participants provided informed consent. OCD diagnosis was determined using DSM-III-R or DSM-

IV. COGA European ancestry (EA) data were genotyped using three arrays: Illumina Human1M 

array, Illumina Human OmniExpress V1 array, Smokescreen genotyping array (two different 

batches) (Lai et al., 2019, 2020). To confirm pedigree structure and estimate PCs of population 

stratification, we used a set of independent (defined as linkage disequilibrium (LD) r2 < 0.5) and 

high-quality variants (MAF > 10%, HWE p-value > 0.001, missing rate < 2%, 47,000 variants) 

genotyped on all arrays. Pairwise identity by descent was computed using PLINK (Chang et al., 

2015; Purcell et al., 2007) to confirm family relationships and family structures were updated if 

necessary. PCs were calculated using Eigenstrat (Price et al., 2006). Based on the first two PCs, 
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each individual was assigned an ancestry (i.e., African ancestry, European ancestry, or other) if 

they clustered with the corresponding 1000 Genomes project populations. Before imputation, 

Mendelian errors were detected using Pedcheck (O’Connell & Weeks, 1998) and inconsistencies 

were set to missing. Palindromic variants were excluded to avoid strand ambiguities. Then 

variants with missing rates > 5%, MAF < 3%, and HWE P values < 0.0001 were excluded. 

SHAPEIT2 (Delaneau et al., 2013) was used to phase haplotypes of each sample then Minimac 

3.32 (Das et al., 2016)  was used for imputation. 1000 genomes project samples were used as 

the reference panel (Phase 3, version 5; (The 1000 Genomes Project Consortium, 2015)). 

Samples on each array were imputed separately due to the different array content. After 

imputation, variants with R² < 0.60 were excluded. Genotype probabilities were converted to 

genotypes if they were > 0.90, then Mendelian error checking was performed again. All genotype 

and imputed variants with missing rates less than 20%, MAF ≥ 1%, and HWE P values > 0.000001 

were kept in analyses. Unrelated samples selected from COGA EA datasets were included in 

analysis (131 cases and 1358 controls) using PLINK. Sex, age, the first 10 PCs, and array 

indicator were included as covariates.  

  

EGOS | Grice, D. E. | Sweden | 31907560  

The EGOS source population consists of individuals born in Sweden between January 1954 and 

December 1998 that presented at least two diagnoses of OCD or chronic tic disorders (CTD) at 
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different time points in the Swedish National Patient Register (NPR) and were followed between 

January 1997 and December 2012 (N = 20,374). The International Classification of Disease (ICD) 

was used for the identification of OCD cases (F49 ICD version 10). Detailed information for each 

individual was obtained through linkage to the Swedish national registers, e.g., family relatedness, 

identification of additional psychiatric diagnoses, medical diagnoses, birth-related variables, and 

relevant demographic and social data. To create an epidemiologically valid subset of the source 

cohort that also includes biospecimens and additional phenotyping, individuals were contacted 

from within the source population. Study participants could elect whether to donate blood or 

saliva. Individuals are aged 16-64 years. All samples were genotyped using the Global Screening 

Array (GSA). Further description of the EGOS cohort has been represented by Mahjani et al. 

(Mahjani et al., 2020) The dataset that was used in this meta-analysis consists of 1026 OCD 

cases from EGOS and 1208 controls from LifeGene. EGOS was supported by a grant from the 

Beatrice and Samuel A. Seaver Foundation to DEG. Ethical approvals were obtained from the 

Institutional Review Board (IRB) at the Icahn School of Medicine at Mount Sinai, New York, NY, 

and the Regional Ethical Review Board in Stockholm.  

EPOC | Wagner, M.; Kathmann, N. | Germany | 30744714, 30008679, 29890378, 

29721727, 29159055, 28541065, 28481032, 28160276  

The EPOC (Endophenotypes of OCD) sample comprises (epi)genetic and deep phenotype data 

of OCD patients, unaffected first-degree relatives of OCD patients and healthy controls that were 

collected at two sites in Germany (Berlin and Bonn) between 2014 and 2017. In the present 

analysis, data from 195 patients with OCD (55.9 % female, 44.1 % male) and 204 controls (63.2 

% female, 36.8 % male) were included. Mean age was 33.37 (SD = 10.76; range: 18–64) for 

patients and 34.72 (SD = 12.64; range: 18–64) for controls. Lifetime comorbidity rates of patients 

were 60.0% for depression; 11.3% for panic disorder or agoraphobia; 7.7% for tic disorder; 7.7% 

for specific phobia; 6.7% for social phobia; 4.6% for generalized anxiety disorder; 4.1% for PTSD; 

4.1% for anorexia; 3.1% for hypochondria; and 2.6% for hoarding disorder. OCD patients were 
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recruited via the outpatient clinics at the Department of Psychology of Humboldt University, Berlin 

and at the Department of Psychiatry and Psychotherapy of the University Hospital Bonn. Healthy 

volunteers were recruited from the general population via public advertisements in the same 

cities. All participants were examined by trained clinical psychologists using the Structured Clinical 

Interview for DSM-IV (SCIDI) to assess OCD diagnosis and potential comorbidities. To establish 

cross-site reliability of clinical ratings, all instructions were standardized, and raters completed 

assessments of four training videos. Patients were only included if they: (a) met diagnostic criteria 

of OCD based on the SCID-I interview; (b) were free of past or present psychotic, bipolar or 

substance-related disorders; (c) did not take neuroleptic medication for the previous four weeks; 

and (d) did not use benzodiazepines in the prior two weeks. Healthy controls were excluded if 

they: (a) took any psychoactive medication in the previous three months; (b) had a current Axis I 

disorder; (c) had a lifetime diagnosis of OCD or tic disorder; or (d) had a family history of OCD. 

Written informed consent was obtained and participants were compensated for their time. The 

study was in accordance with the revised Declaration of Helsinki and approved by the local ethics 

committees of the Charité University Medicine Berlin and the University Hospital Bonn. 

Genotyping of cases and controls was performed on the Illumina Global Screen Array (GSA) at 

the Life Brain Center, Bonn. Genotype quality control was done using Plink-1.9 (Purcell et al., 

2007), and R (version 3.5.1). We checked the data for sex inconsistencies and grossly failing 

markers (call rate < 0.5). Individuals with a call rate of < 0.95 were removed. The heterozygosity 

rate for each subject was calculated; outliers (±3 SD from the mean heterozygosity rate) were 

identified and removed. On marker level, SNPs were removed if at least one of the following 

conditions was true: significant difference of missing rate between cases and controls, call rate < 

0.95; deviation of HWE (𝑃 < 1𝑥10*+,); and MAF < 0.05 (computed separately in cases and 

controls). Furthermore, all A/T or C/G SNPs were removed. To check for population stratification, 

PCA was performed, and the first two PCs were checked for outliers. Seven individuals, whose 

non-European ethnicity was additionally validated based on their demographic data, were 

excluded. The genotyped data were imputed on the Michigan Imputation Server (Das et al., 2016) 

using the 1000 Genomes Phase 3 (version 5) reference panel (The 1000 Genomes Project 
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Consortium, 2015). GWAS was conducted using SNPTEST (version 2.5.2) (Marchini et al., 2007) 

with the first four PCs as covariates.  

 

EstBB | Metspalu, A. | Estonia  

The Estonian Biobank (EstBB) is a population-based cohort with a rich variety of phenotypic and 

health-related information collected for each participant (Leitsalu et al., 2015). At recruitment, 

participants signed a consent allowing follow-up linkage of their electronic health records (EHRs), 

thereby providing a longitudinal collection of their phenotypic information. The EstBB database 

includes health records from the national Health Insurance Fund Treatment Bills (from 2004 

onwards), Tartu University Hospital (from 2008), and North Estonia Medical Center (from 2005), 

and data from different registries (causes of death, cancer, etc.). For all the participants EstBB 

provides information on the diagnoses in ICD-10 coding and information on drug dispensing data, 

including drug ATC codes, prescription status and purchase date (if available). 

 

Genotyping of DNA samples from the Estonian Biobank was done at the Core Genotyping Lab of 

the Institute of Genomics, University of Tartu using the Illumina Global Screening Arrays 

(GSAv1.0, GSAv2.0, and GSAv2.0_EST). Samples were genotyped and then PLINK format files 

were created using Illumina GenomeStudio v2.0.4. During the quality control all individuals with 

call-rate < 95% or mismatching sex that was defined based on the heterozygosity of X 

chromosome and sex in the phenotype data, were excluded from the analysis. Variants were 

filtered by call-rate < 95% and HWE p-value < 1𝑥10*+. (autosomal variants only). Variant 

positions were updated to Genome Reference Consortium Human Build 37 and all variants were 

changed to be from TOP strand using reference information provided by Dr. Will Rayner from the 

University of Oxford (https://www.well.ox.ac.uk/~wrayner/strand/). After QC the dataset contained 

202,910 samples for imputation. Before imputation variants with MAF < 1% and Indels were 

removed. Prephasing was done using the Eagle v2.3 software (Loh, Danecek, et al., 2016; Loh, 

Palamara, et al., 2016). The number of conditioning haplotypes Eagle2 uses when phasing each 
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sample was set to: –Kpbwt=20000. Imputation was done using Beagle v.18May20.d20 (B. L. 

Browning et al., 2018; S. R. Browning & Browning, 2007) with effective population size 

𝑁/00$!'12$ = 20,000. As a reference, Estonian population specific imputation reference of 2297 

WGS samples was used (Mitt et al., 2017). Further, EstBB samples were combined with the 1000 

genomes phase 3 dataset for ancestry analysis. Genetic principal components were calculated 

using a subset of quality controlled and pruned genotyped SNPs. This was further used to identify 

and remove samples that deviated from the main cluster.   

 

For the genome-wide study of OCD, EstBB cases were defined as participants with F42* ICD10 

diagnosis codes in their EHRs. We conducted a GWAS on individuals of European ancestry, 

including 772 cases and 196,079 controls. The analysis was performed with the REGENIE 

software (2.2.4) (Mbatchou et al., 2021) including related individuals and adjusting for the first 10 

PCs of the genotype matrix, as well as for birth year, birth year squared and sex. 

FinnGen | Kaprio, J. A. | Finland  

Finnish samples are population-based biobank samples collected between August 2017 and 

August 2019 (collection further ongoing), including legacy samples collected since the 1980s. The 

Ethical Review Board of the Hospital District of Helsinki and Uusimaa approved the FinnGen study 

protocol Nr. HUS/990/2017. The FinnGen project was approved by Finnish Institute for Health 

and Welfare (THL), approval numbers THL/2031/6.02.00/2017, amendments 

THL/341/6.02.00/2018, THL/2222/6.02.00/2018, and THL/283/6.02.00/2019. The here included 

data has not been published before but a general description of the FinnGen study can be found 

elsewhere (Mars et al., 2020). Cases were recruited through hospital records (inpatient and 

outpatients) from 1970 onwards, based on clinical diagnoses used in patient care, supplemented 

by cause of death diagnoses (if clinical diagnosis was underlying and/or contributing cause). Case 

definitions were based on a diagnosis of ICD-10 F42 and ICD-8 3003, there were no case 

exclusion criteria. The mean age of cases was 45.36 (𝑆𝐷 = 15.44) years with a minimum age of 
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16.5 and a maximum age of 91.4, including 330 males and 460 females. Controls were defined 

as all other participants in FinnGen with GWAS data. The mean age of controls was 60.02 (𝑆𝐷 =

17.28) years with a minimum age of 0 and a maximum age of 105.73, including 71,252 males and 

90,138 females. Genotyping of cases and controls was performed in multiple batches on multiple 

arrays in multiple centers. For genotype quality control the following filters were applied to the 

data: exclusion of chromosome X, exclusion of variants with INFO score < 0.95, with missingness 

> 0.01, or with MAF < 0.05. To check for population stratification, PCA was performed, and a 

Bayesian algorithm was used to spot outliers. Individuals were excluded if there was a mismatch 

between imputed sex and sex in registry data. For calculating the genetic relationship matrix, we 

used the genotype dataset where genotypes with GP < 0.95 have been set missing. Only variants 

imputed with an INFO score > 0.95 in all batches were used. Variants with > 3% missing 

genotypes were excluded as well as variants with MAF < 1%. The remaining variants were LD 

pruned with a 1Mb window and r² threshold of 0.1. Imputation was performed using Eagle 

2.4/Beagle 4.1 (B. L. Browning, 2017; Loh, Danecek, et al., 2016) using Finnish WGS (depth up 

to 30x) samples as reference with a total amount of 16962023 variants. GWAS was performed 

using SAIGE (v0.35.8.8) (Zhou et al., 2018) including age, sex, the first 10 PCs, genotyping batch 

and kinship matrix as covariates.  

