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ABSTRACT. Estrogen receptors α (ESR1) and β (ESR2) play central roles in folliculogenesis and 
therefore in reproductive biology. In the present study, two single nucleotide polymorphisms 
(SNPs) were identified in the ESR1 and ESR2 genes using PCR-single strand conformation 
polymorphism (PCR-SSCP) and DNA sequencing. One of the identified SNPs, a T1101C transition 
located within exon 4 of the ESR1 gene, was significantly associated with hen-housed egg 
production (HHEP) at 30, 43, 57 and 66 weeks of age (P<0.05), and egg weight (EW) at 30 weeks 
(P<0.05). Another SNP, a G1755A transition leading to a non-synonymous substitution (valine 
459-to-isoleucine) located within exon 8 of the ESR2 gene, was also markedly correlated with 
the HHEP at 30, 43, 57 and 66 weeks of age (P<0.05), and EW at 30 weeks (P<0.05). A greater 
proportion of the additive variance was explained by the SNPs for most of the associated egg 
production traits (>1%). Furthermore, the results of the combined genotype-based association 
analysis supported the finding that the two SNPs were associated with the traits under a study. 
Taken together, our findings suggest that the two sequence variations in the ESR1 and ESR2 genes 
may provide promising genetic markers for the early selection and prediction of advantageous 
phenotypes in chicken breeding.

Key woRdS: Dagu hens, egg production trait, estrogen receptors α, estrogen receptors β, 
polymorphisms

One of the major objectives of selection in genetic breeding programs in laying hens is to improve egg productivity [43]; 
however, most egg production traits in chicken, including those in hen-houses, egg weight and age of sexual maturity are inherited 
as polygenic traits, with low to moderate heritability, leading to difficulty in the estimation of the level of genetic improvement 
[5, 30, 33, 43]. Many modern chicken breeds have been generated by conventional breeding methods (such as family selection 
assisted by self-selection), with improved egg production traits, a key focus. However, the high costs and low effectiveness of the 
conventional breeding approach in chicken using pedigree breeding and selection, has been disappointing for poultry breeders and 
researchers. Fortunately, with recent progresses in molecular biology technologies, breeding for target traits can be fast-tracked by 
the utilization of marker-assisted selection (MAS), focusing on improving egg productivity in chickens. A candidate gene approach 
is a cost-effective means of investigating associations between gene polymorphisms and quantitative trait loci that are responsible for 
variations in traits of interest [26, 33, 35, 42, 47]. This approach enables more efficient breeding selection for egg production traits 
in chickens. Therefore, identification and application of potential candidate genes and associated genotypes can have significant 
economic implications and have become increasingly important in poultry breeding programs [27, 44, 48]. However, more candidate 
genes and single nucleotide polymorphisms (SNPs) are required for MAS in chicken breeding. Currently, accumulating evidence has 
confirmed that estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2) genes are involved in ovarian follicular development, and 
ovulation in chicken and mice [13, 14, 18, 19], with a potential impact on egg production traits in laying hens.

Estrogen is essential for folliculogenesis, with independent functions attributed to each of the two estrogen receptors [14]. 
Estrogen plays a pivotal role as an intrafollicular modulator by stimulating granulosa cell proliferation and facilitating the 
differentiative actions of FSH and LH on these cells [13, 34]. Estrogen receptors (ERs) are ligand-activated transcription factors, 
which are stabilized in the cytosol and translocate to the nucleus upon ligand binding and dimerization in addition to their 
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involvement of membrane ER-centered signaling triggered by estrogen [28, 32, 40]. The expression of ESR1 (ER alpha) and ESR2 
(ER beta) mRNA was examined in the ovaries of laying hens; the expression of ESR1 was higher than that of ESR2 [22]. The ESR1 
gene is located on chromosome 3 and contains eight exons encoding a 589-amino acid protein (ERα) [23]. Previous studies on 
mice with targeted disruption in the ERα gene have indicated the presence of other estrogen binding elements, given that ovarian 
follicular growth appears to be unperturbed up to the secondary and antral stages [12]. In quails, the marked expression of ERα 
mRNA in the granulosa layer of the largest follicle may be related to the role of estrogens in cell proliferation and protein synthesis 
in the oviduct [21]. The results of recent studies revealed that adult female mutant mice that lack ERα in the neurons during the 
neonatal period fail to exhibit estrous cycles or negative feedback [10], whereas the differential expression of the ESR1 gene in 
chicken is involved in asymmetric ovarian development [19]. In addition, a recent study demonstrated that variants in the ESR1 
gene, revealed using SNP analysis, were associated with laying traits in quails [41].

