
Review Article
Role of Hydrogen Sulfide in Ischemia-Reperfusion Injury

Dongdong Wu,1 Jun Wang,1 Hui Li,1 Mengzhou Xue,2 Ailing Ji,1 and Yanzhang Li1

1Medical College of Henan University, Kaifeng, Henan 475004, China
2Department of Neurology, Institute of Neurological Disorders,The First AffiliatedHospital of HenanUniversity, Kaifeng 475001, China

Correspondence should be addressed to Mengzhou Xue; menzhouxue@gmail.com, Ailing Ji; ailingji@163.com, and Yanzhang Li;
yanzhang206@163.com

Received 17 October 2014; Revised 10 December 2014; Accepted 10 December 2014

Academic Editor: Guangdong Yang

Copyright © 2015 Dongdong Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ischemia-reperfusion (I/R) injury is one of the major causes of high morbidity, disability, and mortality in the world. I/R injury
remains a complicated and unresolved situation in clinical practice, especially in the field of solid organ transplantation. Hydrogen
sulfide (H

2
S) is the third gaseous signaling molecule and plays a broad range of physiological and pathophysiological roles in

mammals. H
2
S could protect against I/R injury in many organs and tissues, such as heart, liver, kidney, brain, intestine, stomach,

hind-limb, lung, and retina. The goal of this review is to highlight recent findings regarding the role of H
2
S in I/R injury. In this

review, we present the production and metabolism of H
2
S and further discuss the effect and mechanism of H

2
S in I/R injury.

1. Introduction

Ischemia-reperfusion (I/R) is a well-recognized pathological
condition that is characterized by an initial deprivation
of blood supply to an area or organ followed by subse-
quent vascular restoration and concomitant reoxygenation of
downstream tissue [1]. I/R can develop as a consequence of
trauma, hypertension, shock, sepsis, organ transplantation,
or bypass surgery leading to end-organ failure such as acute
renal tubular necrosis, bowel infarct, and liver failure. I/R can
also occur under various complications of vascular diseases
such as stroke andmyocardial infarction [1, 2]. Several patho-
physiologic mechanisms have been proposed as mediators
of the damage induced by I/R, such as activation of the
complement system and leukocyte recruitment, endoplasmic
reticulum stress, calcium overload, reduction of oxidative
phosphorylation, increased free radical concentration, devel-
opment of the no-reflow phenomenon, endothelial dys-
function, and activation of signaling pathways of apoptosis,
necrosis, and/or autophagy [1, 3]. Many studies have shown
that there are three time frames in the protection against
I/R injury: before the index ischemic episode (ischemic
preconditioning), during ischemia (ischemic conditioning),
and at the onset of reperfusion (ischemic postconditioning)
[4, 5]. Currently, several therapeutic gases have been shown to

play a role in the treatment of I/R injury, including hydrogen,
nitric oxide (NO), carbon monoxide (CO), and hydrogen
sulfide (H

2
S) [6].

H
2
S is a colorless, flammable, and water-soluble gas with

the characteristic smell of rotten eggs. In the past several
centuries, H

2
S had been known only for its toxicity and

environmental hazards [7, 8]. It elicits its toxic effects by
reversibly inhibiting cytochrome c oxidase (CcO), preventing
oxidative phosphorylation and lowering the production of
adenosine triphosphate (ATP). Recently, there has been
growing evidence that H

2
S plays a broad range of physio-

logical and pathophysiological functions [9, 10], including
induction of angiogenesis [11], regulation of neuronal activity
[9], vascular relaxation [12], glucose homeostatic regulation
[13], and protection against I/R injury in heart, liver, kidney,
lung, and brain [14–18]. The abnormal metabolism of H

2
S

could result in an array of pathological disturbances in the
form of hypertension, diabetes, atherosclerosis, heart failure,
sepsis, inflammation, erectile dysfunction, cataracts, asthma,
and neurodegenerative diseases [10]. In addition, H

2
S can

also interact with other specific molecules, including NO
[19], CcO [20], catalase [21], myoglobin [21, 22], hemoglobin
[21, 22], Kelch-like ECH-associated protein 1 (Keap1) [23],
cysteine residues on ATP-sensitive potassium (KATP) chan-
nels [24], epidermal growth factor receptor [25], and vascular
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endothelial growth factor receptor 2 [25, 26]. Considering
H
2
S is involved in numerous biological processes, it is now

widely accepted that H
2
S functions as the third signaling

gasotransmitter, along with NO and CO [9].
With the deepening of research on H

2
S and I/R injury,

the role that H
2
S plays in attenuating I/R injury has begun to

be elucidated. In this review, we highlight recent studies that
provide new insight into the production and metabolism of
H
2
S and discuss the role andmechanismofH

2
S on I/R injury.

2. Production and Metabolism of H2S

2.1. Endogenous Production of H
2
S. H
2
S is endogenously

generated inmammalian cells via both enzymatic and nonen-
zymatic pathways, although the nonenzymatic pathway is
less important in H

2
S production [27]. With regard to

the enzymatic pathway, cystathionine 𝛽-synthase (CBS) and
cystathionine 𝛾-lyase (CSE) are two pyridoxal-5-phosphate-
(PLP-) dependent enzymes, which use either L-cysteine
or L-cysteine together with homocysteine as their princi-
pal substrates to produce H

