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Hepatitis B virus (HBV) infection is a common contributor to chronic hepatitis, liver

cirrhosis, and hepatocellular carcinoma. Approximately 10% of people with human

immunodeficiency virus (HIV) also have chronic HBV co-infection, owing to shared

transmission routes. HIV/HBV coinfection accelerates the progression of chronic HBV to

cirrhosis, end-stage liver disease, or hepatocellular carcinoma compared to chronic HBV

mono-infection. HBV/HIV coinfection alters the natural history of hepatitis B and renders

the antiviral treatment more complex. In this report, we conducted a critical review on

the epidemiology, natural history, and pathogenesis of liver diseases related to HBV/HIV

coinfection. We summarized the novel therapeutic options for these coinfected patients.
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INTRODUCTION

Chronic hepatitis B virus (HBV) infection affects ∼250 million people worldwide and can cause
progressive liver fibrosis and hepatocellular carcinoma (HCC) (1, 2). Over 50% of HCC cases
globally have been attributed to HBV infection (3, 4). Owing to their similar transmission patterns,
HBV/HIV coinfection is relatively common in endemic areas (5). About 10% of HIV-infected
individuals have been found to be chronically infected with HBV (6, 7). Compared with HBV
mono-infection, HBV/HIV coinfection complicates the natural course and increases the risk of
deterioration of diseases (8). Although some current therapeutic strategies are considered effective
options in treating single virus infections, HBV/HIV coinfection has altered the natural history of
the virus, requiring novel individualized therapeutic forms. This paper reviews the epidemiology,
natural history, and pathogenesis of liver diseases in HBV/HIV coinfection. We also highlighted
the individualized therapeutic options in these patients.

METHODOLOGY

We performed a comprehensive literatures search in Pubmed, Embase, and Web of Science with
the key words of “hepatitis B virus,” “HBV,” “human immunodeficiency virus,” “HIV,” “coinfection,”
“liver disease,” “epidemiology,” “pathogenesis,” “treatment,” and “clinical treatment.” Clinical trials
(http://clinicaltrials.gov/) was also searched for the important clinical trials about the HBV/HIV
coinfection therapies. Literatures with no full text, describing only protocol design or preliminary
results were excluded.
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EPIDEMIOLOGY

HBV, HIV, and HBV/HIV coinfection are caused by several
means including unsafe drug injection, inappropriate
medical practices, unsafe therapeutic injections, and high-risk
unprotected heterosexual and man-man sexual acts. Overlapping
transmission routes contribute to the prevalence of HBV, HIV,
and HBV/HIV coinfection (9). Nevertheless, the prevalence
varies in different geographic regions, ranging from 10 to 28%
(10–13). Based on the prevalence of chronic HBV infection, it can
classify the endemicity to high, intermediate, and low endemicity
areas in geography (14). In the high endemicity area, such as sub-
Saharan Africa and east Asia, ∼10% of HIV-infected individuals
have been observed to be concurrently infected with HBV (15).
In Vietnam, the rate could be as high as 28% in the unsafe
drug injection populations (11). In these regions, perinatal
transmission, close household contact during childhood, or
cultural procedures are the most common transmission routes
(10, 16). However, in areas of low endemicity, such as North
America, Western Europe, and Australia, HBV/HIV coinfection
is usually recorded in adolescents or adults via unsafe drug
injection or sexual transmission (15) with the estimated infection
rate 6–14% (17). In the highest risk group of unsafe male
homosexuals, the estimated rate ranges from 9 to 17% (14).

Nevertheless, prevalence of HBV/HIV infection showed a
slightly decreased trend based on several studies published
recently. An analysis developed by the North American Cohort
Collaboration on Research and Design collected information
covering 12 clinical sites from 1996 to 2010 and revealed that the
prevalence of chronic HBV infection in HIV cohort was only 7%
(18). Another research from the USMilitary HIVNatural History
Study found that the overall incidence of chronic HBV infection
was 4.3% (19). Themost prevalence was appeared in 1995 with an
obvious decrease in 2008, according to the evaluation of cross-
sectional incidence (19). Even so, the health threat posed by
HBV/HIV coinfection still cannot be ignored.

NATURAL HISTORY

Acute HBV infection in adults is difficult to clinically detect.
Spontaneously recovery is commonly observed among the most
immunocompetent adults whose antibodies against hepatitis B
surface antigen (anti-HBs) can be detected (20). Approximately
5–10% of immunocompetent adults will progress to chronic
infection (21), 20% of individuals with chronic infection are
likely to develop cirrhosis within 1–13 years (21). HCC and
decompensated liver diseases occur in 6 and 23% of patients with
cirrhosis, respectively (22).