HUNT | Zwart, J.-A. | Norway | 22879362 

The Trøndelag Health Study (HUNT) consists of three different population-based health surveys 

conducted in the county of Nord-Trøndelag, Norway over approximately 20 years (HUNT1: 1984-

1986, HUNT2: 1995-1997 and HUNT3: 2006-2008). The HUNT study was approved by the 

Regional Committee for Medical and Health Research Ethics, Norway (2015/575). For each 

survey, the entire adult population (≥ 20 years) was invited to participate by completing 

questionnaires, attending clinical examinations and interviews. Participation rates in HUNT1, 
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HUNT2 and HUNT3 were 89.4% (N = 77,212), 69.5% (N = 65 237) and 54.1% (N = 50 807), 

respectively. Taken together, the study included more than 120,000 different individuals from 

NordTrøndelag County. Biological samples including DNA have been collected for approximately 

70000 participants. The entire HUNT Study has been described in more detail elsewhere 

(Krokstad et al., 2013). For the present study, we included participants from HUNT2 and HUNT3. 

Cases and controls were defined by linkage to hospital diagnostic registries from the time period 

1987-2017. Cases were defined as those with a hospital diagnosis of obsessive-compulsive 

disorder (ICD10 code F42). Controls were defined as those without ICD10 code F42 and without 

ICD-9 code 300 (“anxiety, dissociative and somatoform disorders”). The study was approved by 

the Regional Committee for Medical and Health Research Ethics (ref. 2015/575). In total, DNA 

from 71,860 HUNT samples was genotyped at the Genomics Core Facility at the Norwegian 

University of Science and Technology using one of three different Illumina HumanCoreExome 

arrays (HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM HUNT Biobank v1.0). 

Samples that failed to reach a 99% call rate, had contamination >2.5% as estimated with BAF 

Regress (Jun et al., 2012), large chromosomal copy number variants, lower call rate of a technical 

duplicate pair and twins, gonosomal constellations other than XX and XY, or whose inferred sex 

contradicted the reported gender, were excluded. Samples that passed quality control were 

analyzed in a second round of genotype calling following the Genome Studio quality control 
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protocol described elsewhere (Guo et al., 2014). Genomic position, strand orientation and the 

reference allele of genotyped variants were determined by aligning their probe sequences against 

the human genome (Genome Reference Consortium Human genome build 37 and revised 

Cambridge Reference Sequence of the human mitochondrial DNA; http://genome.ucsc.edu) 

using BLAT (Dunham et al., 2012). PLINK v1.90 (Purcell et al., 2007) was then used to exclude 

variants if their probe sequences could not be perfectly mapped, cluster separation was < 0.3, 

Gentrain score < 0.15, showed deviations from HWE in unrelated samples of European ancestry 

with p-value < 0.0001), had a call rate < 99%, or another assay with higher call rate genotyped 

the same variant. Ancestry of all samples was inferred by projecting all genotyped samples into 

the space of the PCs of the Human Genome Diversity Project (HGDP) reference panel (938 

unrelated individuals; downloaded from http://csg.sph.umich.edu/chaolong/LASER/) (Li et al., 

2008; Wang et al., 2014) using PLINK. Recent European ancestry was defined as samples that 

fell into an ellipsoid spanning exclusively European populations of the HGDP panel. The different 

arrays were harmonized by reducing to a set of overlapping variants and excluding variants that 

showed frequency differences > 15% between data sets, or that were monomorphic in one and 

had MAF > 1% in another data set. The resulting genotype data were phased using Eagle2 v2.3 

(Loh, Danecek, et al., 2016). Imputation was performed on the 69,716 samples of recent 

European ancestry using Minimac3 (v2.0.1, http://genome.sph.umich.edu/wiki/Minimac3, Das et 

al., 2016) with default settings (2.5 Mb reference based chunking with 500kb windows) and a 

customized Haplotype Reference consortium release 1.1 (HRC v1.1) for autosomal variants and 

HRC v1.1 for chromosome X variants (McCarthy et al., 2016). The customized reference panel 

represented the merged panel of two reciprocally imputed reference panels: (a) 2201 low-
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coverage whole genome sequences samples from the HUNT study and (b) HRC v1.1 with 1023 

HUNT WGS samples removed before merging. We excluded imputed variants with Rsq < 0.3 or 

minor allele count < 1, resulting in 24.2 million well-imputed variants. After restricting to those with 

available phenotype information 66,476 individuals (284 cases and 66,192 controls) were 

included in the analysis. Association analyses were conducted using SAIGE (Zhou et al., 2018), 

a generalized mixed effects model approach, to account for cryptic population structure and 

relatedness when modeling the association between genotype probabilities (dosages) and OCD. 

Models were adjusted for sex, birth year, genotyping batch and four PCs. PCs were computed 

using PLINK. 

IOCDF-GC and 610k_trio | Multiple | Multiple | 22889921, 28761083  

The results of the International OCD Foundation-Genetics Consortium (IOCDF-GC) study was 

previously published (Arnold et al., 2018; Stewart et al., 2013). The IOCDF-GC case-control 

cohort (IOCDF-GC) consists of 1519 European ancestry cases and 3541 matching controls from 

IOCDF-GC and three cohorts previously genotyped, including the Alzheimer’s Disease Genetics 

Initiative (Lee et al., 2008), the Center for Applied Genomics (CAG) at Children’s Hospital of 

Philadelphia (CHOP) (Gur et al., 2012), and the Breast and Prostate Cancer Cohort Consortium 

(BPC3; (Schumacher et al., 2011)) The IOCDF-GC trio sample (610k_trio) consists of 323 

European ancestry complete trios. All cases and trios were recruited predominantly from OCD 

specialty clinics, and controls were recruited from Bonn, Germany and from Cape Town, South 

Africa. This work was approved by the relevant IRBs at all participating sites, and all participants 

provided written informed consent. For study inclusion, all cases and trio probands were required 

to have a DSM-IV diagnosis of OCD. The controls from Bonn had an absent lifetime history of all 

axis I disorders and the South African controls were diagnostically unscreened. The sample 

description of the three cohorts refer to the primary article. All samples were genotyped on Illumina 

Human610-Quadv1_B SNP array (Illumina, San Diego, CA, USA). Standard quality control (QC) 

protocol was conducted with PLINK (Purcell et al., 2007). Samples were removed for call rates < 

98%, sex discrepancy and ambiguous genomic sex, related samples with pihat > 0.2. SNP QC 
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included removing monomorphic SNPs, CNV-targeted SNP probes, SNPs with genotyping rate < 

98%, SNPs with MAF < 0.01, strand-ambiguous SNPs with significant allele frequency differences 

or aberrant LD correlations with adjacent SNPs based on the entire HapMap2 reference panel, 

SNPs with 𝑃 < 	1𝑥10*+, in HWE test among controls or 𝑃 < 1𝑥10*-+ among cases, SNPs with 

differential missing rate between cases and controls (> 0.02), and SNPs with batch effect (𝑃 <

1𝑥10*+3) between different control cohorts. Multidimensional scaling (MDS) analyses were 

performed in PLINK2 (Chang et al., 2015) and samples were removed when they were significant 

outliers in the first five MDS dimensions or when there were no matching cases or controls on 

these MDS dimensions. The genotyped data were phased by SHAPEIT2 (Delaneau et al., 2013) 

and imputed by Minimac3 (Das et al., 2016) using the HRC (McCarthy et al., 2016) release 1.1 

as the reference panel. GWAS was performed on SNPs with INFO score > 0.8 and MAF > 0.01, 

using a logistic regression model in PLINK2 (Chang et al., 2015) with the first five and the 7th 

MDS components as covariates. Same QC was conducted on the 323 trios, with an additional 

filter of removing SNPs with Mendelian errors. In each trio, the transmitted alleles and 

untransmitted alleles were converted into one case and one pseudo-control. Phasing and 

imputation were conducted on the cases and pseudo-controls in the same way as the case-control 

cohort. GWAS was performed without covariates.  

iPSYCH | Borglum, A.D.; Mors, O.; Mattheisen, M. | Denmark 

In the scope of the Danish OCD and Tourette Study (DOTS) within The Lundbeck Foundation 

Initiative for Integrative Psychiatric Research (iPSYCH), Danish nation-wide population-based 

case-cohort samples were collected and genotyped. The study was approved by the Regional 

Scientific Ethics Committee in Denmark and the Danish Data Protection Agency. All analyses of 

the samples were performed on the secured national GenomeDK high performance computing 

cluster in Denmark (https://genome.au.dk). Samples stem from the newly updated baseline cohort 

iPSYCH2015 including singletons born between 1981 and 2008 who were born to a known 

mother and resided in Denmark on their first birthday. Genetic information was obtained by the 
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Statens Serum Institut (SSI) at the Danish Neonatal Screening Biobank (DNSB) from heel prick 

blood samples that had been collected from all newborn babies in Denmark. The genetic 

information was linked with the Danish Civil Registration System and thereby coupled with the 

Danish Psychiatric Central Research Register which collects patient data of individuals treated in 

psychiatric hospitals (from 1969 onwards) or in outpatient psychiatric clinics (from 1995 onwards). 

See (Bybjerg-Grauholm et al., 2020; C. B. Pedersen et al., 2018) for a detailed description of the 

overall cohort, array genotyping and quality control. Cases included in the present study were not 

primarily ascertained for OCD; OCD cases were drawn from cases that also presented a 

diagnosis of one of the core disorders iPSYCH primarily collected for and from randomly 

ascertained population “controls” with a diagnosis of OCD. OCD cases were diagnosed by a 

healthcare professional and met ICD10 (F42) criteria, controls were randomly from the controls 

and excluded individuals with an F42 diagnosis. Samples for iPSYCH2012 were genotyped on 

the PsychChip v 1.0 array (Illumina, San Diego, CA, USA), while samples for iPSYCH2015i were 

genotyped on the Illumina Global Screening (GSA) v2 Array, both at the Broad Institute of MIT 

and Harvard (Cambridge, MA, USA). Genotype calling of markers with MAF > 0.01 was performed 

by merging call sets from GenCal (Illumina: Illumina GenCall Data Analysis Software) and 

Birdseed (Korn et al., 2008), and less frequent variants were called with zCall (Goldstein et al., 

2012). Genotyping and data analysis was performed in 23 waves. Genotype data were processed 

using the Rapid Imputation and COmputational PIpeLIne for Genome-Wide Association Studies 

(RICOPILI; (Lam et al., 2020) to perform stringent QC, imputation, PC analysis, and primary 

association analysis. SHAPEIT (Delaneau et al., 2011) was used for phasing, imputation was 

conducted with IMPUTE2 (Howie et al., 2009), using the HRC as a reference panel (McCarthy et 

al., 2016). We removed samples with a call rate below 95%, with a sex mismatch, between the 

sex obtained from genotype data and from the register data, as well as related individuals. PC 

analysis was used to exclude ancestral outliers of non-European descent, excluding all individuals 

exceeding eight standard deviations from the mean on the first three PCs. The GWAS was 

performed using RICOPILI and included 10 PCs as covariates. The final dataset included 4509 
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OCD cases and 38,392 controls, 7,544,427 SNPs, had a Lambda of 1.074 and a Lambda1000 of 

1.009. 

Michigan/Toronto OCD Imaging Genomics Study | Noam Soreni; Gregory L. 

Hanna; Kate D. Fitzgerald; David Rosenberg; Paul D. Arnold | USA and Canada  

Individuals from the Michigan/Toronto OCD Imaging Genomics Study (Michigan/Toronto IGS) 

were recruited from four different academic child psychiatry sites: The Hospital for Sick Children, 

McMaster University, University of Michigan, and Wayne State University (Gazzellone et al., 

2016). Cases were defined by a clinical investigator according to DSM-IV criteria. Samples were 

genotyped using three different arrays: HumanCoreExome, PsychArray and Omni2.5. Each 

genotyping array was processed separately; then imputed data from all arrays were combined. 

As previously described (Burton et al., 2021), QC filtering was done using standard methods 

including removing SNPs with MAF < 0.01, and imputation quality < 0.6. The GWAS was 

conducted using R (v3.5.1) with a logistic regression and using age, sex, and 3 PCs as covariates. 