2
S [9]. Unlike CBS and CSE,

3-mercaptopyruvate sulfurtransferase (3-MST) is a PLP-
independent enzyme, which uses 3-mercaptopyruvate (3MP)
as a substrate to produce H

2
S. 3MP is a metabolite of L-

cysteine and 𝛼-ketoglutarate by cysteine aminotransferase
(CAT) [9]. CSE and CBS are cytosolic enzymes with tissue-
specific distributions. CBS is predominantly expressed in the
central nervous system and is also found in liver, kidney,
ileum, uterus, placenta, and pancreatic islets. CSE is abundant
in heart, liver, kidney, uterus, ileum, placenta, and vascular
smooth muscle. CSE is the most relevant H

2
S-producing

enzyme in the cardiovascular system [9, 27]. CAT and 3-
MST are localized both in cytosol and mitochondria, but the
majority of these two enzymes are present in the mitochon-
dria [9].They have been found in the heart, kidney, liver, lung,
thymus, testis, brain, and thoracic aorta and are apparently
important for H

2
S production in the brain and vasculature

[9, 27, 28]. Furthermore, a recent study has demonstrated
that D-cysteine (a negative control of L-cysteine) can be
metabolized to achiral 3MP by D-amino acid oxidase and
can be used as a substrate for 3-MST to produce H

2
S in both

kidney and brain [29]. During the enzymatic pathway, H
2
S

can be immediately released or stored in a form of bound or
acid-labile sulfur in the cells [30].

Apart from enzymatic pathway, endogenous H
2
S can also

be produced through nonenzymatic processes that are less
well understood [27, 30, 31]. Nonenzymatic production of
H
2
S occurs through glucose, inorganic, and organic polysul-

fides (present in garlic), glutathione, and elemental sulfur [30,
31]. H

2
S can be generated from glucose either via glycolysis

(>90%) or from phosphogluconate via nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (<10%) [7, 27, 30].
Glucose could react with cysteine, methionine, or homocys-
teine to produce gaseous sulfur compounds such as H

2
S and

methanethiol [7, 8, 30]. H
2
S is also produced through direct

reduction of glutathione and elemental sulfur. Reduction
of elemental sulfur to H

2
S is mediated through reducing

equivalents of the glucose oxidation pathways such as nicoti-
namide adenine dinucleotide and NADPH [7, 8]. Thiosulfate

is an intermediate of sulfur metabolism from cysteine and
H
2
S formation from thiosulfate through a reductive reaction

involving pyruvate, which acts as a hydrogen donor [7, 8, 32,
33]. In addition, garlic and garlic-derived organic polysulfides
could induce H

2
S production in a thiol-dependent manner,

such as diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl
trisulfide (DATS), and S-allyl cysteine (SAC) [30–34].

2.2. Exogenous Source of H
2
S. H
2
S gas has been considered as

the authentic resource of exogenous H
2
S [35]. Recent studies

have shown that H
2
S gas plays important roles in promoting

angiogenesis [11], ameliorating type II diabetes [13], and
protecting against myocardial I/R injury [36]. However, H

2
S

gas is not an ideal resource due to a possible toxic impact
of H
2
S excess and difficulty in obtaining precisely controlled

concentration [35]. Currently, a number of H
2
S-releasing

compounds have already been successfully designed and
developed. These compounds could be mainly divided into
two types, including the “H

2
S donors,” which release H

2
S as

the only mechanism of action, and the “H
2
S-releasing hybrid

drugs,” also known as “dirty drugs” in which H
2
S release

is an ancillary property which accompanies a principal
mechanism of the hybrid drugs [35]. Inorganic sulfide salts,
such as sodium hydrosulfide (NaHS), sodium sulfide (Na

2
S),

and calcium sulfide, have been widely used as H
2
S donors

[7, 8, 35]. As the maximum concentration of H
2
S released

from these salts can be reached within seconds, they have
been called fast-releasing H

2
S donors [35]. However, the

effective residence time of these donors in tissues may be
very short because H

2
S is highly volatile in solutions [35].

Ideal H
2
S donors for therapeutic purposes should generate

H
2
S with relatively slow-releasing rates and longer periods

of treating time. Recently, many slow-releasing H
2
S donors

(Table 1) and H
2
S-releasing hybrid drugs (Table 2) have been

designed and synthesized to increase the treatment efficacy of
H
2
S.

2.3. Metabolism of H
2
S. In order to maintain a proper physi-

ological balance of its metabolism, H
2
S can be broken down

through several enzymatic and nonenzymatic processes [7,
10, 37]. The main pathway of H

2
S catabolism occurs in

mitochondria. Mitochondrial oxidative modification con-
verts H

2
S into thiosulfate through several enzymes including

quinone oxidoreductase, S-dioxygenase, and S-transferase.
Thiosulfate could be further converted into sulfite, which is
catalyzed by thiosulfate : cyanide sulfurtransferase. Sulfite is
then rapidly oxidized to sulfate by sulfite oxidase. Therefore,
sulfate is a major end-product of H

2
S metabolism under

physiological conditions [7, 10, 37, 38]. The secondary mech-
anism of H

2
S catabolism is the methylation to methanethiol

and dimethylsulfide via thiol S-methyltransferase in the
cytosol [10, 37, 38]. The third pathway of H

2
S metabolism

is the interaction of H
2
S with methemoglobin that leads to

sulfhemoglobin, which is considered as a possible biomarker
of plasma H

2
S [10, 37, 38]. These three pathways are con-

sidered the main processes of H
2
S catabolism in mammals.