The chicken ESR2 gene, located on chromosome 5, has been cloned and found to comprise of eight exons encoding a 
472-amino acid protein (ERβ), which plays a predominant role in estrogen activity in the chicken ovary [13, 23]. ERβ, expressed 
predominantly by the ovarian granulosa cells, is required for antrum formation, preovulatory follicle maturation and ovulation in 
follicle development [16, 20]. However, ERα and ERβ play different roles in folliculogenesis [13], where the proliferative action 
of estrogen is transmitted preferentially via ERα, whereas the differentiative effects of estrogen are mediated principally by ERβ 
[6, 7]. Ovulatory defects have been linked to polymorphisms in human ERβ [39]. Thus, these data indicate that sequence mutations 
in ESR1 and ESR2 may have a great influence on chicken ovarian development and egg laying performance. Recent studies have 
shown that a polymorphism in the first intron of the ESR1 gene was associated with egg laying traits (such as the onset of egg 
laying, egg production at the age of 300 days and egg-laying sequence) in Guizhou local blue-shell chickens [9, 50]. Accordingly, 
chicken ESR1 and ESR2 were proposed as candidate genes for egg production traits.

The Chinese Dagu chicken is an important poultry resource that is widely distributed in the northeast area of China; however, 
characterizations of genetic polymorphisms within the ESR1 and ESR2 encoding regions, and their possible correlation with egg 
production traits in Chinese breeds have been poorly investigated. In the present study, we detected two sequence variations in 
the coding regions of the ESR1 and ESR2 genes using the PCR-SSCP method and sequencing analysis. Associations between the 
newly identified single nucleotide polymorphisms (SNPs) and egg production traits were explored in local Chinese Dagu hens, 
and additive genetic effects of the SNP genotypes on the correlated traits were also evaluated. The purpose of this study was to 
determine a potential genetic marker to assist in the improvement of egg productivity in chicken breeding.

MATeRIALS ANd MeTHodS

Chicken and trait measurements
Chinese Dagu chickens were produced by the College of Animal Science and Technology of Jilin Agricultural University. This 

chicken breed is an important indigenous chicken genetic resource in China [8], which originated and is mainly distributed in 
Northeast China. These birds are adapted to cold weather conditions (the minimum temperature in winter is below −30°C outdoors) 
in the Northern-East area, with some excellent economic traits, such as high meat and egg qualities, relatively strong disease 
resistance and high egg productivity [8, 33]. In this experiment, 360 Dagu hens were sampled. They were hatched at the same 
time and raised in layered batteries under the same rearing conditions, which included free access to water and feed in accordance 
with the nutrient requirements of local Chinese chicken breeds and ration standard (including the Dagu chicken) established and 
published by the Chinese government, NY/T 33-2004, China. Approaching 16 weeks of age, the birds were reared in individual 
cages under a constantly maintained condition. As previously reported [33], the birds were exposed to a 16L:8D photoperiod, with 
lights on at 5:00 am. With the onset of egg-laying, all eggs were collected and recorded daily, with egg weights determined one day 
each week. Body weight was recorded following feed and water restrictions at 30 and 43 weeks of age, with the individual laying 
performance calculated. Egg production traits examined in this study included hen-housed egg production (egg laying number) 
at 30, 43, 57 and 66 weeks of age, and egg weight and body weight were determined at 30 and 43 weeks of age. All animal 
experiments were performed in accordance with laws of the People’s Republic of China regarding animal protection.