Million Veteran Program | Stein, M.B.; Gelernter, J. | USA | 26441289 

The U.S. Department of Veterans Affairs (VA) Million Veteran Program (MVP) is collecting genetic 

and electronic health record (EHR) data in the U.S with ethical approval given by the Central VA 

Institutional Review Board (IRB) and site-specific IRBs (Gaziano et al., 2016; Harrington et al., 

2019). All relevant ethical regulations for work with human subjects were followed in the conduct 

of the study, and informed consent was obtained from all participants. We used data release 

version 4; briefly, genotyping was performed with Affymetrix Axiom Biobank Array and quality 

control (Hunter-Zinck et al., 2020), phasing chromosomes with EAGLE2 (Loh, Danecek, et al., 

2016) and imputation with Minimac3 (Das et al., 2016), using the 1000 Genomes Project 

reference panel, phase 3 (The 1000 Genomes Project Consortium, 2015). We selected European 

(EUR) ancestry data which were defined using PCA (Gaziano et al., 2016). For QC filtering, we 

set up imputation quality scores > 0.6, HWE filtering > 5𝑥10*+3, MAF > 0.001, missing call rates 
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for variants < 0.1, and missing call rates for samples < 0.1. Data were aligned to the GRCh37 

reference genome. Cases were defined having at least one International Classification of Disease 

(ICD) outpatient code for OCD (ICD-9: 300.3; ICD-10: F42.2, F42.3, F42.8, F42.9) by any 

provider, excluding individuals suffering from schizophrenia. To optimize the number of cases to 

keep when removing individuals with kinship, which was calculated by KING (Manichaikul et al., 

2010) for a minimum threshold of 0.0884 corresponding to a second-degree relationship, we 

implemented the following algorithm where cases have priority compared to controls: between a 

case and a control, we remove the individual as control; if there is relatedness between two cases, 

we remove the one that has the highest number of relationships with other individuals; we do the 

same between two controls. In conclusion, we obtained 5129 cases and 422,860 controls. GWAS 

was performed using PLINK 2.0 (Chang et al., 2015) setting age, sex, and the first ten PCs scores 

as covariates.  

MoBa | Ask, H. | Norway | 27063603  

The Norwegian mother, father and child cohort study (MoBa) is a population-based pregnancy 

cohort study conducted by the Norwegian Institute of Public Health. The establishment of MoBa 

and initial data collection was based on a license from the Norwegian Data Protection Agency 

and approval from The Regional Committees for Medical and Health Research Ethics. The MoBa 

cohort is now based on regulations related to the Norwegian Health Registry Act. Participants 

were recruited from all over Norway between 1999 and 2008. The women consented to 

participation in 41% of the pregnancies. The cohort now includes 114,500 children, 95,200 

mothers and 75,200 fathers. Blood samples were obtained from the mothers and fathers at 17–

18 weeks of gestation and from mothers and children (umbilical cord) at birth. For the current 

study we used genotype data from 17,000 randomly selected trios, genotyped in three batches 

on three different arrays (harvest12: Illumina HumanCoreExome12v1.1, harvest24: Illumina 

HumanCoreExome24v1.0, rotterdam1: Illumina Global Screening Array MD v.1.0.). harvest12 

and harvest24 were genotyped at the Genomics core facility in Trondheim, Norway while the 

rotterdam1 samples were genotyped at ERASMUS MC, Rotterdam, Netherlands. PLINK version 
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1.90 beta 3.365 (Purcell et al., 2007) was used to conduct quality control, details of QC have been 

previously described by Helgeland et al. (Helgeland et al., 2019). Individuals were excluded if they 

had a genotyping call rate below 95% or autosomal heterozygosity greater than four standard 

deviations from the sample mean. SNPs were excluded if they were ambiguous (A/T and C/G), 

had a genotyping call rate below 98%, MAF of less than 1%, or HWE P-value less than 1𝑥10*+,. 

Population stratification was assessed using the HapMap phase 3 release 3 as a reference, by 

PCA using EIGENSTRAT (Price et al., 2006) version 6.1.4. Visual inspection identified a 

homogenous population of European ethnicity and individuals of non-European ethnicity were 

removed. Phasing was conducted using Shapeit (Delaneau et al., 2013) release 837 and the 

duoHMM approach was used to account for the pedigree structure. Imputation was conducted 

using the Haplotype reference consortium (HRC) release 1-1 as the genetic reference panel. The 

Sanger Imputation Server was used to perform the imputation with the Positional Burrows 

Wheeler Transform (PBWT). The phasing and imputation were conducted separately for each 

genotyping batch. A core homogeneous sample of European ethnicity across all batches and 

arrays were available for use in analysis (totals prior to analysis-specific exclusions for 

relatedness: 𝑁4%'5$(# = 14,804; 𝑁6"'5$(# = 15,198). OCD diagnosis was ascertained through 

linkage to the Norwegian Patient Registry (ICD-10 codes from specialist health care registered 

from 2008-2018). Case inclusion criteria were ICD-10 code F42 diagnosed at least once. Control 

inclusion criteria were no F-diagnosis. Control individuals were excluded if they were related to 

any of the cases (pihat > 0.2). Sex ratio in the cases was 40:60 (male:female) and in the controls 

50:50. GWA analysis was based on 104 cases and 2193 controls. GWAS was performed using 

SAIGE (Zhou et al., 2018), including the first 10 PCs and genotyping batch as covariates. 

NORDiC-SWE | Crowley, J; Mataix-Cols, D.; Rück, C. | Sweden | 31424634  

A paper describing the rationale, design, and methods of the NORDiC study has been published 

previously (Mataix-Cols et al., 2020). NORDiC-SWE is the Swedish case-control arm of the study, 

and all samples were collected in Sweden between 2015 and 2019. This study was approved by 

the Regional Ethics Committee, Stockholm (EPN Stockholm) and the Institutional Review Board 
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(IRB) at the University of North Carolina at Chapel Hill and all subjects provided informed consent. 

OCD cases have a primary ICD-10 and/or DSM-5 diagnosis of OCD from a multidisciplinary 

specialist OCD team (established with a semi-structured instrument such as the MINI or the 

SCID). All patients were included in the study regardless of psychiatric comorbidity, as long as 

they fulfilled strict diagnostic criteria for OCD. Patients were excluded in cases of diagnostic 

uncertainty, such as OCD secondary to a neurological disorder or CNS insult, or where the 

differential diagnosis between OCD and an alternative condition was unclear. Our cases had a 

mean age at symptom debut of 12.1 years and 59% were female. Approximately 58% of patients 

had a documented psychiatric comorbidity. Controls were unrelated to any OCD case to the third 

degree and unaffected with OCD. Controls were excluded if they had a lifetime history of anorexia 

nervosa (controls were inherited from an anorexia GWAS). The controls included 95% females. 

The NORDiC-SWE cohort consists of 971 OCD cases and 2735 controls (LIFEGENE control 

batch 1: N = 1026 and LIFEGENE control batch 2: N = 1389). Subjects provided either blood or 

saliva for DNA extraction. All samples were genotyped on the Illumina Global Screening Array 

(GSA) at LIFE&BRAIN in Bonn, Germany. Samples were filtered for duplicates (𝑝𝑖5"' ≥ 0.95) and 

cryptic relatedness (𝑝𝑖5"' ≥ 0.2). We selected individuals of European ancestry using PCA 

implemented in PEDDY v0.4.3 (B. S. Pedersen & Quinlan, 2017). We defined variants as QC-

failing if they met one of the following criteria: 1) maximum genotype missingness in a cohort > 

0.02; 2) allele frequency < 0.001 in at least one cohort; 3) max – min allele frequency > 0.1 across 

all five cohorts; 4) max – min allele frequency > 0.03 across all three control cohorts; 5) genome-

wide significant in a control vs. control synthetic GWAS. A total of 154,791 variants that met at 

least one of these criteria were excluded. We used the RICOPILI v2018_Dec_7.001 (Lam et al., 

2020) pipeline to run an automated round of pre-imputation QC. The pre-imputation QC step 
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involved a series of hard filters on variant and sample level data, including removing variants with 

pre-sample pruning call rate < 0.95, samples with call rate < 0.98, FHET outside of ± 0.20, 

samples with discrepancies between reported and derived sex, and post sample-pruning variants 

that meet any of the following : 1) call rate < 0.98, 2) missing difference > 0.02, 3) invariant 

positions, 4) MAF > 0.01, 5) HWE 𝑝 < 1𝑥10*+, in controls, and 6) HWE 𝑝 < 1𝑥10*-+ in cases. 

The final dataset consisted of 647,335 variant calls across a total of 1997 cases and 3943 

controls. RICOPILI’s impute_dirsub module was used to conduct imputation using the Haplotype 

Reference Consortium (HRC) reference panel. In our imputation run we used EAGLE v2.3.5 (Loh, 

Danecek, et al., 2016) for pre-phasing, and minimac3 v2.0.1 (Das et al., 2016) for imputation. We 

derived 3 different imputed callsets from this process: 1) a set of high confidence imputed 

genotypes (2,771,425 SNPs), 2) 7,112,906 imputed best-guess genotypes with medium level 

accuracy, and 3) genotypes for variants where imputation accuracy is lowered in order to increase 

the total number of variants included in the imputation (resulting in 8,995,398 SNPs). We elected 

to run our GWAS across the largest dataset of imputed variants that were generated during the 

imputation process on a subset of samples that were of European ancestry. We conducted PCA 

on these samples across high-confidence imputed genotypes using the pacer_sub RICOPILI 

module and tested the first 20 PCs for significant association with sample case/control status 

(significant = p-value < 0.05/20). We identified PCs 1, 3 and 14 as significant predictors and used 

them as covariates in the GWAS analysis. We used RICOPILI’s postimp_navi module to conduct 

the final GWAS. Summary statistics were well controlled across the separate GWAS. We noted 

a lambda of 1.01 and a lambda1000 of 1.01 across a total of 7,679,714 tested SNPs.  

NORDiC-NOR | Crowley, J.; Kvale, G.; Hansen, S. | Norway | 31424634  

NORDiC-NOR is the Norwegian case-control arm of the NORDiC study and all samples were 

collected in Norway between 2016 and 2019. The NORDiC-NOR study was approved by the 
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Norwegian Regional Committee for Medical and Health Research Ethics (IRB00001872 REK 

West) under project number 2018/52 REKVest (PI: Bjarne Hansen) and project number: 2014/75 

REKVest (PI: Jan Haavik) and all subjects provided informed consent. OCD Cases have a primary 

ICD-10 and/or DSM-5 diagnosis of OCD from a multidisciplinary specialist OCD team (established 

with a semi-structured instrument such as the MINI or the SCID). All patients were included in the 

study regardless of psychiatric comorbidity, as long as they fulfilled strict diagnostic criteria for 

OCD. Patients were excluded in cases of diagnostic uncertainty, such as OCD secondary to a 

neurological disorder or CNS insult, or where the differential diagnosis between OCD and an 

alternative condition was unclear. The mean age at symptom debut was 17 years and 65% were 

female. Approximately 51% of patients had a documented psychiatric comorbidity. Controls 

reported no OCD or first-degree family members with OCD. Among the controls, 50% were 

female. Subjects provided either blood or saliva for DNA extraction. All samples were genotyped 

on the Illumina Global Screening Array at LIFE&BRAIN in Bonn, Germany. The pre-GWAS QC 

applied to the NORDiC-NOR dataset (482 cases, 343 controls in the raw data) was nearly 

identical to that applied to NORDIC-SWE data after merging of separate genotype data, 

consisting of pruning of cryptic relatedness, marking of samples that are of likely European 

ancestry and pruning of the dataset for single variants where there was suggestive evidence of 

technical biases or batch effects. In our cryptic relatedness QC step, we identified 4 samples that 

had a mean 𝑝𝑖5"' with other samples of ≥ 0.1, 74 samples that had evidence of being a sample 

duplicate (𝑝𝑖5"' ≥ 0.95) and 8 samples from the remaining cohort with evidence of cryptic 

relatedness (𝑝𝑖5"'	≥ 0.2). We found a total of 6263 variants overlapped between the merged 

PLINK fileset and the 1000 genomes data included in PEDDY (B. S. Pedersen & Quinlan, 2017) 

and identified a total of 368 cases and 315 controls with likely European ancestry. We performed 

variant-level QC on a PC-pruned subset of 340 cases and 307 controls, defining variants as failing 
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if they met one of the following criteria: 1) maximum genotype missingness in a cohort > 0.02; 2) 

allele frequency of 0 in at least one cohort; 3) max – min allele frequency > 0.1. A total of 136,525 

variants that met at least one of these criteria were excluded, leaving us with a final case/control 

dataset consisting of genotype calls across 479,358 variants. We used calls across these variants 

in samples that had been pruned for relatedness issues (not including standard pairwise 

relatedness issues as RICOPILI can detect these) as input for the GWAS (407 cases, 340 

controls). Imputation and GWAS was performed analogously to the NORDiC-SWE and EGOS 

analysis. The final data set consisted of 365 cases and 315 controls. Imputed callsets resulted in 

1) 3,043,464 high confidence imputed genotypes 2) 7,277,174 genotypes with medium level, and 

3) 8,964,589 genotypes with a low imputation accuracy. We identified PCs 1, 2, 3 and 4 as 

significant predictors and used them as covariates in the NORDiC-NOR GWAS. The analysis 

resulted in a lambda of 1.00 and a lambda1000 of 1.01 across a total of 7,518,582 tested SNPs.  