Furthermore, recent studies have shown that H
2
S could be

converted into sulfite via minor oxidative routes in activated
neutrophils [10, 37].
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Table 1: The biological characteristics of slow-releasing H2S donors.

Compounds H2S release mechanisms Therapeutic effects References

GYY4137 Hydrolysis

Vasodilation [86]
Anti-inflammation [19]
Anticancer [87]
Protection of mitochondrial function [88]
Regulation of oviductal embryo transport and
myometrial contractility [89, 90]

Antithrombotic [91]

ADT Metabolized by carboxylesterases Neuroprotection against oxidative stress [92]
Protection of blood-brain barrier integrity [55]

ADT-OH Metabolized by carboxylesterases
Neuroprotection against oxidative stress [92]
Vasorelaxation [93]
Antineuroinflammation [94]

AP39 Metabolized by carboxylesterases Protection against oxidative mitochondrial
DNA damage [95]

S-Aroylthiooximes Hydrolysis Unknown [96]

S-Propargyl-cysteine Hydrolysis

Angiogenesis promotion [97]
Anticancer [98]
Cardioprotection [99]
Anti-inflammation [100]

SG-1002 Activation after oral administration Cardioprotection [101]
4-Hydroxythiobenzamide Hydrolysis Improvement of wound healing [102]
Arylthioamides Thiol activation Unknown [103]
N-(benzoylthio)benzamides Hydrolysis Unknown [104]
S-Propyl cysteine Hydrolysis Cardioprotection [99]
N-Acetylcysteine Hydrolysis Protection against oxidative stress [105]
N-Acetylcysteine ethyl ester Hydrolysis Protection against oxidative stress [105]
SAC∗ Hydrolysis Protection against oxidative stress [99]
PhNCS Thiol activation Unknown [106]
PhNCS-COOH Thiol activation Unknown [106]

Lawesson’s reagent Hydrolysis Anti-inflammation [107]
Protection against gastric damage [108]

Dithioperoxyanhydrides Thiol activation Vasorelaxation [35]
Thioglycine Bicarbonate activation Unknown [109]
L-Thiovaline Bicarbonate activation Unknown [109]
Thioamino acids Bicarbonate activation Vasorelaxation [109]
Phosphorodithioates Hydrolysis Protection against oxidative stress [35]
S-SH compounds Thiol activation Myocardial I/R protection [110]
N-(acylthio)-benzamides Thiol activation Unknown [104]
H2S photo-donor 5 Light activation Unknown [111]
gem-Dithiol compounds Light activation Unknown [35]
Allyl isothiocyanate Thiol activation Unknown [112]
Benzyl isothiocyanate Thiol activation Unknown [112]
4-Hydroxybenzyl isothiocyanate Thiol activation Unknown [112]
Erucin Thiol activation Unknown [112]
Sinigrin Hydrolysis Unknown [112]
Poly(ethylene glycol)-ADT Metabolized by carboxylesterases Unknown [113]
S-memantine Thiol activation Protection against ischemic neuronal death [114]

ACS1 Metabolized by carboxylesterases Neuroprotection [115]
Anticancer [116]

∗This compound is also a derivative of garlic.
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Table 2: The biological characteristics of H2S-releasing hybrid drugs.

Compounds Parent drugs Therapeutic effects References

ACS2 Valproic acid Anticancer [116]
Antiangiogenesis [117]

ACS6 Sildenafil
Proerectile [118]
Neuroprotection [119]
Protection against oxidative stress [120]

ACS14 Aspirin

Protection against oxidative stress [121]
Prevent the progression of atherosclerosis [122]
Antiaggregatory [123]
Protection against I/R injury [124]
Modulation of thiol homeostasis [125]
Neuroprotection [115]

ACS15∗ Diclofenac

Anticancer [126]
Antiosteolysis [127]
Anti-inflammation [128]
Antiangiogenesis [117]

ACS18 Sulindac Anticancer [126]
Antiangiogenesis [117]

ACS21 Salicylic acid Protection against I/R injury [124]
ACS32 Diclofenac Antiosteolysis [127]

ACS33 Valproic acid Anticancer [129]
Inhibition of histone deacetylase activity [129]

ACS67 Latanoprost Regulation of insulin secretion [114]
Neuroprotection [85]

ACS83 L-DOPA Anti-inflammation [130]

ACS84 L-DOPA Anti-inflammation [131]
Neuroprotection [132]

ACS85 L-DOPA Anti-inflammation [118]
ACS86 L-DOPA Anti-inflammation [118]
ATB-284 Unknown Prevention against irritable bowel syndrome [133]
ATB-337∗ Diclofenac Anti-inflammation [134]
ATB-343 Indomethacin Anti-inflammation [135]
ATB-345 Naproxen Anti-inflammation [136]

ATB-346 Naproxen Anti-inflammation [136]
Anticancer [137]

ATB-429 Mesalamine Anti-inflammation [138]
Abirritation [139]

HS-aspirin (HS-ASA) Aspirin Anticancer [140]
Compound 8e 3-n-Butylphthalide Antithrombosis [141]
H2S-EXP 3174 Active metabolite of losartan Vasorelaxation [142]

NOSH-aspirin (NBS-1120) Aspirin Anticancer [143]
Anti-inflammation [144]

NOSH-naproxen (AVT-219) Naproxen Anti-inflammation [145]
NOSH-sulindac (AVT-18A) Sulindac Anti-inflammation [145]