DNA extraction and PCR amplification
At 300 days of age, peripheral blood was sampled from individuals of the 360 Chinese Dagu hens via the wing vein. 

Genomic DNA was extracted using a standard phenol-chloroform method, and DNA purity was examined using 1% agarose gel 
electrophoresis and ultraviolet-spectrophotometry, with final concentrations between 2 and 10 ng/µl detected. Primers for PCR 
were designed according to the published ESR1 (GenBank accession No. NM_205183.2) and ESR2 (Accession No. NM_204794.2) 
mRNA sequences in chicken. The primer pairs (Table 1) utilized to amplify fragments of the ESR1 and ESR2 genes were screened 
after examination, from a clutch of primers that cover almost the whole coding region of each candidate gene.

PCR was performed in a total volume of 50 µl, containing 25 µl of 2X Taq Master Mix (CWBIO, Beijing, China), 1 µl each 
primer (100 nM), 1 µl template DNA (25 to 50 ng) and 22 µl RNase-free Water. The PCR conditions were as follows: 94°C for 2 
min, followed by 35 cycles at 94°C for 30 sec for denaturing, 55°C (57°C) for 30 sec for annealing (see Table 1), 72°C for 30 sec 
for extension and a final extension at 72°C for 2 min.

Cloning of PCR products, sequencing and alignment
PCR products were purified with the Wizard prep PCR purification system (Promega, Madison, WI, U.S.A.). The amplified 
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products were then cloned into the Promega pGEM-T easy vector for sequencing commercially, according to the methods 
published by Sambrook and Russell [36]. For each sampled bird, two independent PCRs were conducted, with sequences analyzed 
using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) 
to confirm the amplification of the expected chicken ESR1 and ESR2 gene fragments. The obtained sequences were then aligned 
using DNAMAN software version 6.0 (LynnonBiosoft, San Ramon, CA, U.S.A.) to identify nucleotide variations.

Genotyping by PCR-SSCP and reconstruction of combined genotypes
To determine ESR1 and ESR2 gene polymorphisms, the confirmed PCR products were further analyzed using the single-

strand conformation polymorphism (SSCP) assay, as previously described [33]. Briefly, each 10-µl PCR product was mixed 
with 6 µl loading dye (0.025% bromophenol blue, 0.025% xylene cyanol, 98% deionized formamide, 2% glycerin and 10 mM 
ethylenediaminetetraacetic acid [EDTA]). Samples were denatured at 99°C for 10 min, cooled rapidly on ice and then loaded on 
10% polymerized gels (acrylamide:bisacrylamide, 39:1; 0.75 mm thickness) 16 × 18 cm in size. Electrophoresis was carried out 
at 110 V for 5 hr in 1X tris-borate-EDTA (TBE) buffer at 20°C under an air-conditioning unit. After silver staining, the gels were 
examined under upper white by gel photography system (GeneSnap from SynGene). To avoid false positive/negative results due 
to artificial manipulation in the experiment, each sample was confirmed by repeated examinations. Combined genotypes were 
reconstructed based on the genotyping data obtained from all 360 birds using the PHASE program [38].

Polymorphism evaluation
Frequencies of genotypes and alleles at each SNP site were calculated, with each polymorphism evaluated for Hardy–Weinberg 

equilibrium using a Pearson’s goodness-of-fit chi-square test (degree of freedom=1). Gene homozygosity (Ho), heterozygosity 
(He), effective number of alleles (Ne) and polymorphism information content (PIC) were statistically analyzed using the 
POPGENE v. 1.32 software [46].

Marker-trait association analysis
Associations of single polymorphisms and combined genotypes with laying performance traits were evaluated using the General 

Linear Model (GLM) procedure in SPSS 18.0. The following linear mixed effects model was used in the analysis:
Yijk = µ + Li + Gj + Fk + eijk
where, Yijk is the phenotypic value of the target trait, such as hen-housed egg production and egg weight, µ is the population 

mean, Li is the fixed effect of the line, Gj is the fixed effect of the SNP genotype or combined genotype, Fk is the random effect of 
the family, and eijk is the residual. Type III sum of squares was used in each test. Values were considered significant at P<0.05 and 
presented as least square means ± standard errors (SE).