OCGAS_all | Multiple | USA | 22889921  

Results of The OCD Collaborative Genetics Association Study (OCGAS) have been published 

previously (Mattheisen et al., 2015). For detailed sample- and analysis description refer to the 

primary article. In brief: The OCGAS sample consists of 986 cases from OCGAS, a family based 

sample, and 1023 controls from the Genomic Psychiatry Cohort (GPC; (Pato et al., 2013)), a 

population based sample. The inclusion of control samples was slightly altered in this publication 

compared to the original study. For study inclusion, probands were required to meet DSM-IV 

criteria for OCD with onset of obsessions and/or compulsions before the age of 18 years (mean 
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= 9.4 years; SD = 6.35), as evaluated by a PhD-level clinical psychologist using the Structured 

Clinical Interview for DSM-IV modified and extended to include additional symptom and diagnostic 

information. Several mental- and brain disorders were reasons for exclusion. Genotyping was 

performed at the Johns Hopkins SNP Center using Illumina’s HumanOmniExpress bead chips 

(Illumina, San Diego, CA, USA). A stringent quality control protocol was followed, including 

checking the relatedness of samples, sex comparison, Mendelian inconsistencies etc. One 

sample was removed per related pair with pihat > 0.2. Multidimensional scaling analyses were 

performed on singleton OCD cases and unselected controls, as implemented in PLINK (Purcell 

et al., 2007). Samples were removed when they significantly deviated in the first two multi- 

dimensional scaling dimensions (> 4 SD from the mean). The genotyped data were phased by 

SHAPEIT2 (Delaneau et al., 2013) and imputed by Minimac3 (Das et al., 2016) using the HRC  

release 1.1 (McCarthy et al., 2016) as the reference panel. GWAS was performed on SNPs with 

info score > 0.8 and MAF > 0.01, using logistic regression model in PLINK2 (Chang et al., 2015) 

with the first four and the 9th MDS components as covariates. Ethics approvals for the OCGAS 

study were obtained from the Hopkins Medicine Institutional Review Boards, the Butler 

Institutional Review Board, the UCLA Institutional Review Boards, the Mass General Brigham 

Human Research Committee, the Columbia University Institutional Review Boards, and the 

National Institutes of Health Institutional Review Board (NIH IRB).  

OCGAS-nestadt | Nestadt G., OCGAS Consortium | USA  

The OCGAS-nestadt study was conducted at one of the five participating recruitment sites of the 

National Institute of Mental Health. The study was approved by the IRB boards at: Johns Hopkins 

University School of Medicine, Brown Medical School, New York State Psychiatric Institute and 

College of Physicians and Surgeons at Columbia University, University of California Los Angeles 

(UCLA) School of Medicine, Massachusetts General Hospital and Harvard Medical School, 

National Institute of Mental Health, and Keck School of Medicine at the University of Southern 

California. Samples were collected between 2007 and 2014. The sample comprised of trios 

(including an affected proband and both parents) or in some cases a proband and an unaffected 
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sibling. Each case was evaluated by a MD- or PhD-level clinical psychologist using the Structured 

Clinical Interview for DSM-IV (SCID). The checklist of obsessions and compulsions from the Y-

BOCS, refined to include the age of onset, offset, and severity of each symptom, as well as the 

Y-BOCS scores for the worst episode (lifetime) was recorded. Course and treatment response 

variables were also included. A similar model was used for evaluating tics and Tourette disorder. 

Axis I disorder diagnoses were assigned using the JHU Diagnostic Assignment Checklist, an 

instrument that documents the criteria for over 20 DSM-IV disorders; this instrument also was the 

primary tool for the diagnostic consensus procedure. The SCID-II was used to evaluate four 

personality disorders (schizotypic, obsessive-compulsive, avoidant, and dependent), and the 

FISC was used to obtain additional information about each participant from a knowledgeable 

informant. Children over the age of eight were assessed in the same way, except that the Kiddie-

SADS was used in place of the SCID. Final diagnostic status was assigned based on the 

consensus of two psychiatrists or psychologists reviewing the case independently. The 

agreement between diagnosticians using the Diagnostic Assignment Checklist has been studied 

and found to be excellent for variables such as age at onset of OCD. The chance-corrected 

percent agreement between the diagnosticians for the diagnosis of OCD was K = 0.92; for age at 

onset of OCD, K = 0.88 (for age +/- 5 years), and Pearson’s r = 0.71. The diagnostic information 

from each site was reviewed by one of the five members of the JHU diagnostic consensus 

committee to ensure comparability across sites. For study inclusion, probands were required to 

meet DSM-IV criteria for OCD - with onset of obsessions and/or compulsions before the age of 

18 years (mean = 9.4 years; SD = 6.35). Subjects with an age-of-onset > 17 years, schizophrenia, 

severe mental retardation that does not permit an evaluation to characterize the psychiatric 

disorder, Tourette disorder or OCD occurring exclusively in the context of depression (secondary 

OCD) were excluded. In addition, individuals were removed from the sample if they were 

previously diagnosed with brain pathology including brain tumors, Huntington’s disease, 

Parkinson’s disease, or Alzheimer’s disease. This resulted in a final sample of 212 cases and 212 

controls. Samples were genotyped on the Illumina PsychChip array at USC. Ethics approvals for 

the OCGAS study were obtained from the Hopkins Medicine Institutional Review Boards. The 
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OCD Collaborative Genetics Association Study (OCGAS) is a collaborative research study and 

was funded by the following NIMH Grant Numbers: MH071507, MH079489, MH079487, 

MH079488 and MH079494.  

OCGAS-ab | Arnold P., Burton C. | Canada | 27777633, 31772171  

Samples in the OCGAS-ab cohort were collected between 2008-2015 and consist of trios. The 

study was approved by REB at Hospital for Sick Children. Cases were required to meet DSM-IV 

criteria for OCD and were selected based on the K-SADS and CY-BOCS questionnaires. 

Exclusion criteria for cases were age of onset < 18 years of age, psychosis, and history of severe 

neurological disorders other than Tourette’s disorder. Of the 55 cases and 55 controls, 50% are 

female, the mean age was 16.38 (SD = 3.78). One individual presented a co-morbid diagnosis of 

ASD, 11 of ADHD, six of Tics/Tourette’s syndrome, five of anxiety disorders, one of a eating 

disorder, two of depression, and two presented learning difficulties. Samples were genotyped on 

the Illumina PsychChip array at USC. Ethics approvals for the OCGAS study were obtained from 

the Hopkins Medicine Institutional Review Boards.  

 

OCGAS-gh | Grünblatt E., Walitza S. | Switzerland and Germany | 28065182, 

29102815  

Participants in the early-onset OCD cohort were recruited at the Departments of Child and 

Adolescent Psychiatry of the Universities of Würzburg, Marburg, Aachen, and Freiburg in 

Germany and Zurich in Switzerland. Informed written consent was obtained in all cases by the 

participants or their parents. The study was approved by the ethical commissions of all involved 

universities in accordance with the latest version of the Declaration of Helsinki, including an ethical 

permission granted by the Ethic Committees from Aachen, Würzburg, Marburg, Freiburg, and the 

Cantonal Ethic Commission of Zürich (Ref. Nr. 39/97, 140/3 and EK: KEK-ZHNr. 2010-0340/3). 

Samples were collected between 2000 and 2016 and resulted in 56 cases and 56 controls in trios 
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or case-control samples. Patients were included if they fulfilled the diagnostic criteria for current 

OCD according to DSM-4 and ICD-10. To assess OCD diagnostic criteria, early-onset OCD 

patients and parents were interviewed separately by senior clinicians with a semi-structured 

diagnostic interview of psychiatric disorders in children and adolescents (Kinder-DIPS; children 

and parents version) (Margraf et al., 2017); the patients and parents located in Zürich underwent 

the German version of a semi-structured clinical interview (K-SADS-PL) (Kaufman et al., 2000) . 

In addition, severity and additional characteristics of OCD symptoms were evaluated with the 

Children’s Yale-Brown Obsessive Compulsive Scale (CY-BOCS) (Scahill et al., 1997). Kinder-

DIPS or K-SADS-PL was used to screen for the existence of comorbid disorders (affective-, 

anxiety-, eating- and tic disorders, attention-deficit/hyperactivity disorder, conduct-, oppositional 

disorder, as well as substance use, abuse, psychosis and somatic diseases) in children and 

adolescents. CASCAP-D was used to screen for autistic spectrum disorders (Schmidt et al., 

2000). Present and lifetime Tourette's syndrome and tic disorders were assessed with the 

adapted German version of the Child and Adult Schedule for Tourette and Other Behavioral 

Syndromes (STOBS) and the Yale Global Tic Severity Scale (YGTSS) (Leckman et al., 1989) in 

the Zürich patients. Case exclusion criteria were a lifetime history of Tourette’s syndrome, 

psychotic disorder, autism spectrum disorder, mental retardation (IQ < 70) or alcohol 

dependence. Patients with comorbid disorders were only included if OCD was the primary 

diagnosis. Controls were excluded if they presented a major psychiatric disorder or an IQ < 70. 

All pediatric OCD patients received cognitive behavior therapy, while when insufficient, drug 

treatment was added, most commonly with an SSRI. Samples were genotyped on the ILMN 

PsychChip array and genotyped at USC in one batch.  

OCD-WWF | Domschke, K; Berberich G. | Germany  

For the obsessive-compulsive disorder - Windach Würzburg Freiburg (OCD-WWF) study, 129 

inpatients with OCD (mean age ± SD: 34.47±11.86 years; 66 female) were recruited at the 
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Psychosomatic Hospital Windach, Windach, Germany, between 2014 and 2017. OCD diagnosis 

was ascertained on the basis of a structured clinical interview according to DSMIV criteria (SCID-

I) by experienced psychiatrists and/or clinical psychologists. Inclusion criteria were age at 

inclusion between 18 and 80 years and European descent (self-report up to third generation). 

Exclusion criteria comprised severe somatic and neurological disorders, the consumption of illegal 

drugs, and pregnancy. Comorbid tic disorder, trichotillomania, skin-picking disorder or other 

current axis I diagnoses except for depression (n = 71), specific phobias (n = 10), generalized 

anxiety disorder (n = 1), social phobia (n = 5), panic disorder (n = 2), agoraphobia (n = 5) or 

posttraumatic stress disorder (n = 3) were excluded. The study was approved by the ethics 

committee of the University of Würzburg, Germany and was conducted according to the ethical 

principles of the Helsinki Declaration. All patients gave written informed consent prior to 

participation. Cases and controls were genotyped on Illumina’s Global screening array. GWAS 

analysis was performed using RICOPILI (Lam et al., 2020), employing standard parameters. First, 

we ran an automated round of pre-imputation QC. The pre-imputation QC step involved a series 

of hard filters on variant and sample level data, including removing variants with pre-sample 

pruning call rate < 0.95, samples with call rate < 0.98, FHET outside of ± 0.20, samples with 

discrepancies between reported and derived sex, and post sample-pruning variants that meet any 

of the following : 1) call rate < 0.98, 2) missing difference > 0.02, 3) invariant positions, 4) MAF > 
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0.01, 5) HWE p < 1E−6 in controls, and 6) HWE p < 1E−10 in cases. RICOPILI’s impute_dirsub 

module was used to conduct imputation using the Haplotype Reference Consortium (HRC) 

reference panel. RICOPILI’s impute_dirsub module was used to conduct imputation using the 

1000’s genomes (1000G) reference panel (The 1000 Genomes Project Consortium, 2015). We 

conducted PCA on these samples across high-confidence imputed genotypes using the 

pacer_sub RICOPILI module and tested the first 20 PCs for significant association with sample 

case/control status. In a final step, we used RICOPILI’s postimp_navi module to conduct the 

GWAS analysis. 