S-diclofenac∗ Diclofenac Anti-inflammation [146]
Protection against I/R injury [146]

S-zofenopril Zofenopril Improvement of vascular function [147]
∗These compounds are remarkably similar to each other.
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3. H2S and I/R Injury

3.1. H
2
S and Myocardial I/R Injury. Myocardial ischemia is a

common clinical symptom characterized by low pH values,
low oxygen, and high extracellular potassium concentration,
which may cause arrhythmias, cardiac dysfunction, myocar-
dial infarction, and sudden death [3, 5, 6]. The damaged
myocardial structure and decreased heart function induced
by ischemia can be repaired with subsequent reperfusion.
The effectiveness of reperfusion depends on the duration and
severity of prior ischemia [6, 39]. However, myocardial reper-
fusion could also activate a complex inflammatory response,
which may finally lead to myocardial ischemia/reperfusion
injury (MIRI), such as arrhythmias, myocardial stunning,
microvascular dysfunction, andmyocyte death [2, 40].There-
fore, it is necessary to develop effective cardioprotective
strategies and agents against MIRI to improve myocardial
function and to reduce the risk of cardiovascular events [4].
H
2
S is now considered as an endogenous signaling molecule

which plays an important role in the cardiovascular system
[6, 15, 27]. In the heart, H

2
S is produced in the fibroblasts,

myocardium, and blood vessels from L-cysteine by CSE,
CBS, and 3-MST and accumulates at relatively high local
concentrations [6, 27, 30]. An accumulating body of evidence
indicates that exogenous or endogenous H

2
S could exert

cardioprotection against MIRI in cardiac myocytes, isolated
hearts, and intact animals. However, it is currently difficult to
define the precise underlyingmechanisms for this protection.
A summary ofwhat is known about themechanisms bywhich
H
2
S and its donors-induced cardioprotection against MIRI is

shown in Table 3.

3.2. H
2
S and Hepatic I/R Injury. Liver I/R-induced injury

represents a continuum of organic processes that could
produce profound liver damage and ultimately lead to
morbidity and mortality [41, 42]. Hepatic I/R injury has
now been considered a worldwide health problem and
usually occurs in liver transplantation, hemorrhagic shock
and resuscitation, trauma, liver resection surgery, and aor-
tic injury during abdominal surgery [41–43]. Hepatic I/R
injury can be categorized into warm I/R and cold storage
reperfusion injury, which share a commonmechanism in the
disease aetiology [41, 42]. Increasing number of experimental
and clinical studies indicate that pathways/factors involved
in the hepatic I/R injury include liver Kupffer cells and
neutrophils, intracellular calcium overload, oxidative stress,
anaerobic metabolism, mitochondria, adhesion molecules,
chemokines, and proinflammatory cytokines [41, 42, 44,
45]. Despite significant advances in surgical techniques and
perioperative cares, hepatic I/R injury remains one of the
major complications in hepatic resection and transplanta-
tion [46]. Novel agents/drugs exhibiting antioxidative, anti-
inflammatory, and cytoprotective activities may be possible
candidates for protecting the liver from I/R injury [46].
Recent studies have shown that H

2
S could significantly

attenuate hepatic I/R injury in several ways, including inflam-
mation, apoptosis, oxidation, and AKT activation (Table 4).
The results suggest that H

2
S has a protective effect against

hepatic I/R injury, and targetingH
2
Smay present a promising

approach against I/R-induced liver injury.

3.3. H
2
S and Renal I/R Injury. Acute kidney injury (AKI) is

a common and serious complication of critical illness and
is associated with high morbidity, mortality, and resource
utilization [25, 47, 48]. Renal I/R injury is one of the leading
causes of AKI in many clinical settings [47, 48]. Renal
I/R injury often arises from shock and various surgical
procedures such as kidney transplantation and resection [47–
49]. H

2
S plays important physiological and pathological roles

in the kidney [48]. For instance, it participates in the control
of renal function and increases urinary sodium excretion
via both tubular and vascular actions in the kidney [50].
CSE deficiency in mice could lead to reduced renal H

2
S

production and increase severity of damage and mortality
after renal I/R injury, which indicates that H

2
S may play

a role in alleviating renal I/R injury [14]. More recently,
there is growing evidence regarding the beneficial effects of
H
2
S on ameliorating renal I/R injury mainly via a variety

of antioxidant, antiapoptotic, and anti-inflammatory effects
(Table 5). These studies indicate that H

2
S and its donors may

be of benefit in conditions associated with renal I/R injury,
such as renal transplantation.

3.4. H
2
S and Cerebral I/R Injury. Ischemic cerebrovascular

disease is one of the most common disorders that greatly
threaten human health with high morbidity, disability, and
mortality [51]. Cerebral I/R injury is mainly characterized
by a deterioration of ischemic but potentially salvageable
brain tissue of an ischemic injury after reperfusion [52, 53].
There are a number of risk factors involved in cerebral
I/R injury, such as excitotoxicity, mitochondrial dysfunction,
formation of free radicals, breakdown of the blood-brain
barrier (BBB), edema, neuroinflammation, and apoptosis
[52–54]. Emerging evidences indicate that H

