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This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data
acquired with photon-counting detectors (PCDs) in computed tomography. It is based on local approximations (surrogates) of the
negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image
pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the
accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a
realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and
realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts andquantitatively determine thematerial fractions
of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up
to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we
find a dependence of the algorithms convergence speed on the threshold selection within the PCD.

1. Introduction

Thedevelopment of dual-energy (DE) CT scanners paved the
road for new clinical applications, taking advantage of the
energy dependence of X-ray attenuation in matter, a fact that
formerly had been considered a drawback. This technology
allows for exposing patients to two distinct spectra, acquiring
information about the material composition of the interior
of the body. Besides scanners with two X-ray sources and
detectors [1] there also exist approaches that, for instance,
apply a fast kVp switching technique [2] or dual-layer detec-
tors [3, 4] to acquire spectrally resolved scan data. All those
approaches have in common that they are hardly extendable
to produce more than two spectrally well separated data sets.
Additionally, spectrally resolved data from dual-source dual-
energy and fast kVp switching devices do not match exactly
due to a time shift between measured sinograms or projec-
tions, respectively, making a correct statistical treatment of
the problem in image reconstruction difficult.

The continuous improvement of photon-counting detec-
tors (PCDs) over the past few years promises a remedy for
this limitation and holds new possibilities for multienergy
imaging. Recent prototype-detectors already provide two to
four [5, 6] discriminator thresholds. This allows the acquisi-
tion of two to four sinograms in a single scan, each sensitive
to a different part of the applied tube spectrum. Apart from
energy-resolved scan data, photon-counting technology can
provide further benefits, like reduced image noise [7] and
enhanced contrast [8, 9].

However, there are also issues with the new detector type
concerning its capability of high X-ray fluxes which may
occur in clinical CT examinations [10]. The consequence
of high photon flux is the occurrence of pulse pileup. The
severeness of pileup correlates with the detector pixel pitch.
Additionally, K-escape events and crosstalk between adjacent
pixels lead to a degradation in spectral resolution. Their
influence is inversely correlated with the detector pixel pitch.
So the challenge is to find a compromise between spectral
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sensitivity and high flux-rate capability to ensure the clinical
usability of photon-counting detectors.

In established dual-energy applications, the spectral
information is used, for instance, to classify different body
materials, identify high contrast agent concentrations that
indicate pathological tissue, or support an early diagnosis of
gout by helping to distinguish urate from small calcifications
[11, 12]. Other applications utilize the spectral information
to remove osseous structures in the patient image, revealing
previously covered structures [13].

Usually, a linear material decomposition is performed
subsequently to image reconstruction, although raw data
based approaches have already been investigated [14]. As a
consequence of the material decomposition process, image
noise is increased significantly, especially if more than two
materials are to be separated [6].

Statistical reconstruction methods offer the opportunity
to achieve imageswith reducednoise compared to convenient
filtered back-projection (FBP) reconstructions by including
mature regularization techniques [15]. Statistical methods
account not for the physical effects governed by the absorp-
tion characteristics of matter only.They also respect the Pois-
son nature of the emission and absorption processes in X-ray
tubes and detectors, respectively. The correct statistical treat-
ment becomes relevant in PCDswith high spectral resolution.
Impinging photons are distributed into energy bins according
to the energy assigned to them in the detection process.
Therefore, an increase in energy resolution implies smaller
energy bins with reduced photon statistics for a constant
number of impinging photons and constant spatial sampling.