Predicted SNP genotype effects
For the SNP(s) that showed significant association with the egg-laying traits, differences between the means of each genotype 

and allelic frequencies were used to estimate additive effects [17]. The percentage of additive genetic variance (%Vj) explained by 
the SNPs was determined using the following formula:

%Vj = 100pjqjαj ^ 2 / Vg
where p and q are the allele frequencies for the jth SNP estimated across the entire population; αj is the estimated additive effect 

of the jth SNP (allele substitution effect) on the trait under analysis; and Vg is the restricted maximum likelihood (REML) estimate 
of the (poly-) genetic variance for the trait.

ReSULTS

Confirmation of the amplified nucleotide sequence
Two targeted fragments were amplified using screened primers specific for Chinese Dagu hens, in which a 121-bp PCR 

amplicon for ESR1 and a 103-bp fragment for ESR2 were obtained, respectively. The purified PCR products were then cloned 
into the Promega pGEM-T easy vector for sequencing. Alignments of the amplified sequences with the corresponding template 
sequences (GenBank No. NM_205183.2 for ESR1 and NM_204794.2 for ESR2 gene) were accomplished using the BLAST 
software provided by the NCBI server. Following confirmation of primer specificity, whereby the sizes of the PCR amplicons 
corresponded to the expected sequences of the candidate genes (Table 1), the cloned PCR products were identified by aligning 
with the direct genomic PCR products from the same chicken. No more than two allelic sequences were observed for all examined 

Table 1. Primers used to amplify chicken ESR1 and ESR2 fragments

Genes Sequences of primers (5′–3′) Product length (Location) Annealing temperature (°C)
ESR1 F: GGGAGGCTTCTTCTACAGA 121 bp 55

R: AAGGCACTGACCATCTGT (1,016–1,136 bp)

ESR2 F: ATGACTTGCTGCTGGAGA 103 bp 57
R:CAGACCTGGAAATGTGAAAC (1,696–1,798 nt)
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birds, confirming that the primer pairs specifically amplified the targeted genes.

Genotyping by PCR-SSCP and reconstruction of combined genotypes
Genotyping results obtained by PCR-SSCP analysis revealed that the TT and CT genotypes were classified for the ESR1 

genomic fragment (Fig. 1), and the GG and GA genotypes, for the ESR2 sequence within the Dagu hen population (Fig. 2). The 
combined genotype was reconstruction based on these genotype data, and four combined genotypes (H1, H2, H3 and H4) were 
determined among the 360 birds sampled (Table 6). The combined genotype present at the highest frequency was H1 (TTGG; 
0.56), with H2 (TTGA) being the next most frequent (0.27), followed by H3 (CTGG; 0.14) and H4 (CTGA; 0.03).

Polymorphism of the target sequences
Two single nucleotide polymorphisms (SNPs) were identified, corresponding to the PCR-SSCP banding patterns of the ESR1 and 

ESR2 genes following sequence alignment. In the ESR1 gene, a T/C transition at nucleotide position 1,101 of exon 4 was found and 
named SNP T1101C. However, this T/C transition leads to a synonymous substitution (alanine 301 to alanine). For this SNP, the 
hens sampled were typed as either TT or CT based upon the SSCP banding pattern. In the ESR2 gene fragment, a G/A transition at 
nucleotide position 1,755 was detected in exon 8 and named SNP G1755A. This transition results in a non-synonymous substitution 
of valine 459 to isoleucine with birds categorized as having GG and GA genotypes following PCR-SSCP analysis.