2
S functions not

only as a neuromodulator, but also as a neuroprotectant in
the central nervous system [18, 55–57]. In an in vivo model
of cerebral I/R injury, treatment with low concentration of
H
2
S decreased the infarct size and improved the neurological

function via antiapoptotic effect, implying that H
2
S has a

therapeutic role in cerebral ischemic stroke [18, 57]. DAS,
an H
2
S donor, could also protect the brain from I/R injury

partly via its antiapoptotic effects [58]. ADT, another H
2
S

donor, decreased the infarct size and protected BBB integrity
by suppressing local inflammation and nicotinamide adenine
dinucleotide phosphate oxidase 4-derived ROS generation
[55]. However, it is notable that the effects of H

2
S on cerebral

I/R injury are controversial [56]. Treatment with a higher
dose of exogenous H

2
S donor could deteriorate the effects

of cerebral I/R injury [18, 59]. These opposite effects of H
2
S

on cerebral I/R injury may be partially associated with the
concentration of H

2
S in brain. This research offers a novel

insight for future studies on the cytoprotective effects of a
proper dose of H

2
S on central nervous system degenerative

diseases, such as Alzheimer’s disease and Parkinson’s disease.

3.5. H
2
S and Intestinal I/R Injury. Intestinal I/R injury is

considered to be a major and frequent problem in many
clinical conditions, including intestinal mechanical obstruc-
tion, abdominal aortic aneurysm surgery, cardiopulmonary
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Table 3: Effects of H2S and its donors in myocardial I/R injury.

Experimental models Effects Proposed mechanisms References

Myocardial I/R in vivo (rat)
NaHS (0.2mg/kg, prior to R) protects
against the effects of haemorrhage-induced
I/R

Upregulation of the protein kinase
B/endothelial nitric oxide synthase pathway [148]

Regional myocardial I/R in
vivo (rat)

NaHS (3mg/kg, 15min prior to I) shows
cardioprotective effects

Combination of antiapoptotic and
anti-inflammatory effects [149]

Isolated perfused heart ex vivo
(rat)

NaHS (100𝜇M, plus histidine buffer
solution, prior to R) enhances cardiac
performance

Prevention of apoptosis and preservation of
the phosphorylative system [150]

Isolated perfused heart ex vivo
(rat)

NaHS (0.1–100𝜇M, at the onset of R)
protects rat heart against I/R injury Mitochondrial KATP channel opening [151]

Primary cultured neonatal
cardiomyocytes (rat)

NaHS (25–200 𝜇M, 30min prior to H)
protects cardiomyocytes from oxidative
stress

Inhibition of mitochondrial complex IV and
enhancement of SOD activity [152]

Isolated perfused heart ex vivo
(rat)

NaHS (10𝜇M, at the onset of R) protects
isolated rat hearts from I/R injury

Activation of the Janus kinase 2/signal
transducer and activator of transcription 3
signaling pathway

[153]

Isolated perfused heart ex vivo
(rat)

NaHS (40𝜇M, throughout the experiment)
provides myocardial protection

Possibly activation of the expression of heat
shock protein 72 [154]

Isolated perfused heart ex vivo
(rat)

L-cysteine (0.1–10mM, 10min before I until
10min after R) induces limitation of infarct
size

Dependent on H2S synthesis [155]

Myocardial I/R in vivo (rat)
NaHS (14𝜇M/kg, 7 days before myocardial
I/R) significantly reduces the myocardial
infarct size

Antiapoptotic, antioxidative, and
anti-inflammatory activities [156]

Isolated perfused heart ex vivo
(rat)

NaHS (100𝜇M, prior to I) significantly
decreases the duration and severity of
I/R-induced arrhythmias

Mitochondrial KATP channel opening [157]

Isolated perfused heart ex vivo
(rat)

NaHS (100𝜇M, prior to I) significantly
decreases myocardial infarct size and
improves heart contractile function

Activation of KATP/PKC/ERK1/2 and
PI3K/Akt pathways [158]

Isolated cardiac myocytes (rat)
NaHS (100𝜇M, prior to I) increases cell
viability, percentage of rod-shaped cells, and
myocyte contractility

KATP/PKC dependent induction of COX-2
expression and nitric oxide-induced COX-2
activation

[159]

Myocardial I/R in vivo (mice) H2S (100 ppm, prior to I) has protective
properties in I/R injury

Reduction of myocardial ROS production
and the inhibition of inflammation,
necrosis, and fibrogenesis

[36]

Regional myocardial I/R in
vivo (pig)

Na2S (100𝜇g/kg bolus + 1mg/kg/hr
infusion, 10min prior to R) improves
myocardial function and reduces infarct size

Anti-inflammatory properties [160]

Regional myocardial I/R in
vivo (pig)

Na2S (100𝜇g/kg bolus + 1mg/kg/hr
infusion, throughout the experiment)
reduces myocardial infarct size

Antiapoptotic activities [161]

Regional myocardial I/R in
vivo (rat)

NaHS (0.1–10𝜇M, 10min prior to I until
10min into R) results in a
concentration-dependent limitation of
infarct size

Mitochondrial KATP channel opening [162]

Myocardial I/R in vivo (rat)
NaHS (0.2mg/kg, prior to R) protects
against the effects of haemorrhage-induced
I/R

Protection against oxidative stress [163]

Primary cultured neonatal
cardiomyocytes (rat)

NaHS (1–100𝜇M, 30min prior to H) shows
concentration-dependent inhibitory effects
on cardiomyocyte apoptosis induced by H/R

Induction of phosphorylation of GSK-3 and
inhibition of mitochondrial permeability
transition pore opening

[164]

Myocardial I/R in vivo (mice) Na2S (0.1mg/kg, 7 days prior to I) attenuates
myocardial I/R injury

Activation of nuclear factor
erythroid-2-related factor-2 signaling in an
Erk-dependent manner

[165]
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Table 3: Continued.