The natural history of HBV factors are associated to the
characteristics of virus, host, and environment. HBV/HIV
coinfection accelerates the progression of HBV infection by
impacting the immune response of the host (23). People infected
with HIV have a high risk of contracting chronic HBV infection
(24). Lower rates of HBeAg and/or HBcAg clearance and anti-
HBe and anti-HBs seroconversion with higher rates of HBV
replication were observed in HBV/HIV coinfected persons (25,
26). The acceleration of the process of cirrhosis and HCC is

the most serious consequence in the liver-related damages (27).
HBV/HIV-coinfected individuals have approximately five- to
six-fold higher risk of HCC incidence with the presence of
cirrhosis (28–30). Additionally, HIV/HBV-coinfected accelerate
the progress to liver cirrhosis (31). Host CD4+ T cells are vital
to the recognition of viral antigens presented by Kupffer cells
and the regulation of the activities of CD8+ cytotoxicity T cells,
antibody producing B cells, and secreting cytokines cells. Host
immunosuppression as manifested by the depletion of CD4+

T cells may be the key for HIV to alter the natural course of
HBV which associated to an increase in liver-related mortality
(5, 32–34).

PATHOGENESIS OF LIVER DISEASES

Themechanism bywhichHIV facilitates liver-related damage has
not been completely delineated. HIV-induced immunodeficiency
seems to enhance HBV-related hepatotoxicity, which is mediated
by the immune response (15). Depletion of CD4+T cells is an
important feature of HIV infection which suppress the antigen
presentation of liver resident macrophages (Kupffer cells) and
the cytokine secretion of lymphocytes, in resulting the host
immunosuppression (32). The inhibition of the host immune
response enhances HBV replication substantially to further
cause severe liver damage (35, 36). HBV infected hepatocytes
is found non-cytopathic, without distinct cellular damage
and viral cytopathic effects. However, HBV/HIV coinfection
persons shows fibrosing cholestatic hepatitis (37, 38). HIV/HBV
coinfection causes changes in the hepatic cytokine environment
(15, 39, 40). It has been reported that HIV glycoproteins
stimulate the hepatocyte to express the tumor necrosis factor
related apoptosis inducing ligand (TRAIL) to induce hepatocyte
apoptosis (41, 42). HIV envelope protein activates the caspase-
independent apoptosis in Huh7 cells (43). HIV infection induces
hepatocyte apoptosis through phagocytosed by macrophages or
hepatic stellate cells and contributes to the inflammation and
fibrosis of the liver (44). The increase of hepatocyte apoptosis has
been observed among HBV/HIV coinfected patients compared
with HBV mono-infected patients (45). HIV gp120 has been
demonstrated to stimulate the hepatic expression of IL-8 to
mediate the hepatic inflammation (46). Elevation of HBV
load increases the X protein of HBV (HBx), which can also
transactivate the expression of IL-8 via NF-κB and C/EBP-
like cis-elements (47). As a leukocyte chemotactic molecule,
IL-8 plays a crucial part in maintaining the inflammatory
environment and HCC development (48). Furthermore, the
content of IL-8 is positively correlated with the degree of liver
damage (49).

HBx can also stimulate the expression of cyclooxygenase-
2 (COX-2), which is overexpressed in liver cirrhosis (50,
51). Moreover, COX-2 expression can be activated by IL-8
through CREB and C/EBP (47). Accumulating evidence shows
that HBV proteins activate IL-8 and COX-2 to maintain the
inflammatory environment (47). The inflammatory hepatocytes
secrete C-X-Cmotif chemokine 10 (CXCL10) which linked to the
severity of liver damage involving viral hepatitis (52, 53). Once
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CXCL10 binds to its receptor, chemokine receptor 3 (CXCR3),
immunocytes such as natural killer cells, and activated T cells
and B cells are attracted to the inflammatory sites (54). Elevated
CXCL10 was found in HBV/HIV coinfected patients but not
in HBV mono-infected patients. This observation indicates that
CXCL10/CXCR3 in the liver contributes to the acceleration of
liver diseases (55–57).

In another hypothesis of mechanisms of the pathogenesis
of liver diseases in coinfected patients, the depleted CD4+ T
cells in the gastrointestinal tract contribute to the increase in
microbial translocation and enhance the levels of circulating
lipopolysaccharides (LPS) (58). When LPS binds to Toll-like
receptor 4 and stimulates the NF-κB pathway or other pathways,
it induces the secretion of pro-inflammatory cytokines (56).
Although the relationship between microbial translocation and
liver cirrhosis is reportedly closed, a similar evidence has never
been found in HBV/HIV coinfected patients, including the
direct relationship between circulating LPS and liver cirrhosis
(56, 59). However, studies on simian immunodeficiency virus-
infected rhesus macaques indicated that microbial load is capable
of triggering the secretion of chemokines and enhancing the
infiltration of CXCR6+-activated NK cells, thereby resulting in
liver fibrosis (60). Further research is warranted to confirm
this theory.

TREATMENTS AGAINST HBV AND HIV

Mechanism of Current and Experimental
Dual Antiviral Therapies
Antiviral therapies should be initiated for HBV/HIV coinfected
patients as soon as possible regardless of the clinical stage
of the disease and the count of CD4+ cells (61, 62). This
recommendation is based on the evidence that the effects
of anti-HBV treatment might be reduced following the
deterioration of immunodeficiency (63). Moreover, utilization
of agents against HBV only can lead to drug resistance
to HIV. Therefore, the optimal therapeutic options should
include agents possessing dual anti-HBV and anti-HIV activity
(64, 65). Current dual antiviral choices can be classified
into virus-based agents and host-based agents. The former
includes nucleoside/nucleotide reverse transcriptase inhibitors
(NRTIs) and cyclophilin inhibitors. The latter consists of
immunomodulators and monoclonal antibodies. Here, we
provide an overview of the antiviral mechanism of these drugs.