Frequencies of genotype and alleles at the SNP locus
Genotype and allelic frequencies of SNPs at the ESR1 and ESR2 loci in the Dagu chicken population are shown in Table 2. At 

SNP T1101C of the ESR1 gene (designated as the E1 locus), the frequency of allele T was significantly higher than that of allele 
C, with the frequency of genotype TT being higher than that of genotype CT in this population. At SNP G1755A of the ESR2 
(E2 locus), the frequency of allele G was higher than that of allele A, with the frequency of genotype GG being higher than that 
of genotype GA. Polymorphisms at both SNP loci were evaluated and were found to exhibit significant genetic disequilibrium 
between the T and C alleles of ESR1 and the G and A alleles of ESR2 (P<0.05).

As shown in Table 3, gene homozygosity (Ho) was higher than gene heterozygosity (He) for both E1 locus and E2 locus, with 

Fig. 1. Polymerase chain reaction- single strand conformation 
polymorphism band patterns of the ESR1 gene.

Fig. 2. Polymerase chain reaction- single strand conformation polymor-
phism band patterns of the ESR2 gene.

Table 2. Genotypic and allelic frequency at the SNP ESR1 and ESR2 loci in the Dagu chicken population

SNP Genotype No. of 
chickens

Genotype 
frequency Allele Allele 

frequency χ2

T1101C (ESR1) TT 287 0.797 T 0.898 4.773 a
CT 73 0.203 C 0.102

G1755A (ESR2) GG 251 0.697 G 0.849 9.123 a
GA 109 0.303 A 0.151

a) P<0.05 was accepted as statistically significant when the data were analyzed using a Pearson’s goodness-of-fit 
chi-square test (degree of freedom=1).

Table 3. Polymorphism information analysis of the ESR1 and ESR2 genes in the Dagu chicken population

SNP Gene homozygosity 
(Ho)

Gene heterozygosity 
(He)

Effective allele 
number (Ne)

Polymorphism 
information content (PIC)

T1101C (ESR1) 0.841 0.159 1.19 0.147
G1755A (ESR2) 0.74 0.26 1.351 0.226
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effective allele numbers of 1.190 (E1) and 1.351 (E2). The value of PIC for He at the E2 locus was higher than that at the E1 
locus; however, polymorphism was not high and only varied from moderate (0.226) to low (0.147).

Association of the SNP genotypes with laying performance and the predicted SNP genotype effects
Results of the association analysis between SNPs and egg production traits are shown in Table 4. The SNP T1101C genotype TT 

was significantly associated with higher HHEP at 30, 43, 57 and 66 weeks of age (P<0.05), and with the lower EW at 30 weeks 
(P<0.05). Moreover, the SNP G1755A genotype GG was also markedly associated with the higher HHEP at 30, 43, 57 and 66 
weeks of age (P<0.05), and with the smaller EW at 30 weeks (P<0.05). Furthermore, a large percentage of the additive variance 
was explained by the SNP for its significant association with the traits (>1%), respectively (Table 5). However, no significant 
difference was observed between the TT and CT or between the GG and GA genotypes regarding the BW at 30 and 43 weeks 
(P>0.05) or EW at 43 weeks (P>0.05).

As shown in Table 6, the combined genotype H1 was found to be significantly correlated with the highest HHEP at 30, 43, 57 
and 66 weeks of age (P<0.05), but with lower BW and EW at 30 and 43 weeks (P<0.05). In contrast, the H2 type was notably 
associated with the higher HHEP at 30, 43, 57 and 66 weeks of age (P<0.05), and with the smaller EW at 30 and 43 weeks 
(P<0.05). However, H4 was found to be significantly associated with the lowest HHEP at 30, 43, 57 and 66 weeks of age (P<0.05), 
and with higher BW and EW at 30 and 43 weeks (P<0.05).

dISCUSSIoN

Egg-laying performance is one of the most important economic traits in the poultry industry; improvement in egg production 
traits is a key goal of breeding programs and has been attracting increasing interest. However, most of the egg production traits 
in chicken, are inherited polygenically, with low to moderate heritability [5, 30, 43]; moreover, they obtained only from sexually 
mature females. This makes genetic improvements in males more difficult to estimate using traditional methods, which depend on a 
breeding value assessment. To explore methods that are more effective than the traditional breeding approach, many SNP detection 
techniques, including the PCP-SSCP genotyping analysis, have been established and are currently utilized. Nevertheless, because 