Psych_Broad | Mathews C | Netherlands, Italy, USA, Spain  

Psych_Broad sample consists of 1396 European ancestry cases and 4009 population matched 

controls. The cases were recruited predominantly from OCD specialty clinics in the US, Spain, 

The Netherlands, and Italy. The Spanish controls were part of the Mental-Cat clinical sample or 

the INSchool population-based cohort. A total of 1757 controls from the Mental-Cat cohort (60.3% 

males) were evaluated and recruited prospectively from a restricted geographic area at the 

Hospital Universitari Vall d’Hebron of Barcelona (Spain) and consisted of unrelated healthy blood 

donors. The INSchool sample consists of 765 children (76.2% males) from schools in Catalonia. 

Both studies have been approved by the Clinical Research Ethics Committee (CREC) of Hospital 

Universitari Vall d’Hebron. All methods were performed in accordance with the relevant guidelines 

and regulations and written informed consent was obtained from participant parents before 

inclusion into the study. Detailed information has been published previously (Bosch et al., 2021; 

Rovira et al., 2020). Genomic DNA samples were obtained either from peripheral blood 

lymphocytes by the salting out procedure or from saliva using the Oragene DNA Self-Collection 
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Kit (DNA Genotek, Kanata, Ontario Canada). DNA concentrations were determined using the 

Pico- Green dsDNA Quantitation Kit (Molecular Probes, Eugene, OR). All cases were required to 

have a DSM-IV diagnosis of OCD. The population based unscreened controls were recruited from 

the same countries. All samples were genotyped on Infinium PsychArray-24 at Broad Institute 

(Cambridge, MA, USA). Standard quality control (QC) protocol was conducted with PLINK2 

(Chang et al., 2015). Samples were removed for call rates < 98%, sex discrepancy and 

ambiguous genomic sex, related samples with pihat > 0.2. SNP QC included removing 

monomorphic SNPs, SNPs with genotyping rate < 98%, SNPs with MAF < 0.01, SNPs with 𝑃 <

1𝑥10*+, in HWE test among controls or 𝑃 < 1𝑥10*-+ among cases, SNPs with differential missing 

rate between cases and controls (> 0.02), and SNPs with batch effect (𝑃 < 1𝑥10*+3). 

Multidimensional scaling (MDS) analyses were performed in PLINK2 and samples were removed 

when they were significant outliers in the first six MDS dimensions or when there were no 

matching cases or controls on the MDS dimensions. The genotyped data were phased by 

SHAPEIT2 (Delaneau et al., 2013) and imputed by Minimac3 (Das et al., 2016) using the HRC 

release 1.1 (McCarthy et al., 2016) as the reference panel. GWAS was performed on SNPs with 

INFO score > 0.8 and MAF > 0.01, using a logistic regression model in PLINK2 with the first six 

and the 8th MDS PCA components as covariates. The GWAS result of this data set has not been 

previously published.  

UKBB | Breen, G. | United Kingdom | 30305743 

The UK Biobank sample consists of 776 OCD cases and 125,729 controls, see (Bycroft et al., 

2018) for a general description of the UK Biobank resource. The data was derived from an online 

mental health questionnaire, completed by participants between July 2016 and July 2017. 

Research on the UK Biobank is conducted under a generic Research Tissue Bank approval from 

the UK North West Multi-centre Research Ethics Committee (MREC). This research was 
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approved to be conducted under that approval by the governing Research Ethics Committee of 

the UK Biobank. The analyses in this paper were performed under an approved extension to 

project 16577. Cases were defined by self-report of a professional diagnosis of OCD ("Have you 

been diagnosed with [Obsessive compulsive disorder (OCD)] by a professional, even if you don’t 

have it currently?”). The median age of cases at the time of report (not age at diagnosis) was 62 

(interquartile range (IQR) = 55-68), 59% of cases are female. All participants who did not report 

an OCD diagnosis were included as controls. The median age of controls at the time of report 

was 65 (IQR = 58-70), 56% of controls are female. Genotyping of cases and controls was 

performed on the Affymetrix Axiom UK Biobank Array / Affymetrix Axiom UK BiLEVE array and 

genotyped in the Affymetrix Research Services Laboratory, Santa Clara, CA in several batches. 

For genotype quality control the following filters were applied to the data: MAF > 0.01 and call-

rate > 98%. 4-means clustering was applied on the first two PCs to determine participants of 

European ancestries (as described by (Warren et al., 2017)). Further, quality assurance outliers 

marked by UKBB were removed. Relatives (KING relatedness > 0.044) greedily (e.g. keeping the 

parents in a parent-child trio) and participants with mismatched sex were removed (reported 

females with FX ≥ 0.6, reported males with FX ≤ 0.85; FX determined using chrX SNPs in 

approximate linkage equilibrium, r2 < 0.2). Imputation was performed with IMPUTE4 (Bycroft et 

al., 2018) using a combined HRC/UK-10k reference panel. Imputed data was filtered on MAF ≥ 
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0.01 and INFO ≥ 0.4. GWAS was performed using SAIGE (Zhou et al., 2018), including the first 

six PCs from participants of European ancestries, factors for genotyping batch and assessment 

center as covariates.  

Yale-Penn | Gelernter, J.; CO-PI: Kranzler, H. | USA | 24166409, 32492095 
 
Yale-Penn data consists of three cohorts, called Yale-Penn 1 (also abbreviated GWCIDR), 2 (also 

abbreviated EXHCE), and 3 (also abbreviated MEGA123). Participants were recruited from 

eastern U.S sites and provided written informed consent as approved by the institutional review 

board at each site. Certificates of confidentiality were issued by the National Institute on Drug 

Abuse and the National Institute on Alcohol Abuse and Alcoholism. As previously described 

(Cheng et al., 2018), Yale-Penn 1 samples were genotyped using Illumina HumanOmni1-Quad 

v1.0 microarray, targeting approximately one million SNPs. Yale-Penn 2 samples were genotyped 

using Illumina HumanCore Exome array, including approximately 0.5 million SNPs. Yale-Penn 3 

samples were genotyped using Illumina Multi-Ethnic Genotyping Array, including approximately 

1.7 million SNPs. Genotyping was performed separately in each cohort using the 1000 Genomes 

Project reference panel, phase 1 (Durbin et al., 2010). First 10 PCs, calculated with EIGENSOFT 

(Price et al., 2006), were used to differentiate European and African ancestries through k-means 

clustering (Sherva et al., 2016; Solovieff et al., 2010). Imputation was performed with Minimac3 

(Das et al., 2016), using the 1000 Genomes Project reference panel, phase 3 (The 1000 Genomes 

Project Consortium, 2015). For QC filtering, we kept SNPs with imputation quality scores > 0.6, 

HWE filtering > 5𝑥10*+3, MAF > 0.05, missing call rates for variants < 0.5, and missing call rates 

for samples < 0.5. Imputation score was > 0.8. Data were aligned to the GRCh37 reference 

genome. Cases were defined according to the Diagnostic and Statistical Manual of mental 

disorders 4th edition (DSM-IV) by interviewers. As described for the MVP dataset, to optimize the 

number of cases to keep when removing individuals with kinship, which was calculated by KING 

(Manichaikul et al., 2010) for a minimum threshold of 0.0884 corresponding to a second-degree 
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relationship, we implemented the following algorithm where cases have priority compared to 

controls: between a case and a control, we remove the control; if there is relatedness between 

two cases, we remove the one that has the highest number of relationships with other individuals; 

we do the same between two controls. In conclusion, we obtained 74 cases and 1635 controls for 

Yale-Penn 1, 52 cases and 1646 controls for Yale-Penn 2, and 53 cases and 1926 controls for 

Yale-Penn 3, making up a total of 179 cases and 5207 controls. GWAS was performed separately 

on each of the three cohorts using PLINK 2.0 (Chang et al., 2015) setting age, sex, and the first 

ten PCs as covariates.  

Supplementary Note 3: Definition of independent significant loci 

In total, the main meta-analysis contained 1672 SNPs with a p-value smaller than 5x10-8. To 

identify independent genome-wide significant loci, we first performed automated LD-based 

‘clumping’ of genome-wide SNPs using PLINK within the RICOPILI pipeline. A locus was defined 

by considering genomic regions harboring one or more genome-wide significant SNPs and 

testing for LD with neighboring SNPs in a 500-kb range. If a locus contained several genome-

wide significant SNPs in LD (r² > 0.1), the SNP with the lowest p-value was selected as lead 

SNP. We then used GCTA-COJO to determine if a locus contained multiple independent SNPs 

(see also Online Methods). For this approach, we used the stepwise conditional regression 

approach to correct the betas and p-values of neighboring SNPs (in a sliding window of 10 Mb) 

based on the LD between the SNPs. We used the default p-value threshold of 5x10-8 to define a 

genome-wide significant hit. The LD reference panel was created from 73,005 individuals from 

the QIMR Berghofer Medical Research Institute genetic epidemiology cohort. GCTA-COJO has 

the advantage that it can identify multiple independent signals within a single locus, which the 

standard PLINK clumping (as implemented into Ricopili) alone might miss. 
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Supplementary Note 4: X-chromosome analysis in 23andMe 

Results for the association between X-chromosome SNPs and OCD are only reported for a subset 

of our study samples (23andMe), as this information was only available for a limited number of 

samples. We are currently working in parallel on a manuscript that focuses on sex-stratified 

analyses and will include the full meta-analysis of all samples that have information for the X-

chromosome available in that manuscript. For the 23andMe sample analysis of the X-

chromosome was equivalent to the analysis of autosomes (see cohort description above), with 

the difference that for phasing 23andMe built separate haplotype graphs for the non-

pseudoautosomal region and each pseudoautosomal region, and then phased these regions 

separately. Association tests were computed with male genotypes coded as if they were 

homozygous diploid for the observed allele. No SNP on the X-chromosome reached genome-

wide significance. 

Supplementary Note 5: Subgroup, MTAG & common-factor 

analyses (GenomicSEM) 

Heterogeneity was assessed with Cochran’s Q statistic and 𝐼² statistic (Higgins et al., 2002; 2003). 

Cochran’s Q is calculated as the weighted sum of squared differences between individual study 

effects and the pooled effect across studies, with the weights being those used in the pooling 

method. Q is distributed as a chi-square statistic with k (number of studies) minus 1 degrees of 

freedom. The I² statistic describes the percentage of variation across studies that is due to 

heterogeneity rather than chance. Unlike Q, it does not inherently depend upon the number of 

studies considered. As mentioned in the main article, we did not find evidence of significant 

heterogeneity in the results of our 30 genome-wide SNPs. Nevertheless, this does not rule out 

heterogeneity in study results at other loci or across the entire genome. Therefore, we conducted 

several analyses to explore whether the heterogeneity in sample ascertainment methods 

influenced genetic findings. In total, we found 39 independent loci that were associated with either 
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our meta-analysis, a common factor GenomicSEM analysis, subgroup analyses, MTAG analyses, 

or more than one of the analyses mentioned (see further below for details). An overview of these 

results and loci can be found in Supplementary Table 3. 

Subgroup GWASs and meta analysis without 23andMe 

To investigate loci that are predominantly associated with the individual subgroups (clinical, 

comorbid, biobanks, 23andMe), we conducted separate GWASs for each subgroup, identifying 

seven SNPs associated with OCD in 23andMe (rs2836950 uniquely in this analysis; see 

Supplementary Figure 37A and 37B for Manhattan-plots and QQ-plots), and two in the clinical 

data (rs11856716 uniquely in this analysis; see Supplementary Figure 34A and 34B for 

Manhattan-plots and QQ-plots, and Supplementary Table 3 for a list of all significant SNPs, as 

well as Supplementary Figure 35A, 35B and 36A and 36B for Manhattan and QQ-plots of the 

comorbid and biobank specific GWASs). When conducting a combined GWAS of clinical, 

comorbid, and biobank cohorts (excluding 23andMe), two SNPs reached significance 

(Supplementary Figure 33). Genetic correlations (𝑟𝐺) between the four sub-groups ranged from 

0.63 (𝑆𝐸 = 	0.11, 𝑃 = 2.1𝑥10*+7) between the comorbid and biobank sub-groups to 0.93 (𝑆𝐸 =

	0.066, 𝑃 = 9.89𝑥10*.3) between the comorbid and 23andMe sub-groups. The genetic correlation 

between all clinically diagnosed cases (clinical, comorbid and biobank) and the 23andme cases 

was 0.92 (𝑆𝐸 = 	0.040, 𝑃 = 2.58𝑥10*--8; See Supplementary Table 7 for all correlation 

estimates). 