The life cycle of a virus can be a potential target for
antiviral agents. HIV is an RNA virus with the ability of reverse
transcribing into DNA, which could be integrated into the host
genome (66). By contrast, HBV is an enveloped DNA virus
(67). Given that they belong to different types, HBV and HIV
undergo different life cycles (Figure 1). Nevertheless, similarities
in their life cycles are important in the development of dual
antiviral drugs for HBV and HIV. According to a recent study,
the polymerase of HBV and the reverse transcriptase of HIV
have similar structures and functions, indicating that agents
targeting these proteins have the ability to interrupt the life cycle
of both HBV and HIV (68, 69). NRTIs are prodrugs that must

be phosphorylated into active forms by cellular kinases (69, 70).
Activated NRTIs are capable of disturbing the functions of both
HIV reverse transcriptase and HBV polymerase by competing
with natural nucleotide substrates for joining into DNA chains
(69). In general, owing to the lack of 3′-OH,NRTIs work as chain-
terminators, thereby interrupting DNA synthesis (69, 71, 72).
Furthermore, protein priming activity, which is absent in HIV
reverse transcriptase, is considered as another target for NRTIs
(69). Inhibiting protein priming also substantially interferes with
HBV replication (69). Cyclophilin A (Cyp A) belongs to the
cyclophilin family with a peptidyl–prolyl isomerase activity (73,
74). Regarded as an acceleration factor for protein folding and
assembly, Cyp A plays a crucial role in the replication of various
viruses, including HBV and HIV. Moreover, it is linked to the
pathogenesis of virus infection (75, 76). By interacting with the
Gap protein of HIV or the small surface protein of HBV, Cyp
A facilitates the replication and infectivity of viruses, suggesting
that blocking Cyp A could be a potential anti-HIV and anti-HBV
strategy (77, 78).

In response to viral invasion, pattern-recognition receptors,
including Toll-like receptors (TLRs), are activated, leading to
the production of interferon (IFN) (79). Detection of viral DNA
or RNA is crucial in triggering the innate immune response,
culminating in the activation of transcription factors and release
of antiviral cytokines, such as IFN (80, 81). When secreted,
IFN interacts with its cognate receptors (i.e., IFNAR2) and
activates receptor-associated kinases (i.e., JAK1 and Tyk 2),
thereby contributing to the activation of the STAT family to
form a transcription factor complex or a homo-/heterodimer
(82–84). The transcription factor complex and the homo-
/heterodimer bind to the ISRE and GAS promoter elements,
respectively, and encode numerous viral restriction factors with
potent inhibition potential on viral replication (Figure 2) (84–
86). Consequently, immunomodulators (i.e., IFN), which can
enhance the host’s innate immune response, offer a rational
option for treating viral infection, including HBV and HIV.
The adaptive immune response is also a promising target for
novel therapeutic interventions owing to the key position of T
cells in viral infection control (66, 87). Regardless of HBV or
HIV infection, virus-specific T cells have been found to have
a distinct dysfunction, which is supposed to be linked to the
expression disorder of programmed cell death protein (PD-1)
and its ligand (PD-L1) (88). PD-1 and PD-L1 have been observed
to be upregulated during viral infection, including HIV, HBV, and
HCV, confirming that the PD-1/PD-L1 axis plays an important
role in the pathogenic process of viruses (89). Considering that
high expression levels of PD-1 and PD-L1 are usually related
to unsatisfactory immune response, agents based on the PD-
1/PD-L1 axis might be able to reverse this immune suppression
consequence and exert corresponding antiviral effects, including
on HBV and HIV (90, 91). Hence, immune checkpoint inhibitor
targeting the PD-1/PD-L1 axis can be another option for treating
HBV/HIV coinfection.

Virus-Targeted Therapeutic Options
Specialized treatment and management of coinfected patients
demand multidisciplinary cooperation. Although the life
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FIGURE 1 | Mechanism of virus-targeted agents. Though undergoing different life cycles, HBV and HIV share some similarities in their life cycles, which are important

for the development of dual antiviral drugs for HBV and HIV. Activated nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) are capable of disturbing the

functions of both HIV reverse transcriptase and HBV polymerase by competing with natural nucleotide substrates for joining into DNA chains, resulting in the chain

termination and viral replication. Cyclophilin A (Cyp A) plays a crucial role in the replication of various viruses, including HBV and HIV. Thus, cyclophilins inhibitor could

be a potential option for anti-HIV and anti-HBV strategy.

expectancy of HIV-infected individuals has been prolonged
due to antiviral therapy (ART), liver injury induced by HBV
has become the main cause of death in coinfected people.
The primary objective of anti-HBV therapy is to suppress the
replication of HBV, reduce the activity of inflammation, and
halt the progression of liver damage. Several antiviral drugs
have been approved for the clinical treatment of HBV, some
of which are described as dual antiviral agents against HBV
and HIV (Table 1). Combination antiviral therapies (cART) are
commonly adopted in treating coinfected cases, and clinical
trials have been conducted to explore their effectiveness in the
treatment of coinfected populations (Table 2).