Table 4. Association between polymorphism in chicken ESR1 and ESR2 genes and egg production traits in 
Dagu hens

Egg production trait

Genotype
ESR1 ESR2

TT (287) CT (73) GG (251) GA (109)
(  ± SE) (  ± SE) (  ± SE) (  ± SE)

BW at 30 weeks (kg) 2.77 ± 0.05 2.86 ± 0.07 2.78 ± 0.05 2.89 ± 0.10
BW at 43 weeks (kg) 2.89 ± 0.07 2.97 ± 0.11 2.92 ± 0.08 3.06 ± 0.09
HHEP at 30 weeks (No.) 30.89 ± 2.19 a 18.91 ± 0.73 b 33.26 ± 3.83 a 20.48 ± 2.05 b
HHEP at 43 weeks (No.) 116.46 ± 3.74 a 89.96 ± 4.78 b 117.30 ± 4.36 a 85.10 ± 5.01 b
HHEP at 57 weeks (No.) 153.64 ± 6.11 a 117.69 ± 5.23 b 149.36 ± 4.81 a 120.96 ± 8.50 b
HHEP at 66 weeks (No.) 170.58 ± 8.20 a 133.27 ± 12.69 b 163.15 ± 7.03 a 142.65 ± 10.46 b
EW at 30 weeks (g) 55.41 ± 0.59 b 58.67 ± 1.40 a 55.13 ± 0.60 b 57.69 ± 1.11 a
EW at 43 weeks (g) 58.81 ± 0.53 60.58 ± 1.15 58.83 ± 0.55 59.61 ± 1.11
a, b) Means within a row for each gene with different superscript letters differ (P<0.05). The No. represents the total number 
of eggs at the corresponding age. Numbers in the parenthesis indicate the number of hen individuals in each group, n=Sample 
size. BW=body weight; HHEP=hen-housed egg production (total egg laying number); EW=egg weight. Dagu hens laid eggs 
at an average of 30 weeks.

Table 5. Percentages of additive genetic variance explained by the SNPs identified in frag-
ments of chicken ESR1 and ESR2 genes

Egg production trait
Percentage of additive genetic variance explained by the SNPs (%)

T1101C (ESR1) G1755A (ESR2)
BW at 30 weeks (kg) - -
BW at 43 weeks (kg) - -
HHEP at 30 weeks (No.) 0.736 0.572
HHEP at 43 weeks (No.) 1.644 0.599
HHEP at 57 weeks (No.) 2.358 0.877
HHEP at 66 weeks (No.) 5.59 5.007
EW at 30 weeks (g) 0.12 0.463
EW at 43 weeks (g) - -
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egg production traits are polygenically inherited, more associated target genes and favorable alleles are required for egg-laying 
improvement. Therefore, the ESR1 and ESR2 genes were screened and used to study genetic associations with egg production 
traits.

To explore the potential association between the ESR1 and ESR2 genes with the egg production traits, including BW, HHEP 
and EW, we first examined SNPs in the coding region of the ESR1 and ESR2 genes in the Chinese Dagu chicken population, in 
which the main breeding goal focused on HHEP trait improvement. In the present study, two SNPs in the chicken ESR1 and ESR2 
fragments were identified; the frequency of allele T at the E1 locus was higher than that of allele C, and the frequency of genotype 
TT was higher than that of genotype CT. Moreover, genotype CC was missing at the E1 locus. For the E2 locus, the frequency 
of allele G was significantly higher than that of allele A and the frequency of genotype GG was higher than that of genotype GA, 
and the homologous AA genotype was missing. This phenomenon may be explained by several factors: (i) alleles T at E1 or G at 
E2 may be tightly linked with either an advantageous allele or with an artificially selected economically favorable trait, such as 
a higher HHEP and/or EW, as demonstrated above. As a result, the levels of homozygotes with genotype TT or GG were either 
promoted under natural selection pressures or were artificially selected for favorable agricultural attributes; (ii) both the SNPs 
were confirmed to be under genetic disequilibrium in this study. This was due to either allele T or G being predominant under 
artificial and/or natural genetic selection pressure, thereby becoming more common than other alleles in this population; (iii) the 
egg production traits of the local Dagu populations sampled in this study have been developed with the aim of enhancing early 
sexual maturity and egg laying number traits for the last six generations. During Dagu chicken breeding, the T or G alleles may be 
coincidently linked with one or more of the selected breeding traits, thereby presenting a possible explanation for the higher allelic 
frequencies; (iv) the number of birds examined in each population may have been insufficient to demonstrate the true event, and 
therefore, an extreme allele frequency was estimated as a result.