Multi-Trait Analysis of GWAS (MTAG) 

As the sample sizes for the different subgroups in our study varied, some of the subgroup 

analyses had limited power to detect subgroup-specific genetic variations. To address this, we 

conducted four multi-trait analyses to increase our power to detect these variations while still 

being able to identify subgroup-specific signals. MTAG is more commonly used to combine 

different but related traits into one meta-analysis by leveraging the shared heritability among the 
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different traits and thereby gaining power. While we do not have different traits, our aim was to 

generate ascertainment-specific estimates, while boosting power by leveraging the high shared 

heritability among the subgroups. In addition to stronger evidence (meaning lower p-value) for 

several of the OCD hits defined in the main GWAS, 11 SNPs were associated with the biobank 

samples, of which one SNP (rs138354) was not found in any of the other analyses (including the 

meta-analysis, one-factor GWAS (see further below for details), subgroup-specific GWASs, or 

other MTAG analyses), 19 SNPs were associated with the clinical subgroup, of which one SNP 

(rs4838077) was not found in any of the other analyses, 24 SNPs were associated with the self-

report subgroup, with one SNP (rs56346215) uniquely found in this analysis, and 20 SNPs 

associated with the comorbid subgroup (see Supplementary Table 3 for a full list of results, and 

Supplementary Figures S34-37 for Manhattan-plots).  

Genomic structural equation modeling (GenomicSEM) 

First, we ran a common-factor model without individual SNP effects, following the tutorial ‘Models 

without individual SNP effects’ on the GenomicSEM github website (Grotzinger et al., 2019, see 

web resources). In brief, the summary statistics were first harmonized and filtered (with the 

munge-function), using HapMap3 as the reference file, using the effective sample size (clinical: 

Neff=21,,562, comorbid: Neff=18,794, biobanks: Neff=36,124, 23andMe: Neff=116,876) as the 

input sample size, and filtering SNPs to INFO > 0.9 and MAF > 0.01. In a second step, 

multivariable LDSC was run to obtain the genetic covariance matrix and corresponding sampling 

covariance matrix, using precomputed European-ancestry LD scores, a sample prevalence of 0.5 

and a population prevalence of 0.02. In a third step we ran a confirmatory factor analysis (CFA) 

using the pre-packaged common factor model in GenomicSEM using diagonally weighted least 

squares (DWLS) estimation. Second, we ran a multivariate GWAS of the common factor. In 

multivariate GWAS, the common factor defined by genetic indicators is regressed on each SNP, 

thereby generating summary statistics for the common factor (details can be found in the tutorial 

“GenomicSEM for Common Factor GWAS”, see web resources). First, summary statistics for all 

four subgroups were prepared for multivariate GWAS with the ‘sumstats’ function in 



51 
GenomicSEM, which aligns and merges all files. Next, with the ‘userGWAS’ function, the S 

(genetic covariance) and V (corresponding sampling covariance) matrices from the LDSC output 

(from the model without SNP effects) and the summary statistics were combined to create a 

separate S and V matrix for each SNP containing the effect estimate. The function also transforms 

the effect estimates from the summary statistics and their SEs into covariances and SEs of 

covariances by taking the product of the regression coefficient and SNP variance from the 

reference file (1000 genomes phase 3). The CFA showed some evidence of sample 

ascertainment impacting our results at a genome-wide scale, however, not beyond what has been 

observed with closely related psychiatric illnesses (Wray et al., 2018; Strom et al., 2024) and 

yielded a satisfactory fit for a one-factor model (𝐶ℎ𝑖𝑠𝑞 = 3.46, 𝑑𝑓 = 2, 𝑃!51#9 = 0.18, 𝐶𝐹𝐼 =

0.998, 𝑆𝑅𝑀𝑅 = 0.056), with high and similar loadings across all four subgroups (Supplementary 

Figure 39 and Supplementary Table 8). Conducting a GWAS of this common factor model, we 

identified 20 genome-wide significant loci, all of which also reached significance in the main meta-

analysis GWAS. Notably, the Manhattan-plot for the GenomicSEM GWAS closely resembles that 

of the main meta-analysis, though the common-factor GWAS shows reduced power to detect 

associated loci. This overall reduced power may partly stem from GenomicSEM’s exclusion of 

subgroup-specific unique variances. Additionally, GenomicSEM's modeling approach may 

overlook localized SNP-heritability deviations, which are preserved in a straightforward meta-

analysis, allowing for greater power. While these unique variances of the subgroups may 

introduce heterogeneity, this heterogeneity may still be OCD-related, potentially capturing 

variations in OCD symptom profiles across samples (e.g., one sample may overrepresent 

checking symptoms, while another has a higher prevalence of intrusive thoughts or religious OCD 

cases). If such sample-specific variations align with distinct genetic factors, the unique variances 

in GenomicSEM could reflect genuine OCD-related variance, which a simple meta-analysis might 

retain, leading to stronger associations. 
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Genetic correlations of subgroups with published GWASs 

We also conducted bivariate LDSC analyses for the 112 published GWASs (see Supplementary 

Note 5 for details) and our four subgroup GWASs to study potential heterogeneity between our 

subgroups. As expected, the comorbid subgroup showed stronger genetic correlations for the 

traits for which these studies were primarily ascertained (for AGDS and iPSYCH MDD, for 

iPSYCH alone also ADHD and ASD). All three traits (MDD, ASD, ADHD) in contrast were less 

strongly associated with the clinical and biobank cohorts, with the 23andMe sub-group showing 

estimates in between (Supplementary Figure 40 and Supplementary Table 19). 

 

Supplementary Note 6: Cross-trait genetic correlations 

As mentioned in the main paper, we used bivariate LDSC to investigate the extent of genetic 

correlations between OCD and a curated list of 112 previously published GWASs of psychiatric, 

substance use, cognition/socioeconomic status (SES), personality, psychological, neurological, 

autoimmune, cardiovascular, anthropomorphic/diet, fertility, and other traits. We conducted the 

same analysis for the four OCD sub-groups (Supplementary Figure 41 and Supplementary 

Table 19) as well as comparing the OCD GWAS of only 23andMe to the OCD GWAS excluding 

23andMe (Supplementary Figure 42 and Supplementary Table 19). The co-morbid sub-group, 

as expected because the iPSYCH samples are enriched for MDD, ADHD, and ASD cases, tends 

to correlate higher with most psychiatric disorders they were primarily ascertained for, while 

clinical and biobank cohorts tend to correlate less strongly, with the 23andMe sub-group in 

between.  

Beyond the strong genetic correlations of the main GWAS with psychiatric disorders described in 

the main text, high genetic correlations were also shown for several smoking phenotypes 

(positively with nicotine dependence, cigarettes per day, smoking initiation, and negatively with 

age smoking initiation), as well as a negative genetic correlation with alcohol dependence (𝑟: =

−0.1458, 95%	𝐶𝐼	[−0.22,−0.29]	, 𝑃";< 	= 	0.0001) was observed. We also found a negative 
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correlation with educational attainment (EA, 𝑟: =	−0.1015, 95%	𝐶𝐼	[−0,14,−0.203], 𝑃";< 	=

	7.32𝑥10*+,) and other cognition traits, though there was some heterogeneity across the four 

subgroups with the biobank sub-cohort correlating positively with EA (𝑟: = 0.1675, 

95%	𝐶𝐼	[0.084,0.251], 𝑃";< 	= 	0.0004), while the 23andMe and co-morbid sub-groups correlated 

negatively (23andMe: 𝑟: =	−0.1608, 95%	𝐶𝐼	[−0.211,−0.111], 𝑃";< = 	7.61𝑥10*-+; Comorbid: 

𝑟: = −0.1298, 95%	𝐶𝐼	[−0.205,−0.054] , 𝑃";< 	= 0.0018	), and the clinical cohorts not showing a 

significant correlation (𝑟: = −0.0412, 95%	𝐶𝐼	[−0.041, 0.022], 𝑃";< 	= 	0.3191). Moreover, some 

of the anthropomorphic traits (BMI, body fat, waist-hip-circumference, hip-circumference, and diet 

including fat) and auto-immune disorders (Crohn’s disease, ulcerative colitis, and inflammatory 

bowel disease) showed a significant negative correlation with OCD, while asthma (adult onset) 

showed a positive correlation. In addition, significant correlations of substantial effect (rG > |0.25|) 

were found with suicide attempt, tiredness, migraine (all positive), and with subjective well-being, 

childhood maltreatment, self-rated health, and risk taking-auto speeding (negative).  

 

Supplementary Note 7: Gene-based results. 

mBAT-combo 

A gene-based analysis was conducted using multivariate Set-Based Association Test (mBAT-

combo) (Li et al., 2023) within GCTA version 1.94.1 (Yang et al., 2011). mBAT-combo has the 

advantage of being better powered than other gene-based association test methods to detect 

multi-SNP associations in the context of masking effects (i.e., when the product of the true SNP 

effect sizes and the LD correlation is negative). To ensure that the overall power is maximized 

independent of masking effects at specific loci, mBAT-combo combines mBAT and fastBAT test 

statistics through a Cauchy combination method, which allows the combination of different test 

statistics without a priori knowledge of the correlation structure. mBAT-combo identified 207 

protein-coding genes significantly associated with OCD at a Bonferroni-corrected threshold of 𝑃 =
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2.67𝑥10*+, (Supplementary Table 10). Of these 104 were located on chromosome 6 in the 

extended major histocompatibility (MHC) locus (25MB - 35MB).  

Transcriptome-wide association study (TWAS) 

The transcriptome-wide association study (TWAS) using human prefrontal cortex gene 

expression weights generated by the psychENCODE consortium identified 24 significant protein-

coding genes (Bonferroni-corrected 𝑃 = 4.76𝑥10*+,), of which 15 showed strong evidence for a 

co-localised signal (COLOC PP4 > 0.8; i.e., a single SNP associated with both OCD and gene 

expression implicating a causal role for this association) (Supplementary Table 11). Conditional 

analyses of each locus identified 14 genes with statistically independent TWAS signals, 11 of 

which also had evidence of a co-localized signal (COLOC PP4 > 0.8) (Supplementary Table 11). 

Summary-based Mendelian Randomization (SMR) 
We complemented the TWAS analysis with summary-based Mendelian Randomisation (SMR) 

using eQTL meta-analysis results from the eQTLGen (Võsa et al., 2021) (whole blood) and 

MetaBrain consortia (de Klein et al., 2023). A total of 46 unique protein-coding genes (21 of which 

located in the MHC region) reached significance (Supplementary Table 12), of which seven were 

significant in both the MetaBrain (14 genes in total) and eQTLGen (39 genes in total) datasets. 

Of the 46 genes, 24 (six in MHC region) had a HEIDI (heterogeneity in dependent instruments) P 

> 0.05 in blood or brain tissue, indicating that a single causal variant underlies the GWAS and 

eQTL association (Supplementary Table 12). We found three significant genes with HEIDI P > 

0.05 in both the MetaBrain and eQTLGen datasets (WDR6, ARIH2, and FLOT1), one of which 

(WDR6) also had a significant and colocalized signal in the TWAS analysis. 

Psychiatric Omnilocus Prioritisation Score (PsyOPS)  
We used the Psychiatric Omnilocus Prioritisation Score (PsyOPS) (Wainberg et al., 2022) in a 

supervised approach that uses both positional mapping and biological annotations to prioritize 

putative causal genes for psychiatric traits. This approach expanded the list of candidate genes 

within OCD loci. For example, CSRNP3 is nearest the index SNP rs9287859 on chromosome 2 
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and had a significant mBAT-combo association (𝑃 = 3.99𝑥10*+=). However, PsyOPS prioritized 

the sodium channel protein subunit genes SCN1A, SCN2A, and SCN3A, which are located further 

away from the index SNP but are given greater weight by PsyOPS than other genes in the locus 

due to their loss-of-function intolerance, brain-specific expression, and involvement in 

neurodevelopmental disorders.  