NRTIs

Lamivudine
Lamivudine (3TC) is a dideoxynucleoside cytosine analog with
an antiviral effect on both HBV and HIV (92). It exerts its
antiviral ability by terminating the chain and suppressing the
replication of virus, leading to the reduction in viral load
and remission of disease symptoms (92, 93). Amelioration
of liver fibrosis and suppression of liver disease progression
can be achieved in patients with chronic HBV receiving
lamivudine treatment (94–96). Furthermore, a remarkably
improved virologic response was detected after 10 years of
lamivudine treatment. HBV DNA was undetected among

all patients, and 14 and 11% of patients achieved HBsAg
seroconversion and loss, whereas 83 and 42% of patients achieved
HBeAg seroconversion and loss, respectively (94).

As the first-line NRTI, lamivudine had been approved for
HIV treatment in 1995 and had been proposed as part of fix-
dose combinations in antiretroviral therapy (97, 98). Preclinical
studies have revealed the potent antiviral efficacy of lamivudine;
its half inhibitory concentration in infected cell lines of diverse
HIV strains ranges from 0.002 to 1.14 µM (99, 100). Previous
clinical trials also confirmed that single-tablet regimen (STR)
containing lamivudine has persistent viral suppression and
favorable safety in patients with HIV (93, 101). Dolutegravir is
the most commonly used agent in combination with lamivudine
for HIV clinical treatment. With regard to HBV/HIV coinfected
individuals, lamivudine-based ART regimens achieved 30–60%
HBV DNA suppression after 48 weeks of treatment (102–106).

Although lamivudine can be tolerated well and despite its
outstanding antiviral effect, its application was restricted because
of high rates of resistance, a character frequently observed in
nucleoside analogs (107). Based on the guideline published in
2017 from the clinicalinfo.HIV.gov, lamivudine in combination
with other antiviral agents, such as TAF or TDF, could be an
alternative option for HIV-infected individuals with confirmed
HBV infection (108). Nevertheless, regimens containing 3TC is
hardly recommended to the treatment for coinfected patients,
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FIGURE 2 | Mechanism of host-targeted agents. Pattern-recognition receptors are activated when the virus invades, leading to the production of interferon (IFN). IFN

interacts with its cognate receptors and activates receptor-associated kinases, contributing to the activation of the STAT family to form a transcription factor complex

or a homo-/heterodimer. The transcription factor complex and the homo-/heterodimer bind to the ISRE and GAS promoter elements, respectively, and encode

numerous viral restriction factors with potent inhibition potential on viral replication. Consequently, immunomodulators offer a rational option for treating HBV and HIV

infection. Additionally, the adaptive immune response is also a promising target for novel therapeutic interventions owing to the key position of T cells in viral infection

control. Regardless of HBV or HIV infection, virus-specific T cells have been found to have a distinct dysfunction. And the PD-1/PD-L1 axis plays an important role in

the pathogenic process of viruses. Considering that high expression levels of PD-1 and PD-L1 are usually related to unsatisfactory immune response, agents based

on the PD-1/PD-L1 axis might be able to reverse this immune suppression consequence and exert corresponding antiviral effects. Hence, immune checkpoint

inhibitor targeting the PD-1/PD-L1 axis can be another option for treating HBV/HIV coinfection.

according to the latest guideline from British HIV association
(BHIVA) and European AIDS Clinical Society (EACS) (109, 110).

Emtricitabine
Similar to lamivudine, emtricitabine (FTC) is a nucleoside
with dual HBV/HIV inhibitory effects (111). Apart from HIV
treatment, emtricitabine, as combined drug, has been approved
by Food and Drug Administration (FDA) for the prevention
of HIV infection (111). Although it is not an FDA-approved
agent for HBV treatment, emtricitabine has an outstanding
antiviral value against HBV; it can notably decrease HBV DNA
in serum and achieve normal ALT in patients with HBV at
the recommended dose of 200 mg/day (112). According to a
preclinical study, emtricitabine is superior to lamivudine in terms

of intracellular half-life (113). Nevertheless, both of them are
considered clinically equivalent (114). A phase III clinical trial
(NCT02607930) has demonstrated that emtricitabine-based STR
was non-inferior in HIV virological suppression comparable
to that of lamivudine-containing regimens (115). Moreover,
this regimen involving emtricitabine, bictegravir, and tenofovir
alafenamide affords guideline-recommended therapeutic strategy
for HBV/HIV coinfected cohorts (115). Other clinical studies
have also reached the same conclusion, confirming the clinical
value of emtricitabine (114, 116).