Experimental models Effects Proposed mechanisms References

Myocardial I/R in vivo (rat)
NaHS (14𝜇M/kg, 7 days prior to I) inhibits
apoptosis of cardiomyocytes induced by
myocardial I/R

Enhancement of the phosphorylation of
apoptosis repressor with caspase
recruitment domain

[166]

Myocardial I/R in vivo (mice)
Na2S (10–500 𝜇g/kg, prior to R) limits
infarct size and preserves left ventricular
function

Inhibition of myocardial inflammation and
preservation of both mitochondrial
structure and function

[167]

Myocardial I/R in vivo (mice) Na2S (100𝜇g/kg, 1 h prior to I) reduces
myocardial infarct size

miR-21-dependent attenuation of ischemic
and inflammatory injury [168]

Myocardial I/R in vivo (mice) Na2S (100𝜇g/kg, 24 h prior to I) reduces
myocardial infarct size

Combination of antioxidant and
antiapoptotic signaling [169]

Isolated perfused heart ex vivo
(rabbit)

Allitridum (60 𝜇M, prior to I) reduces
myocardial infarct size Activation of PKC [170]

Myocardial I/R in vivo (mice)
DATS (200 𝜇g/kg, prior to R) significantly
reduces infarct size and increases
myocardial contractile function

Preservation of endogenous hydrogen
sulfide and increase of nitric oxide
bioavailability

[32]

Myocardial I/R in vivo (mice)
Na2S (100𝜇g/kg, prior to R) protects against
the structural and functional deterioration
of the left ventricle

Protection against oxidative stress and
mitochondrial dysfunction [15]

Isolated perfused heart ex vivo
(rat)

NaHS (50𝜇M, prior or post to I) protects
against cardiac I/R injury

Phosphorylation of mammalian target of
rapamycin C2 [171]

Myocardial I/R in vivo (rat) NaHS (3mg/kg, 15min prior to I)
significantly reduces myocardial infarct size Mitochondrial KATP channel opening [172]

Primary cultured neonatal
cardiomyocytes (rat)

NaHS (30𝜇M, 30min prior to H) attenuates
cardiomyocyte apoptosis and enhances cell
viability

Protection of cardiomyocytes against
I/R-induced apoptosis by stimulating Bcl-2 [173]

Isolated perfused heart ex vivo
(mice)

Na2S (10𝜇M, 40 seconds after the start of R)
markedly improves the recovery of
myocardial function

Nitric oxide synthase 3-dependent signaling
pathway [174]

Myocardial I/R in vivo (rat)
NaHS (14𝜇M/kg/d, 6 d prior to I) markedly
reduces heart infarct size and has great
improvement in blood pressure

Upregulation of survivin [175]

Myocardial I/R in vivo (pig)
NaHS (0.2mg/kg, prior to R) markedly
reduces myocardial infarct size and
improves regional left ventricular function

Higher expression of phospho-GSK-3𝛽 and
lower expression of apoptosis-inducing
factor

[176]

H/R: hypoxia/reoxygenation; SOD: superoxide dismutase; PKC: protein kinase C; ERK1/2: extracellular signal regulated kinase 1/2; PI3K (PtdIns3K):
phosphatidylinositol 3-kinase; Akt (PKB): protein kinase B; COX-2: cyclooxygenase-2; ROS: reactive oxygen species; GSK-3: glycogen synthase kinase-3.

bypass, strangulated hernias, liver and intestinal transplanta-
tion, mesenteric artery occlusion, shock, and severe trauma
[60–64]. This injury can lead to the development of sys-
temic inflammatory response syndrome and multiple organ
dysfunction syndrome [62, 63]. Although many advanced
treatments have been applied to clinical research, the mor-
tality induced by intestinal I/R injury remains very high
[61, 63]. Therefore, it is urgent to develop new therapeutic
agents/drugs for the treatment of intestinal I/R injury. Recent
studies have shown that H

2
S has anti-ischemic activity in

the intestinal I/R model. NaHS could significantly reduce the
severity of intestinal I/R injury and dramatically increase the
activities of SOD and glutathione peroxidase (GSH-Px) in
both serum and intestinal tissue, which suggests that H

2
S

protects against intestinal I/R injury by increasing the levels
of antioxidant enzymes [63]. In addition, administration
of NaHS after the onset of ischemia can attenuate I/R-
induced damage of intestinal tissues both in vitro and in vivo

[65]. These observations provide new insight regarding the
potential use of H

2
S as a therapeutic agent to limit intestinal

I/R injury.

3.6. H
2
S and Gastric I/R Injury. Gastric I/R injury is an

important and common clinical problem which could lead
to mucosal injury [66]. A number of clinical conditions
contribute to gastric I/R injury, including peptic ulcer bleed-
ing, vascular rupture or surgery, ischemia gastrointestinal
disease, and hemorrhagic shock [66]. However, there are few
satisfactory clinical methods in the treatment of gastric I/R
injury [67]. H

2
S has been found to play an important role

in protecting against gastric I/R injury. Endogenous H
2
S had

a protective effect against gastric I/R in rats by enhancing
the antioxidant capacity through increasing the contents of
GSH and SOD [68]. Another study has shown that NaHS
and L-cysteine could protect the gastric mucosa against I/R
damage mainly mediated by altering mRNA expression and
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Table 4: Effects of H2S and its donors in hepatic I/R injury.