TWAS-COLOC and SMR-HEIDI 

Colocalization of the significant TWAS results (TWAS-COLOC) identified 15 genes (PPH4 > 0.8), 

11 of which were conditionally independent, while HEIDI prioritized 22 significant SMR 

associations (HEIDI P > 0.05). In total, 35 genes significantly associated with OCD passed 

colocalization and/or HEIDI criteria. 

Convergence across methods 
From the individual results for the four approaches, the following overlap in significant genes was 

observed: For the positional mapping approaches 123 genes showed significance in both the 

mBAT-combo and PsyOPS analyses. For the functional eQTL approaches, ten genes showed 

significance in both approaches (TWAS and SMR). For the group of 37 genes that was identified 

by at least one positional approach (i.e., either mBAT-combo or PsyOPS) and one functional 

eQTL approach (i.e., either TWAS or SMR), 27 genes were identified by mBAT-combo and either 

TWAS (four genes) or SMR (23 genes), and 27 genes were identified by PsyOPS and either 

TWAS (nine genes) or SMR (18 genes). See the main manuscript for the genes that were either 

conditional independent (TWAS-COLOC) or were significant in both tested SMR tissues (whole 

blood and brain). Out of the 123 genes identified in both positional mapping approaches (see 

above), 24 genes overlapped with significant results for the SMR analysis using eQTLs from 

whole blood, and eight genes overlapped with significant results for the SMR analysis using 

eQTLs from brain tissue. Out of these, five genes showed significance across the positional 

mapping approaches and SMR analyses for both tissues. These included the aforementioned 

WDR6, ARIH2, NCKIPSD genes from the previously identified chromosome 3 region, BTN3A2 in 
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the extended MHC region, and the Poly(A) Binding Protein Cytoplasmic 1 Like (PABPC1L) gene 

on chromosome 20. Out of the 123 genes identified in both positional mapping approaches (see 

above), 12 genes were also significant in the TWAS analysis. Of these, two genes were 

conditionally independent (CTNND1, and WDR6).  

Overlap of gene-based results with rare-coding variant results 

We performed a bi-directional look-up to assess the overlap of gene-findings from common-

variance GWAS and rare-variance studies. We assessed 1) whether gene-findings from our 

GWAS showed evidence for rare variant involvement and 2) vice versa, whether findings from 

rare variant testing showed evidence of common variant association in our GWAS, using data 

from Halvorsen et al. (2021). We did not observe any evidence for differential case/control burden 

in the 251 GWAS-derived genes (Supplementary Table 14) for de novo synonymous variants (p 

= 0.42), missense non-damaging variants (p = 0.58) or missense damaging variants (p = 0.58). 

We observed the lowest p-value for loss of function variants (p = 0.08), which was driven by two 

such variants in cases and none in controls. These de novo variants impact the genes QRICH1 

and ZKSCAN3. We note that QRICH1 in particular is loss of function intolerant (pLI > 0.995) and 

was observed to carry a separate loss of function de novo variant in the largest de novo variant 

study published for Tourette Syndrome (Wang et al., 2018).  

 

Next, we looked up 200 genes from Halvorsen et al. (2021) with a probability of loss of function 

intolerance > 0.995 (defined by Lek et al., 2016) and effect size estimate > 1.  We found varying 

degrees of evidence for four different genes: QRICH1, CTNND1, PTPRD, CHD3 (all look-ups can 

be found in Supplementary Table 6). Nevertheless, we found no evidence for unequal 

proportions of the 251 GWAS highlighted genes in the exome summary statistics (OR = 1.25, p 

= 0.76), most likely due to the exome study being severely underpowered (around 1300 total 

cases). 
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Supplementary Note 8: Sample size and number of GWS loci 

For OCD, like with other complex traits, there seems to be a relationship between the number of 

genome-wide significant loci that were identified in the GWAS and the sample size in the analysis. 

To highlight this relationship, we conducted additional meta-analyses combining different sub-

samples of previously published GWASs (e.g., combining the PGC OCD2 GWAS with the 

23andMe sample from this GWAS). A graphical representation can be found in Supplementary 

Figure 43. Between 25,000 (PGC OCD2 GWAS) and 30,000 cases (23andMe sample), the 

relationship between genome-wide significant loci and sample size seems to become linear, and 

(at least within European ancestry samples) each additional ~ 1000 cases will add one additional 

genome-wide significant SNP on average (see Supplementary Table 20).  

Supplementary Note 9: Assumptions and Limitations of SMR (and 

TWAS) 

Transcriptome-wide association studies and SMR are commonly used for the identification and 

prioritization of target genes from GWAS of complex traits. A key advantage of these approaches 

is their use of summary-based GWAS and QTL datasets, meaning they can be applied across a 

range of experimental settings. In addition, TWAS and SMR only consider genetically regulated 

gene expression and are therefore not confounded by non-genetic factors that may influence 

expression (e.g., medication use). Nonetheless, the approaches are associated with several 

important assumptions and limitations (PMID: 30926968). For TWAS, the prediction accuracy of 

gene expression relies on the heritability of gene expression and therefore requires well-powered 

test SNP genotype and expression datasets for the development of expression weights. 

Meanwhile, SMR using a single causal variant is unable to distinguish between pleiotropy, where 

the same causal variant affects the trait and gene expression, and causality, where the effect of 

a causal variant on a trait is mediated by gene expression. Both approaches also assume the 

genotype is associated with gene expression and genes with a higher cis-genetic correlation to 
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trait are more likely to be causal. In addition, they ignore long-range regulatory effects (trans-

eQTLs) that may explain a large proportion of heritability, lack eQTL data from different ancestry 

groups, and cannot identify causal tissues of cell types. Despite these limitations, TWAS and SMR 

can identify important relationships between QTL datasets and GWAS to find target genes 

(PMID:36778001). We combined information from these approaches and other gene-based 

methods with different underlying assumptions (e.g., mBAT-combo or PsyOPS) to increase 

confidence in our gene-based associations and prioritize target genes within OCD loci. 

 

Supplementary Note 10: A note on liability scale heritability 

estimates and sample ascertainment 

When calculating liability scale heritability, both sample prevalence and population prevalence 

are important considerations. The sample prevalence is typically estimated from the number of 

cases and controls, but in biobank-scale studies, specialized analytical approaches (e.g., 

REGENIE) may obscure the true sample prevalence underlying the analysis. For population 

prevalence, robust estimates from entire populations are often used (e.g., from meta-analysis or 

national disease registers); however, ascertainment differences can complicate the use of precise 

population prevalences, as the specific fraction of the overall patient spectrum in individual 

cohorts may be unknown. Our study is limited by the use of a uniform prevalence estimate of 1% 

across all cohorts, which is on the lower end compared to previous studies and likely does not 

reflect the true prevalence across all enrolled cohorts. We adopted this approach due to the lack 

of reliable population prevalence data from prior meta-analyses or national registries, especially 

in Nordic countries, where available data is biased toward more severe and chronic cases based 

on hospital diagnoses. Consequently, liability scale heritability estimates from this manuscript 

should be interpreted with caution. Furthermore, when comparing estimates of (liability scale) 

heritability across studies, it is essential to consider the analytical approach and software that was 

used; comparisons should only be made when the same approaches are employed. For example, 
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previous (higher) heritability estimates for OCD from GWASs studies (e.g., Mattheisen et al., 

2015, or Stewart et al., 2013) used GCTA (Yang et al., 2011) for estimations while the current 

study uses LDSC. It is known that heritability estimates from these two (and other) approaches 

do not compare sufficiently (Evans et al., 2018). 
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Supplementary Figures 

 
 
 
Supplementary Figure 1: Schematic overview of the main bioinformatic analyses presented in the manuscript. 
Steps 1-4 outline the process for identifying SNP-based association signals: 1) Collecting clinical and genetic data from 
OCD patients and controls across 28 different cohorts at various institutes; 2) Conducting individual GWAS for each 
OCD cohort; 3) Meta-analyzing the individual GWAS results to obtain combined summary statistics; 4) Characterizing 
the SNP findings through fine-mapping to determine whether each locus contains an independent signal. Steps 5-7 
detail additional analyses performed to further characterize the SNP signals identified in steps 1-4, including: 5) Genetic 
correlation analysis between OCD and other traits/disorders; 6) Analyzing tissue and cell-type enrichment of the OCD-
associated variants; and 7) A series of positional and functional gene mapping analyses to prioritize OCD risk genes. 
* GWAS Manhattan plots are not based on real data. Figure was created in BioRender 
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Regional association plots and forest plots of the 30 significant 
SNPs 
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Supplementary Figure 2: Forest plot (A) and regional association plot (B) of SNP rs78587207 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 3: Forest plot (A) and regional association plot (B) of SNP rs13262595 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 4: Forest plot (A) and regional association plot (B) of SNP rs4990036 in the meta-analysis: The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 



65 

 

Supplementary Figure 5: Forest plot (A) and regional association plot (B) of SNP rs10877425 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 6: Forest plot (A) and regional association plot (B) of SNP rs7626445 in the meta-analysis. The forest 
plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple testing, 
derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size (f_ca(n)), 
allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for each study 
as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the right show 
the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-values (from 
two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per Mb (Megabase) 
(blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional association plot. Only 
SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a diamond and marked with 
the letter a. 
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Supplementary Figure 7: Forest plot (A) and regional association plot (B) of SNP rs2564930 in the meta-analysis. The forest 
plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple testing, 
derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size (f_ca(n)), 
allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for each study 
as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the right show 
the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-values (from 
two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per Mb (Megabase) 
(blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional association plot. Only 
SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a diamond and marked with 
the letter a. 
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Supplementary Figure 8: Forest plot (A) and regional association plot (B) of SNP rs4702 in the meta-analysis. The forest 
plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple testing, 
derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size (f_ca(n)), 
allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for each study 
as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the right show 
the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-values (from 
two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per Mb (Megabase) 
(blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional association plot. Only 
SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a diamond and marked with 
the letter a. 
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Supplementary Figure 9: Forest plot (A) and regional association plot (B) of SNP rs35518360 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 10: Forest plot (A) and regional association plot (B) of SNP rs4904738 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 11: Forest plot (A) and regional association plot (B) of SNP rs254779 in the meta-analysis. The forest 
plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple testing, 
derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size (f_ca(n)), 
allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for each study 
as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the right show 
the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-values (from 
two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per Mb (Megabase) 
(blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional association plot. Only 
SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a diamond and marked with 
the letter a. 
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Supplementary Figure 12: Forest plot (A) and regional association plot (B) of SNP rs2198140 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 



73 

 

Supplementary Figure 13: Forest plot (A) and regional association plot (B) of SNP rs12516488 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 14: Forest plot (A) and regional association plot (B) of SNP rs3899258 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 15: Forest plot (A) and regional association plot (B) of SNP rs3027160 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 16: Forest plot (A) and regional association plot (B) of SNP rs203768 in the meta-analysis. The forest 
plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple testing, 
derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size (f_ca(n)), 
allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for each study 
as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the right show 
the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-values (from 
two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per Mb (Megabase) 
(blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional association plot. Only 
SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a diamond and marked with 
the letter a. 
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Supplementary Figure 17: Forest plot (A) and regional association plot (B) of SNP rs11263940 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 18: Forest plot (A) and regional association plot (B) of SNP rs67839857 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 19: Forest plot (A) and regional association plot (B) of SNP rs1555466 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 20: Forest plot (A) and regional association plot (B) of SNP rs9886111 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 21: Forest plot (A) and regional association plot (B) of SNP rs9287859 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 22: Forest plot (A) and regional association plot (B) of SNP rs2087319 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 23: Forest plot (A) and regional association plot (B) of SNP rs11125759 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 24: Forest plot (A) and regional association plot (B) of SNP rs6474628 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 25: Forest plot (A) and regional association plot (B) of SNP rs11768238 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 26: Forest plot (A) and regional association plot (B) of SNP rs9479138 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 27: Forest plot (A) and regional association plot (B) of SNP rs1567288 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 



88 

 

Supplementary Figure 28: Forest plot (A) and regional association plot (B) of SNP rs4831130 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 29: Forest plot (A) and regional association plot (B) of SNP rs17718444 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 



90 

 

Supplementary Figure 30: Forest plot (A) and regional association plot (B) of SNP rs6660196 in the meta-analysis. The 
forest plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple 
testing, derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size 
(f_ca(n)), allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for 
each study as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the 
right show the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-
values (from two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per 
Mb (Megabase) (blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional 
association plot. Only SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a 
diamond and marked with the letter a. 
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Supplementary Figure 31: Forest plot (A) and regional association plot (B) of SNP rs4931 in the meta-analysis. The forest 
plot (A) shows the imputation quality (INFO) score, p-value of the SNP association (two-sided and not corrected for multiple testing, 
derived from a fixed-effects inverse-variance weighted meta-analysis), allele frequency in cases with case sample size (f_ca(n)), 
allele frequency in controls and control sample size (f_co(n)), beta estimates (ln(OR)) and standard error (STDerr) for each study 
as well as for the combined meta-analysis. Each cohort’s sample size is detailed in supplementary table 1. Data on the right show 
the ln(OR) value as listed per cohort with 95% confidence intervals. In the regional association plot (B), the –log10 p-values (from 
two-sided association tests) are shown on the left y-axis. Recombination rates expressed in centimorgans (cM) per Mb (Megabase) 
(blue line) are shown on the right y-axis. Position in Mb is on the x-axis, with genes shown below the regional association plot. Only 
SNPs with an association p-value less than 0.1 were plotted. The most associated SNP is shown as a diamond and marked with 
the letter a. 
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Manhattan-plots and QQ-plots of sub-analyses 
 

 

Supplementary Figure 32: Manhattan-plot (A) and QQ-plot (B) of heterogeneity test, indicating whether SNPs across the 
genome are significantly heterogeneously associated with some cohorts but not others. METAL implements Cochran's Q-test for 
heterogeneity based on a chi-square distribution; it generates a probability that, when large, indicates larger variation across studies 
rather than within subjects within a study. 