Although limited studies are available to confirm the
efficacy of emtricitabine in HIV/HBV coinfection cohorts,
its combination with other antiviral agents are superior to
emtricitabine monotherapy in reducing HBV DNA (117). A
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TABLE 1 | Antiviral agents applicated in HBV/HIV coinfection.

Type Agent Mechanism Antiviral spectrum Status

Immunoregulator Interferon Inhibiting replication of HBV HBV Approved

GS-9620 Antagonizing the TLR-7 and improving the host immune

response, leading to the suppression of HBV and clearing of

HIV.

HBV, HIV Clinical trial

Nucleoside/Nucleotide

reverse transcriptase

inhibitor (NRTI)

Lamivudine Terminating the chain and suppressing the replication of virus HBV, HIV Approved

Emtricitabine Terminating the chain and suppressing the replication of virus HBV, HIV Approved

Tenofovir Facilitating the HBeAg seroconversion of HBeAg and

suppressing the replication of HBV

HBV, HIV Approved

Adefovir Competing with deoxyadenosine triphosphate for integration

in the synthesizing HBV DNA, resulting in the blockage of the

viral DNA polymerase and termination of the chain

HBV Approved

Entecavir Competing with guanosine for integration into the

synthesizing HBV DNA, contributing to the blockage of viral

DNA polymerase and chain termination

HBV Approved

Cyclophilins inhibitor CRV 431 Blocking the interaction of Cyp A with Gap protein of HIV as

well as small surface protein of HBV, leading to the inhibition

of viral replication.

HBV, HIV Clinical trial

Immune checkpoint

inhibitor

Pembrolizumab Inhibiting the PD-1/PD-L1 axis and enhancing the immune

response against virus infection.

HBV, HIV Approved

HBV, Hepatitis B virus; HIV, human immunodeficiency virus; TLR-7, Toll-like receptor-7; Cyp A, Cyclophilin A; PD-1, programmed cell death protein; PD-L1, programmed cell death

protein ligand.

TABLE 2 | Important clinical trials of HIV/HBV therapies.

Trial number Phase Status Sample size Design

NCT01924455 IV Completed 138 Maraviroc/Placebo

NCT00192595 IV Completed 36 Tenofovir/Zidovudine, lamivudine, efavirenz

NCT01751555 IV Completed 100 TDF/3TC/EFV

NCT03115736 II Completed 24 Tenofovir Alafenamide

NCT03547908 III Recruiting 240 B/FTC/TAF or DTG+FTC/TDF

NCT00476463 II Completed 24 Emtricitabine

NCT03797014 IV Recruiting 60 B/FTC/TAF

NCT00127959 IV Completed 24 Tenofovir/emtricitabine/zidovudine/efavirenz

NCT03425994 – Active, not recruiting 275 Elvitegravir/Cobicistat/Emtricitabine

NCT00033163 II Completed 90 Adefovir dipivoxil/Tenofovir disoproxil fumarate

NCT00013702 II Competed 30 Adefovir

NCT00023153 III Completed 100 Adefovir dipivoxil

NCT01125696 II Completed 45 Zidovudine/lamivudine/lopinavir-ritonavir or

Tenofovir/lamivudine/lopinavir-ritonavir

NCT00391638 II/III Completed 56 Peg-interferon Alpha 2a/Tenofovir /Emtricitabine

NCT02071082 III Completed 79 E/C/FTC/TAF

All the detailed information of clinical trials was registered on the website (ClinicalTrials.gov).

TDF, tenofovir disoproxil fumarate; 3TC, lamivudine; EFV, efavirenz; B, bictegravir; FTC, emtricitabine; TAF, tenofovir alafenamide; DTG, dolutegravir; E, elvitegravir; C, cobicistat.

study also indicated that a combination of emtricitabine and
tenofovir disoproxil fumarate (TDF) has excellent outcomes
with 14% of patients achieved seroconversion to anti-HBe
and 94% of them had undetected HBV DNA in the serum
(118). Nevertheless, this study had a small sample size. Thus,
multicenter and large-scale trials are needed to confirm the value
of emtricitabine in HIV/HBV coinfection treatment. Currently,
co-formulated FTC and TDF is recommended as part of a

suppression combination regimen applicated in HIV-infected
individuals with confirmed or presumed sensitive HBV (108,
109).

Tenofovir
Tenofovir is an adenosine nucleotide analog that has been
approved for treatment of HIV infection (119, 120). Owing to its
poor bioavailability, it is usually available commercially as TDF
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and tenofovir alfenamide (TAF) (119, 121). The former releases
tenofovir in the bloodstream, whereas the latter releases tenofovir
after entering the cells. Together with emtricitabine, tenofovir
is used in HIV treatment and pre-exposure prophylaxis (PrEP)
(122, 123). Furthermore, tenofovir-containing PrEP strategies are
applicable for HIV-negative nursing mothers. In HBV treatment,
tenofovir has been discovered to be capable of overcoming
resistance to lamivudine and adefovir dipivoxil in HBV treatment
(124, 125). Patients with HBV were found to benefit from
tenofovir therapy, including TDF and TAF (126). Results showed
that 73 and 75% of the HBeAg-positive individuals who received
TDF or TAF achieved HBV DNA levels of <29 IU/mL at 96
weeks, respectively (126). Furthermore, no distinct difference was
observed between TAF and TDF regimens in terms of loss rate
and seroconversion of HBeAg and HBsAg (126). Two landmark
studies also confirmed the therapeutic effects of TDF and TAF
on HBeAg-positive or HBeAg-negative cohorts. Moreover, a low
dose of TAF (25 mg/day) achieved a response similar to that of
TDF (300 mg/day) at 48 weeks (127, 128). Akin to HBV, TAF
exhibits potent anti-HIV effects in vivo at the low dose of 10mg,
which is 30-fold lower than that of TDF (129, 130).