Previous studies have demonstrated that Ne and PIC are important genetic parameters that indicate the level of intra-population 
genetic variation [1, 29]. The results of the present study show that the two SNPs exhibited low polymorphism, with the mean 
PIC value being lower than 0.25; however, allele homozygosity was higher than 0.7, indicating that the predominant allele had 
been subjected to selection pressure. Continuous selection aiming to obtain a favorable trait may lead to an increase in allelic 
frequencies; simultaneously, it brought about Hardy–Weinberg disequilibrium at the linked allele locus. This result may be partially 
explained by the following data on the trait association analyses.

Age at first egg is a critical factor for egg-laying performance in poultry. For the Dagu hens sampled here, the average age at 
first egg was 30 weeks, indicating the sexual maturity of the entire chicken population. Therefore, the BW, HHEP and EW in 
30-week-old Dagu hens were qualified in this study. Based upon the genotype-based association analysis, the newly identified TT 
genotype at the E1 locus and GG genotype at the E2 locus were found to be significantly associated with higher HHEP at 30, 43, 
57 and 66 weeks of age, and with the smaller EW at 30 weeks of age under a study (P<0.05), respectively. This was coincident 
with the negative correlation observed between HHEP and EW. Furthermore, to analyze the genetic effects of the SNPs on the 
associated traits, including HHEP and EW, and considering that additive variance is an important component of genetic variance 
in the expression of traits related to egg production [3, 5, 17], the percentage of additive genetic variance explained by the SNPs 
was estimated in this study. The results of the present study indicated that a larger proportion of variance was explained by these 
markers (>1%), especially for the phenotypes including HHEP at 43, 57 and 66 weeks of age by the ESR1 locus and HHEP at 66 
weeks of age by the ESR2 locus. Although a relatively smaller proportion of variance (<1%) was explained by these markers for the 
phenotypes, including the HHEP and EW at 30 weeks of age, the effects of allele substitution on the egg production traits were not 
neglected.

In the present study, four combined genotypes (H1–H4) were detected, and the association analysis of combined genotypes 
showed that ESR1 and ESR2 polymorphisms are significantly associated with egg production traits in Dagu chickens. Moreover, 
the results of the combined genotype-based association analysis were consistent with the significant effect detected by the 
genotype-based association analysis. The combined genotype H1, which carried the favorable T and G SNP alleles, was 

Table 6. Associations between the combined genotypes and egg production traits in Dagu hens

Egg production trait
Combined genotype

H1 (200) H2 (97) H3 (51) H4 (12)
(  ± SE) (  ± SE) (  ± SE) (  ± SE)

BW at 30 weeks (kg) 2.74 ± 0.06 b 2.84 ± 0.09 ab 2.91 ± 0.08 ab 3.02 ± 0.05 a

BW at 43 weeks (kg) 2.93 ± 0.12 b 2.98 ± 0.11 ab 2.96 ± 0.10 ab 3.40 ± 0.21 a

HHEP at 30 weeks (No.) 28.53 ± 2.07 a 22.26 ± 2.46 b 16.00 ± 1.00 c 12.57 ± 0.81 d