 

Supplementary Figure 33: Manhattan-plot (A) and QQ-plot (B) of the genome-wide association results for the OCD meta-
analysis leaving out 23andMe. (A) The x-axis shows the position in the genome (chromosome 1 to 22), the y-axis represents –
log10 p-values for the association of variants with OCD from metaanalysis using an inverse-variance weighted fixed effects model. 
The horizontal red line shows the threshold for genome-wide significance (5𝑥10!"#). Each dot represents one SNP that was tested 
in the GWAS, with a green diamond indicating the lead SNP of a genome-wide significant locus, with green dots below belonging 
to that locus. (B) the expected -log10(p) under the null is plotted against the observed -log10(p). The shading indicates the 95% 
confidence region under the null. Lambda and Lambda1000 (which is the Lambda if the GWAS contained 1000 cases and 1000 
controls) indicate genomic inflation factors. Number of SNPs (N (pvals)) and Number of cases and controls are given in 
parentheses. 
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Supplementary Figure 34: Manhattan-plot (A) and QQ-plot (B) of the sub-group specific GWAS analysis, including only 
clinical cohorts and Manhattan-plot (C) and QQ-plot (D) of the MTAG analysis specific to clinical cohorts. Both analyses 
aimed to find ascertainment-specific signals associated with OCD specifically in clinical cohorts. (A,C) The x-axis shows the position 
in the genome (chromosome 1 to 22), the y-axis represents –log10 p-values for the association of variants with OCD from 
metaanalysis using an inverse-variance weighted fixed effects model (A) or MTAG (C). The horizontal red line shows the threshold 
for genome-wide significance (5𝑥10!"#). Each dot represents one SNP that was tested in the GWAS, with a green diamond 
indicating the lead SNP of a genome-wide significant locus, with green dots below belonging to that locus. (B) the expected -
log10(p) under the null is plotted against the observed -log10(p). The shading indicates the 95% confidence region under the null. 
Lambda and Lambda1000 (which is the Lambda if the GWAS contained 1000 cases and 1000 controls) indicate genomic inflation 
factors. Number of SNPs (N (pvals)) and Number of cases and controls are given in parentheses. 
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Supplementary Figure 35: Manhattan-plot (A) and QQ-plot (B) of the sub-group specific GWAS analysis, including only 
biobank cohorts and Manhattan-plot (C) and QQ-plot (D) of the MTAG analysis specific to biobank cohorts. Both analyses 
aimed to find ascertainment-specific signals associated with OCD specifically in biobank cohorts. (A,C) The x-axis shows the 
position in the genome (chromosome 1 to 22), the y-axis represents –log10 p-values for the association of variants with OCD from 
metaanalysis using an inverse-variance weighted fixed effects model (A) or MTAG (C). The horizontal red line shows the threshold 
for genome-wide significance (5𝑥10!"#). Each dot represents one SNP that was tested in the GWAS, with a green diamond 
indicating the lead SNP of a genome-wide significant locus, with green dots below belonging to that locus. (B) the expected -
log10(p) under the null is plotted against the observed -log10(p). The shading indicates the 95% confidence region under the null. 
Lambda and Lambda1000 (which is the Lambda if the GWAS contained 1000 cases and 1000 controls) indicate genomic inflation 
factors. Number of SNPs (N (pvals)) and Number of cases and controls are given in parentheses. 
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Supplementary Figure 36: Manhattan-plot (A) and QQ-plot (B) of the sub-group specific GWAS analysis, including only 
comorbid cohorts and Manhattan-plot (C) and QQ-plot (D) of the MTAG analysis specific to comorbid cohorts. Both 
analyses aimed to find ascertainment-specific signals associated with OCD specifically in comorbid cohorts. (A,C) The x-axis shows 
the position in the genome (chromosome 1 to 22), the y-axis represents –log10 p-values for the association of variants with OCD 
from metaanalysis using an inverse-variance weighted fixed effects model (A) or MTAG (C). The horizontal red line shows the 
threshold for genome-wide significance (5𝑥10!"#). Each dot represents one SNP that was tested in the GWAS, with a green 
diamond indicating the lead SNP of a genome-wide significant locus, with green dots below belonging to that locus. (B) the expected 
-log10(p) under the null is plotted against the observed -log10(p). The shading indicates the 95% confidence region under the null. 
Lambda and Lambda1000 (which is the Lambda if the GWAS contained 1000 cases and 1000 controls) indicate genomic inflation 
factors. Number of SNPs (N (pvals)) and Number of cases and controls are given in parentheses. 
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Supplementary Figure 37: Manhattan-plot (A) and QQ-plot (B) of the sub-group specific GWAS analysis, including only 
23andMe, Manhattan-plot (C) and QQ-plot (D) of the MTAG analysis specific to 23andMe, and (E) a plot of the X-
chromosome findings specific to 23andMe. Both analyses (A-D) aimed to find ascertainment-specific signals associated with 
OCD specifically in 23andMe. (A,C) The x-axis shows the position in the genome (chromosome 1 to 22), the y-axis represents –
log10 p-values for the association of variants with OCD from metaanalysis using an inverse-variance weighted fixed effects model 
(A) or MTAG (C). The horizontal red line shows the threshold for genome-wide significance (5𝑥10!"#). Each dot represents one 
SNP that was tested in the GWAS, with a green diamond indicating the lead SNP of a genome-wide significant locus, with green 
dots below belonging to that locus. (B) the expected -log10(p) under the null is plotted against the observed -log10(p). The shading 
indicates the 95% confidence region under the null. Lambda and Lambda1000 (which is the Lambda if the GWAS contained 1000 
cases and 1000 controls) indicate genomic inflation factors. Number of SNPs (N (pvals)) and Number of cases and controls are 
given in parentheses. 
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Supplementary Figure 38: QQ-plot for main GWAS results. (A) across the entire allele-frequency spectrum; (B)-(F) 
partitioned by MAF bins (B) 0.01-0.1, (C) 0.1-0.2, (D) 0.2-0.3, (E) 0.3-0.4, (F) 0.4-0.5. For each bin, SNPs were included if their 
MAF in the overall analysis fell within that range. The expected -log10(p) values under the null hypothesis are plotted against the 
observed -log10(p) values. 
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GenomicSEM one factor model of the four OCD ascertainment 
sub-groups 
 

 

Supplementary Figure 39: A path diagram of the common-factor GenomicSEM model without SNP effects, specified with 
unit variance identification, fixing the variance of the common factor F1 to 1. All estimates are standardized. Model-fit indices 
below are Chi-square statistic (Chisq); degrees of freedom of the model (df); p-value of the Chi-square (p_chisq); Akaike Information 
Criterion (AIC), which is a comparative  measure of fit with lower values indicating a better fit; comparative fit index (CFI) which 
assesses the relative improvement in fit compared with the baseline model, ranging between 0 and 1; and standardized root mean 
square residual (SRMR), which is an absolute measure of fit defined as the standardized difference between observed correlation 
and the predicted correlation with a value of 0 indicating perfect fit.  
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Supplementary Figure 40: Manhattan-plot (A) and QQ-plot (B) of the common-factor GenomicSEM GWAS as shown in 
Supplementary Figure 39. (A) The x-axis shows the position in the genome (chromosome 1 to 22), the y-axis represents –log10 
p-values for the association of variants with OCD (A). The horizontal red line shows the threshold for genome-wide significance 
(5𝑥10!"#). Each dot represents one SNP that was tested in the GWAS, with a green diamond indicating the lead SNP of a genome-
wide significant locus, with green dots below belonging to that locus. (B) the expected -log10(p) under the null is plotted against 
the observed -log10(p). The shading indicates the 95% confidence region under the null. Lambda and Lambda1000 (which is the 
Lambda if the GWAS contained 1000 cases and 1000 controls) indicate genomic inflation factors. Number of SNPs (N (pvals)) and 
Number of cases and controls are given in parentheses. 
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Cross-trait genetic correlations of the ascertainment-specific 
subgroup analyses 
 

 
Supplementary Figure 41: Genetic correlations (rg) between the ascertainment-specific OCD GWASs (23andMe, Biobank, 
Clinical, comorbid) and 112 psychiatric, substance use, cognition/socioeconomic status (SES), personality, 
psychological, neurological, autoimmune, cardiovascular, anthropomorphic/diet, fertility, and other phenotypes. 
References and sample sizes of the corresponding summary statistics of the GWAS studies can be found in Supplementary Table 
19. The OCD summary statistics are of the main meta-analysis (Ncases = 53,660 and Ncontrols = 2,044,417). Genetic correlations 
of OCD specific to 23andMe are in green, specific to biobanks are in yellow, specific to clinical cohorts are in pink, and specific to 
comorbid cohorts are in blue. Error bars represent 95% confidence intervals for the genetic correlation estimates (rg), black 
encircled estimates indicate significant associations with a p-value adjusted for multiple testing with the Benjamini-Hochberg 
procedure to control the FDR (< 0.05), adjusted separately for each OCD ascertainment-specific subgroup (see full list of results in 
Supplementary Table 18). 
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Supplementary Figure 42: Genetic correlations (rg) of the OCD GWASs including only 23andMe and the OCD GWAS 
leaving out 23andMe (Clinician-reported) with 112 psychiatric, substance use, cognition/socioeconomic status (SES), 
personality, psychological, neurological, autoimmune, cardiovascular, anthropomorphic/diet, fertility, and other 
phenotypes. References and sample sizes of the corresponding summary statistics of the GWAS studies can be found in 
Supplementary Table 19. The OCD summary statistics are of the main meta-analysis (Ncases = 53,660 and Ncontrols = 
2,044,417). Genetic correlations of OCD specific to 23andMe are in green, specific to the GWAS excluding 23andMe (Clinician-
reported) in orange. Error bars represent 95% confidence intervals for the genetic correlation estimates (rg), black encircled 
estimates indicate significant associations with a p-value adjusted for multiple testing with the Benjamini-Hochberg procedure to 
control the FDR (< 0.05), adjusted separately for each OCD subgroup.   
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Consistency of SNP findings across OCD GWAS versions 
 
 

 

Supplementary Figure 43: Number of GWAS cases (x-axis) and the respective number of independent significant SNPs 
they identified (y-axis). Shown are seven GWAS studies - PGC1 (IOCDF-GC and OCGAS, 2018) ; PGC OCD2 GWAS (medRxiv1; 
Strom et al. 2021); the meta-analysis of the current paper (META) excluding 23andMe (META_excl23andMe); 23andMe, iPSYCH-
PGC-23andMe GWAS (medRxiv2; Strom et al. 2024), PGC OCD2 GWAS and 23andMe (medRxiv1_23andMe), and the current 
meta-analysis (META). Please also see Supplementary Table 20 for details. Note that these iterations of OCD GWAS meta-
analyses are not independent of each other. Cohorts with fewer cases (to the left of the plot) are included in meta-analyses with 
more cases (to the right of the plot). An overview of the significant SNPs from the published medRxiv GWASs (medRxiv1 and 
medRxiv2) and their corresponding p-values in the current OCD GWAS can be found in Supplementary Table 5. 
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