Owing to their dual antiviral ability, tenofovir-containing
regimens are extensively used to treat concurrent HBV and HIV
(125, 131, 132). A study that enrolled 110 patients coinfected
with HBV and HIV revealed that regimens containing TDF are
superior to lamivudine therapy in the seroconversion rate of
HBeAg (133). Result of this study showed that the proportion
of patients displayed seroconversion was 57% in the group
of TDF combined with FTC, 50% in the TDF group and
21% in the lamivudine group, respectively (133). Moreover,
suppression of HBV replication was observed in 91% of the
individuals during the median observation period. According to
a meta-analysis of 23 studies involving a total of 550 patients
with concurrent HBV and HIV and receiving TDF treatment
noted persistent viral suppression, and the ratio of patients
who achieved suppression of viral replication was 57.4, 79, and
85.6% after 1, 2, and 3 years, respectively (134). In addition,
virus rebound had been rarely reported in TDF treatment.
Therefore, all of the patients with HBV/HIV coinfection should
receive tenofovir-based antiretroviral treatment unless history of
tenofovir intolerance, according to the guideline of EACS (110).

Although rare, renal impairments, including tubular
dysfunction, increase in serum creatinine, and acute renal failure,
could be substantially induced by TDF. Hence, renal functions
should be regularly monitored during TDF treatment (135).

Other NRTIs Used in HBV/HIV Coinfection Treatment
Not all NRTIs have potent antiviral effects on HBV and
HIV. Apart from the agents discussed above, several other
NRTIs, including adefovir, entecavir, and telbivudine, are active
against HBV but display minimal activity against HIV (136–
138). Consequently, their application in HIV treatment is rare.
However, considering the potent suppressive effects of adefovir,
entecavir, and telbivudine on HBV replication, experts proposed
that these NRTIs might be of value in the treatment of HBV/HIV
coinfection when combined with other antiviral agents.

As the first nucleotide analog approved for HBV treatment,
adefovir strongly inhibits HBV replication with a low incidence
of resistance (107). However, the dose of adefovir used in HIV
treatment is usually linked to nephrotoxicity (31). According
to a pilot study on HBV/HIV coinfection, adefovir can
postpone the deterioration of liver diseases, enhance HBeAg
seroconversion, and normalize ALT levels by suppressing HBV
DNA (139). Several clinical trials have been conducted to
estimate the value of adefovir in treating individuals with
concurrent HBV and HIV (NCT00033163, NCT00013702, and
NCT00023153). A prospective study (ACTG A5127) involving
HBV/HIV coinfected patients revealed that either TDF or
adefovir treatment results in evident decrease in serum HBV
DNA; moreover, results showed that these NRTIs were well-
tolerated (140). Benhamou (141) also indicated that treating
with emtricitabine-containing regimen plus adefovir for 144
weeks decreased serum HBV DNA levels in 45% of HBV/HIV
coinfected subjects, which was lower than that in HBV
monoinfection (56%).

Entecavir, a guanosine analog, is superior to emtricitabine
and adefovir in suppressing serum HBV DNA (142–144).
Moreover, it is effective against not only wild-type HBV but
also emtricitabine-resistant and adefovir-resistant HBV (31).
Although entecavir was once considered as an inactive agent
to HIV, a study uncovered a remarkable phenomenon showing
that entecavir could result in evident reduction in serum HIV
RNA in three HBV/HIV coinfection patients (145). However,
such residual antiviral activity might be able to induce resistant
changes in HIV (71). Hence, the FDA warned that entecavir
should not be used in the absence of antiretroviral therapy in
HBV/HIV coinfected cohorts (137). Numerous clinical trials
have been conducted to explore the potential value of entecavir
in treating patients coinfected with HBV and HIV (Table 2).