HHEP at 43 weeks (No.) 118.50 ± 9.50 a 99.43 ± 5.56 b 87.35 ± 6.96 c 71.91 ± 6.12 d

HHEP at 57 weeks (No.) 142.86 ± 6.43 a 131.00 ± 2.00 b 112.11 ± 5.50 c 95.53 ± 11.11 c

HHEP at 66 weeks (No.) 192.43 ± 9.56 a 151.35 ± 13.27 b 125.00 ± 9.00 c 120.71 ± 2.55 c

EW at 30 weeks (g) 56.08 ± 0.70 b 56.02 ± 1.07 b 57.23 ± 1.91 ab 62.30 ± 2.00 a

EW at 43 weeks (g) 58.98 ± 0.62 b 58.01 ± 0.90 b 59.29 ± 1.47 ab 65.30 ± 4.00 a

a, b, c, d) Means within a row for each gene with different superscript letters differ (P<0.05). The No. represents the total 
number of eggs at the corresponding age. Numbers in bracket indicate the number of hen individuals in the group. H1 
=TTGG; H2 =TTGA; H3 =CTGG; H4=CTGA.
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significantly associated with the highest HHEP at 30, 43, 57 and 66 weeks of age, and with the lower EW at 30 and 43 weeks 
of age (P<0.05). Interestingly, each of the alleles (T and G) was coincidentally found to be predominant at the locus; this may 
be due to the artificial selection for favorable HHEP traits in the last six generations. Collectively, these results support a strong 
association between the two variations in ESR1 and ESR2 with the egg production traits, via some functional genetic mechanisms.

The biological actions of estrogens are mediated via two distinct intranuclear estrogen receptor proteins, ERα and ERβ [11, 
14]. The carboxyl-terminal ligand-binding domains (LBDs) of ERs are conserved, as suggested by the similar affinities of the two 
ERs for 17β-estradiol [25], which is encoded by exon 8 of the ER gene. The amino-terminal domain of ERβ is shorter than that of 
ERα, but is well conserved between rat, mouse and human ERβ, suggesting an evolutionary constraint and a functional importance 
[14]. A single Tyr 443-to-Asn substitution within LBD leads to changes in the dimerization and transcription activation functions 
of ERβ [41, 49]. In the present study, SNP G1755A of the ESR2 gene resulted in a Val 459-to-Ile mutation within the LBD 
and was found to be associated with variation in egg production traits, indicating that changes in the LBD of ERβ may directly 
affect the folliculogenesis or follicular growth and development in the ovaries of chicken, and consequently, influence phenotype 
(egg production traits). This SNP within the ESR2 gene might represent a promising molecular marker for the early selection of 
individuals or families with favorable phenotypes in chicken breeding.

In addition, variations in the ESR1 genes have been associated with the natural defense of eggs against bacterial penetration by 
increasing cuticle deposition in chickens [4]. These findings are useful for the further investigation of possible genetic effects of 
ESR1 and ESR2 gene polymorphisms, and isotype-selective ESR agonists on the physiology of folliculogenesis, follicular growth 
and ovarian functional transformation [20]. Additionally, in some cases, these variations indicate abnormal estrogen secretion 
or deficiency [37]. In recent years, accumulating evidence has indicated that the role of estrogen receptor sequence variants is 
associated with bone mineral density and affects estradiol levels [15, 24, 31]. This increases the risk of HBV-related acute liver 
failure [45] and endometrial cancer in humans [2]. Hence, the results of the present study are also likely to be of considerable 
veterinary, clinical and biological importance.

Taken together, our data reinforce the conclusion that the two sequence variations in the ESR1 and ESR2 genes are significantly 
associated with HHEP and EW in Chinese Dagu chickens, and represent promising genetic markers for the early selection and 
prediction of advantageous phenotypes in chicken breeding programs. Additionally, these data also suggest that polymorphisms of the 
ESR1 and ESR2 genes might be further explored as indicators for relevant diseases or for the occurrence of ovarian dysfunction.
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