Experimental models Effects Proposed mechanisms References

Hepatic I/R in vivo (rat)
NaHS (28𝜇M/kg, prior to R) attenuates the
injured hepatic function and the synthetic
action of hepatocytes

Inhibition of lipid peroxidation and
inflammation reactions [177]

Hepatic I/R in vivo (mice) NaHS (1.5mg/kg, 1 h prior to I) protects
against hepatic I/R injuries Activation of the PtdIns3K-AKT1 pathway [17]

Hepatic I/R in vivo (rat)

NaHS (14𝜇M/kg, 30min prior to I)
significantly attenuates the severity of liver
injury and inhibits the production of lipid
peroxidation

Antioxidant and antiapoptotic activities [46]

Hepatic I/R in vivo (rat) DAS (1.75mM/kg, 12–15 h prior to I)
protects the liver from warm I/R injury

Induction of heme oxygenase-1 and
inhibition of cytochrome P450 2E1 [178]

Hepatic I/R in vivo (mice) Na2S (1mg/kg, 5min prior to R) protects the
murine liver against I/R injury

Upregulation of intracellular antioxidant
and antiapoptotic signaling pathways [179]

Hepatic I/R in vivo (mice) H2S (100 ppm, 5min prior to R) protects the
liver against I/R injury

Reduction of necrosis, apoptosis, and
inflammation [180]

Hepatic I/R in vivo (mice) NaHS (14 and 28 𝜇M/kg, 30min prior to I)
attenuates hepatic I/R injury

Weaken the apoptosis through the
inhibition of c-Jun N-terminal protein
kinase 1 signaling pathway

[181]

Hepatic I/R in vivo (rat)
NaHS (12.5, 25 and −50 𝜇M/kg, 5min prior
to I) reduces liver damage after
perioperative I/R injury

Inhibition of mitochondrial permeability
transition pore opening, reduction of cell
apoptosis, and activation of Akt-GSK-3𝛽
signaling

[182]

Table 5: Effects of H2S and its donors in renal I/R injury.

Experimental models Effects Proposed mechanisms References

Renal I/R in vivo (mice) NaHS (1mg/kg, 15min prior to I) rescues
mice from the injury and mortality Modulation of oxidative stress [14]

Renal I/R in vivo (mice)
H2S (100 ppm, before and after treatment)
shows protective effects on survival, renal
function, apoptosis, and inflammation

A hypometabolic state induced by H2S [183]

Renal I/R in vivo (pig)
Na2S (100𝜇g/kg, 10min prior to R) results in
a marked reduction in kidney injury and
preserves glomerular function

Anti-inflammatory effects [184]

Isolated perfused kidney ex
vivo (pig)

H2S (0.5mM, 10min before and after R)
ameliorates the renal dysfunction Activation of KATP channels [185]

Renal I/R in vivo (mice)
NaHS (100𝜇M/kg, 30min prior to I)
significantly attenuates I/R injury-induced
renal dysfunction

The increase in expression of CSE [186]

Renal I/R in vivo (rat) NaHS (100𝜇M/kg, 15min prior to I and
5min prior to R) attenuates renal I/R injury Antiapoptotic and anti-inflammatory effects [187]

Warm renal I/R in vivo (rat)

NaHS (150 𝜇M, at time of renal pedicle
clamping and during R) improves long-term
renal function and decreases long-term
inflammation

Antiapoptotic and anti-inflammatory effects [188]

Warm renal I/R in vivo (rat)
NaHS (150 𝜇M, during I and R) increases
renal capillary perfusion and improves acute
tubular necrosis and apoptosis

Decrease of leukocyte migration and
inflammatory responses [189]

Renal I/R in vivo (pig) Na2S (2mg/kg, 2 h prior to I) attenuates
tissue injury and organ dysfunction Antioxidant and anti-inflammatory effects [190]

Renal I/R in vivo (rat) NaHS (100𝜇g/kg, 20min prior to I or 10min
prior to R) protects against renal I/R injury Antioxidant and antiapoptotic effects [191]
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plasma release of proinflammatory cytokines [69]. Further-
more, NaHS and L-cysteine also showed gastroprotective
effects against I/R injury by Keap1 s-sulfhydration, nuclear
factor-kappa B dependent anti-inflammation, and mitogen-
activated protein kinase dependent antiapoptosis pathway
[66].Thus,H

2
S and its donorsmay have potential therapeutic

value in acute gastricmucosal lesion, which is often caused by
I/R.

3.7. H
2
S and Hind-Limb I/R Injury. I/R injury can occur

in skeletal muscle during elective surgery (i.e., free tissue
transfer) and lower extremity arterial occlusion [70, 71]. Limb
I/R injury may result in a series of postreperfusion syn-
dromes, such as crush syndrome, compartment syndrome,
and myonephropathic-metabolic syndrome [72]. Currently,
clinical practice mainly focuses on reducing the duration of
ischemia to minimize the ischemic injury in skeletal muscle
[70, 71]. Therapeutic interventions that change the biochem-
ical environment during the ischemic and/or reperfusion
period may result in amelioration of subsequent cellular
damage [71]. Treatment with NaHS for 20 minutes before the
onset of hind-limb ischemia or reperfusion could result in
significant protection against the cellular damage induced by
I/R [71, 73]. However, administration of NaHS for 1 minute
before reperfusion did not show any protection against limb
I/R Injury [73]. Whether H

2
S could protect against limb I/R

injury in a dose- and time-dependent manner needs further
investigation.