Cyclophilin Inhibitors

CRV 431
CRV431, which was previously called CPI-431-32, is a non-
immunosuppressive cyclophilin inhibitor–cyclosporin A analog
(146). Previous studies have confirmed the efficacy of cyclophilin
inhibitors against HIV and HCV (146, 147). HBV DNA, HBsAg,
and HBeAg could be effectively reduced by CRV 431 by
interrupting the interaction of CypA with HBsAg or HBeAg, as
well as by blocking the entry of HBV (148). In addition, an in
vivo study of transgenic mice reported that CRV 431 can lower
serum HBsAg levels and HBV DNA loads in the liver in a dose-
dependent manner (149). Moreover, the viral inhibitory effect
was enhanced when lowCRV 431 dose (10mg/kg/day) was added
5 mg/kg/day of tenofovir exalidex, a prodrug of tenofovir (149).
Furthermore, liver fibrosis and tumor burden in a non-alcoholic
steatohepatitis mouse model were ameliorated, highlighting the
potential of CRV 431 as a novel therapy for liver disease (150).
An ongoing clinical trial is assessing the safety and tolerability of
CRV 431 in healthy volunteers (NCT 03596697).

CsA analogs have been confirmed to be effective against HIV
by blocking cyclophilins and the HIV capsid to form complexes
(151, 152). Hence, CRV 431, which belongs to CsA analogs, could
be another promising agent with anti-HIV activity. According
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to its metabolization, CRV 431 is speculated to not interact with
other NRTIs (153). Therefore, CRV431might be a potential agent
for the treatment of patients suffering from both liver diseases
and HIV. Coformulation of CRV 431 and current drugs could
achieve favorable outcomes in HBV/HIV coinfected patients.

Host-Targeted Therapeutic Options
Immunoregulator

Interferon-α and PEGylated Interferon-α
Interferons (INFs), a cluster of signaling proteins, are secreted
by host cells in response to pathogenic invasion (154, 155).
Moreover, they are the first class of agents approved for the
treatment of chronic hepatitis B. Interferon-α (INF-α) used
to be the standard choice but was eventually replaced by
PEGylated interferon-α because the latter has a longer half-
life and a stronger potency than the former (31, 156). INF-α
and PEGylated INF-α can effectively inhibit HBV replication
in vitro via stimulated-INF genes and augment host immunity
to defend against HBV infection. IFN therapy has shown
remarkable efficacy among HBeAg+ HBV infection patients
with the characteristic of elevated alanine aminotransferase and
low serum HBV DNA (157–159). Nevertheless, limited benefits
and increased toxicity were discovered in HIV/HBV coinfected
patients probably because of abnormal immunity (25, 160).
Hence, such agents might be applied to non-decompensated
patients who have a good response to INFs (161). In general,
the period of treatment lasts for 12 months. The guideline of BH
via in 2013 gave the recommendation that PEG-IFN should be
used only in HBsAg+ individuals with repeatedly raised ALT and
low level of HBV DNA, regardless of the status of HBeAg (162).
Nevertheless, the place of PEG-IFN therapies is not mentioned in
neither the latest EACS nor BHIVA.

GS-9620
GS-9620, also known as vesatolimod, is an oral small-molecule
antagonist of toll-like receptor 7 (TLR-7) with outstanding anti-
HBV potency; moreover, it is considered in the clinical treatment
of chronic HBV infection (163, 164). Preclinical studies reported
sustained reduction of HBV DNA, HBV RNA, and HBsAg levels
in HBV-infected cells administered with GS-9620 through an
IFN-dependent manner (163, 165, 166). According to a study
on a chimpanzee model of chronic HBV, GS-9620 participates
in the accumulation of CD8+ T cells and B cells in the portal
regions of liver, thereby playing a role in wiping out HBV-
infected cells or restricting HBV infection (167). Another study
on woodchucks with chronic HBV infection found reduced levels
of cccDNA and risk of HCC due to GS-9620 (165). Having
achieved favorable HBV suppressive effects in preclinical studies,
GS-9620 is undergoing clinical trials to definitively establish its
therapeutic efficacy in patients with chronic HBV. Currently, GS-
9620 is considered to be safe in and well-tolerated by individuals
with chronic HBV (168–170).

Existing HIV therapeutic strategies can achieve HBV
suppression to undetectable levels rather than complete removal
of viruses, which leads to lifelong treatment (171). To overcome
this difficulty, experts have focused on the induction of latent
HIV expression and the enhancement of the viral recognition

ability of the immune system to eliminate latent HIV. On the
basis of the viewpoint that TLR can induce HIV expression
from infected cells, scientists have explored the value of GS-9620
in HIV treatment (171–173). Results were consistent with
this assumption, confirming that GS-9620 has the ability to
activate HIV from the peripheral blood mononuclear cells of
HIV-infected patients receiving anti-HIV treatment, thereby
improving immune functions and enhancing HIV clearance
(171). HIV replication was also observed during GS-9620
treatment (174). A clinical trial (NCT02858401) reported that
GS-9620 is safe in and well-tolerated by HIV-infected cohorts
(175). Owing to its potential dual antiviral capability, GS-9620 is
a promising novel agent that can be applied in the combination
therapy of HBV/HIV coinfection.

Immune Checkpoint Inhibitor

Pembrolizumab
Pembrolizumab, a checkpoint inhibitor that targets PD-1, has
been approved for treatment of various carcinomas, including
lung cancer (176). On account of the critical function of the PD-
1/PD-L1 axis in the pathogenesis of chronic diseases, including
HBV and HIV, PD-1 inhibitors have been speculated to be
effective in disease treatment (90, 91, 177, 178). Several studies
have evaluated the safety and feasibility of pembrolizumab
in the therapy of patients suffering from various types of
carcinoma concurrently with HIV (179–182). Treatment with
pembrolizumab has an impact on HIV-specific T cell response
and HIV load, showing as a transient increase of CD8+ T
cell activation and a transient reduction of HIV DNA (180,
182). No serious adverse effects were observed during the
treatment, indicating that pembrolizumab is safe and well-
tolerated by the patients (181). Among patients with tumor
and HBV infection, pembrolizumab was found to be safe (183–
185). Moreover, several studies have been developed to explore
the efficacy of pembrolizumab in HBV infection, suggesting
that it might enhance the host immune status (182, 184, 185).
However, further research is needed to assess the efficacy and
safety of pembrolizumab in HBV treatment. On the basis of
the application of pembrolizumab in the treatment of patients
with cancer and HIV or HBV, experts assumed that it might
be effective in HVB/HIV coinfected individuals. However, the
evidence remains inadequate because patients with HIV or
HBV are usually excluded from research on immune inhibitors
because of the immune reconstitution inflammatory syndrome
(186). Few studies have indicated that PD-1 inhibitors have
proviral effects on HBV infection. However, they are regarded
to be able to strengthen the immune function and may be a
potential option for HIV treatment (88). Combination of PD-1
inhibitors with other agents might be a reasonable strategy for
viral coinfection treatment.

Immune Reconstitution Inflammatory
Syndrome
Though current guidelines suggest treatment of HBV/HIV
coinfected patients with dual antiviral regimen targeting HBV
and HIV, immune reconstruction-related hepatic flare following
the ART should be noted (187). IRIS is considered as
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a complication induced by the initiation of highly active
antiretroviral therapy (ART) in HBV/HIV coinfected patients. It
is an inflammatory disorder related to the worsening status of
existing infection (188).

As to the coinfected patients receiving ART, elevation of
liver enzymes is common, most of which are mild and do not
require modification of treatment (189, 190). It is uncommon to
develop into severe hepatotoxicity, manifesting as liver enzymes
higher than 10 times the upper limit of normal (191). Moreover,
the acute liver failure is also rare (192). Unfortunately, high
proportion of mortality can be observed among acute liver
failure patients, maybe owing to the potential impairment of
liver (191, 193). According to a recent research, 20–25% of the
coinfected patients might appear HBV flares (HF) after the start
of ART (194). Currently, little is known about the impact of IRIS
induced HF on the natural history of HBV infection. Patients
undergoingHF presented an increase of CD4T cell counts, a peak
level of serum alanine aminotransferase (ALT) and a decrease
of HBV DNA (195, 196). A recent study revealed that HBsAg
loss was more common in patients developed IRIS induced HF
compared with those who did not, suggesting that IRIS induced
HF after ART was closely linked with the loss of HBsAg (197).
The researchers also raised that younger age and higher HBV
DNA titer at baseline were related with the development of
IRIS induced HF (197). However, the occurrence mechanism of
HF has never been illustrated clearly. It is speculated that the
exploration of immune response of IRIS induced HF might be
benefit to the treatment of HBV/HIV coinfection. Further studies
on such aspect are warranted.

CONCLUSION

Accumulating evidence indicates that the coinfection of HBV
and HIV place a heavy burden to the society (148, 198, 199).
Coinfection is capable of accelerating the progression of liver
diseases (200). Treatment with dual antiviral agents must be

initiated as soon as possible (61, 62). However, several factors
increase the difficulty of treatment. Agents with a single antiviral
effect could induce drug resistance during the duration of
therapy. For instance, agents against HBV only could lead to drug
resistance to HIV. Hence, combination therapeutic strategies
with dual antiviral effects are important (65). Drug-related side
effects must also be considered when formulating therapeutic
regimens. Renal dysfunction is the most common adverse effect,
thus it should be considered before choosing drugs, especially
tenofovir, for treatment (135). Damages to important organs
might limit the application of existing regimens. Therefore, novel
dual antiviral agents with less adverse effects must be developed.
In-depth research on disease mechanisms has identified several
critical pathogenic mechanisms, providing new approaches for
disease treatment. PD-1/PD-L1 participates in the pathogenicity
of viruses, including HBV and HIV (88–90). The inhibitors that
antagonize the PD-1/PD-L1 axis might be a promising drug for
HBV/HIV coinfection treatment. Moreover, immunoregulators
with the ability to enhance the innate immune response against
HBV and HIV are acceptable. Regardless of the type of agents
applied for the treatment of HBV/HIV infection, drug-related
adverse effects should be closely monitored.

The efficacy and safety of many strategies for the treatment of
HBV/HIV coinfection are being assessed in clinical trials. Several
agents remain at the preclinical phase and are not yet available for
the clinical treatment of HBV/HIV coinfection. More research
and clinical trials are required to definitively establish the value
of such agents for the therapy of HBV/HIV coinfection. Finally,
novel agents with potent antiviral effects on both HBV and HIV
are the ideal approaches.
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