3.8. H
2
S and Lung I/R Injury. Lung I/R injury occurs in

various clinical conditions such as lung transplantation,
cardiopulmonary bypass, trauma, cardiac bypass surgery,
sleeve lobectomy, shock, pulmonary embolism, resuscitation
from circulatory arrest, and reexpansion pulmonary edema
[16, 74–77]. Lung I/R injury is characterized by increased
pulmonary vascular resistance, worsened lung compliance,
poor lung oxygenation, edema, and increased pulmonary
endothelial permeability [16, 78]. Currently, there is no
effective therapy available for the lung I/R injury. The precise
mechanism of lung I/R injury needs to be further elucidated
[16, 74]. A recent study has shown that preperfusion withH

2
S

could attenuate the lung I/R injury by reducing lung oxidative
stress [16], which suggests that administration of H

2
S or its

donors might be a novel preventive and therapeutic strategy
for lung I/R injury.

3.9. H
2
S and Retinal I/R Injury. Retinal I/R injury is a

common clinical condition and is associated with the loss
of neurons, morphological degeneration of the retina, loss of
retinal function, and ultimately vision loss [79, 80]. Emerging
evidence suggests that retinal I/R injury plays an important
role in the pathologic processes of several ocular diseases
such as diabetic retinopathy, retinopathy of prematurity,
acute glaucoma, and retinal vascular occlusion [81, 82].
Retinal I/R injury often results in visual impairment and
blindness because of the lack of effective treatment [81, 83].
One recent study has indicated that rapid preconditioning
with inhaled H

2
S can mediate antiapoptotic effects and thus

protect the rat retina against I/R injury [84]. ACS67, a H
2
S-

releasing derivative of latanoprost acid, possesses neuro-
protective properties and could attenuate retinal ischemia
in vivo and decrease the oxidative insult to RGC-5 cells
(retinal ganglion cells) in vitro [85].These results suggest that
H
2
S represents a novel and promising therapeutic agent to

counteract neuronal injuries in the eye [84]. Further studies
are needed to prove the neuroprotective propensity of H

2
S in

retinal I/R injury using a postconditioning approach.

4. Concluding Remarks

H
2
S is now considered as the third signaling gasotransmitter

which plays a broad range of physiological and pathophys-
iological functions, including vascular relaxation, induction
of angiogenesis, regulation of neuronal activity, and glucose
homeostatic regulation. H

2
S can be endogenously generated

via both enzymatic and nonenzymatic pathways and mainly
metabolized through three pathways in mammals. How-
ever, whether H

2
S could be generated and metabolized via

another pathway should be further studied and confirmed.
In addition, more efforts should be made to illuminate the
expressions and functions of H

2
S-generating enzymes in

different organ and tissue. In order to increase the treatment
efficacy of H

2
S, a number of slow-releasing H

2
S donors and

H
2
S-releasing hybrid drugs have been successfully designed,

synthesized, and proved to be effective in vitro, ex vivo, and in
vivo. Novel synthetic strategy should be developed to extend
the exposure time of H

2
S donor. Agents/drugs with anti-

apoptotic, antioxidative, anti-inflammatory, and antitumor
effects could be conjugated with H

2
S donor to enhance their

therapeutic effects. Furthermore, new drug targeting carrier
systems should be designed to effectively transport the H

2
S

donor to the targeted organ or tissue.
I/R is a pathological condition that is characterized by

an initial deprivation of blood supply to an area or organ
followed by the subsequent restoration of perfusion and
concomitant reoxygenation. Novel mechanisms associated
with I/R need to be further studied and illuminated in addi-
tion to the existing pathophysiologicmechanisms. Increasing
number of studies have shown that H

2
S could protect against

I/R injury in many organs and tissues, such as heart, liver,
kidney, brain, intestine, stomach, hind-limb, lung, and retina.
Whether H

2
S could exert protection against I/R injury in

other organs and/or tissues need to be further demonstrated.
In addition, the molecular targets of H

2
S in I/R injury are

also needed to be clarified. Ischemic preconditioning, con-
ditioning, and postconditioning are three time frames in the
protection against I/R injury. Proper time frame and optimal
duration of treatment should be confirmed according to
the physicochemical property of H

2
S-releasing compounds.

Considering different doses of H
2
S-releasing compounds

may exert different therapeutic effects, proper dose range
should also be further explored to obtain a better therapeutic
efficacy. Currently, researches into themolecularmechanisms
of H
2
S in I/R injury using animal experiments have made

some progress. Clinical evidence-based research should also
be useful in further exploring the little-understood field of the
role of H

2
S in I/R injury. In addition, longer-term studies are
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required to determine whether H
2
S treatment permanently

improves organ function following I/R injury and whether
this effect reduces long-term morbidity and mortality.

In conclusion, with the rapid developments of design and
synthetic strategies, as well as better understanding of the
precise mechanisms behind the role of H

2
S in I/R injury,

treatment with H
2
S or its donors in proper dose range

and time frame will exhibit more potent therapeutic effects
against I/R injury in further preclinical research and clinical
application.
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