Statistical algorithms converge to the most likely image
that best fits the measured sinogram data, according to
the underlying statistical model. The canonical measure for
how well image and measured data agree is given by the
logarithmic likelihood function (log-likelihood), whichmust
bemaximized to find the best suiting image. Since no analytic
solution exists for themaximumof the Poisson log-likelihood
function it must be approximated by numerical methods.
Some years ago, a new class of statistical, polychromatic
algorithms has been introduced [16, 17] that exploit the
convexity of the negative log-likelihood by minimizing sur-
rogate functions instead. Surrogate functions are successive
local approximations of the negative log-likelihood function.
With surrogates it is possible to formulate the optimization
problem in a parallel manner, which allows quick compu-
tation on graphic processing units (GPUs). Under certain
circumstances [18] the monotonic convergence of the algo-
rithm is provable. The algorithm’s polychromatic nature also
implies a beam-hardening correction (BHC) for the chosen
basis materials (cf. Section 2.1.3). With quite strong empirical
assumptions the algorithm can be applied to spectrally not
resolved data (e.g., to sinogram data taken with a convenient
CT system with an energy integrating detector) with good
results [19, 20].

In our approach we drop these assumptions and
reconstruct the material fractions directly from energy-
resolved sinogram data. Compared to [21] our algorithm
allows a simultaneous and parallel update of all material
images and considers the detector response function of a

photon-counting detector. The algorithm is a priori not
limited to two spectrally well separated data sets but scales
with the number of energy-resolved data sets. As the number
of thresholds in future PCDs might increase an extension
of the material separation to the respective number of basis
materials will be possible, as long as these materials are dis-
tinguishable by means of energy-resolved CT (cf. Section
2.1.3). Our intention is to evaluate the accuracy of the recon-
structed material fractions and determine the anticipated
gain in image quality due to image noise reduction froma cor-
rect statistical treatment of the problem.

In Section 2 we introduce the mathematical background
and describe the setup of this study. Section 3 presents the
results that are discussed subsequently in Section 4.

2. Materials and Methods

2.1. Theoretical Background

2.1.1. Statistical Model: Poisson Random Variables. The cre-
ation of X-ray photons and their absorption and registration
in a counting detector pixel are statistical processes that can
be described by a Poisson random variable P
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In computed tomography the joint probability for the mea-
surement of a complete sinogram is thus the product of the
individual random variables of all sinogram pixels
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Here 𝑖 indexes all 𝑀 projection values that constitute the
complete sinogram. In photon-counting CT𝑁

𝑖
is the number

of pulses registered in a single detector pixel and 𝑁
𝑖
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corresponding expectation value. The negative logarithm of
P(N | N) yields the canonical negative log-likelihood func-
tion which can be used as a measure for how well taken data
N agree with their expectation values N
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We use bold letters to indicate vector quantities. Terms that
are constant with respect to 𝑁

𝑖
have been omitted, since the

goal of statistical reconstruction is to find the expectation
values𝑁

𝑖
that best fit themeasured data, that is, theminimum

of −𝐿(N), which is not altered by terms constant with respect
to𝑁
𝑖
.

In multienergy imaging one can formulate separate log-
likelihood functions 𝐿𝑏(N | N) for all sinograms, each asso-
ciated with one of the 𝐵 energy bins provided by a PCD. If
all random variables are statistically independent, which we
assume here, an appropriate objective function forminimiza-
tion is the sum over all 𝐵 negative log-likelihood functions

−𝐿 (N) = −

𝐵

∑
𝑏=1

𝐿
𝑏
(N) =

𝐵

∑
𝑏=1

𝑀

∑
𝑖=1

− 𝑁
𝑏

𝑖
log𝑁𝑏
𝑖
+ 𝑁
𝑏

𝑖

≡

𝐵

∑
𝑏=1

𝑀

∑
𝑖=1

ℎ
𝑏

𝑖
(𝑁
𝑏

𝑖
) .

(3)



International Journal of Biomedical Imaging 3

The statistical independence holds true only in the case of
an ideal photon-counting detector. In realistic PCDs depend-
encies between energy bins are introduced by K-escape, pixel
crosstalk, electronic noise, and pulse pileup. Our proposed
algorithm accounts for correlations introduced by K-escape,
pixel crosstalk, and electronic noise by considering the detec-
tors response function, whereas pulse pileup is corrected in a
preprocessing step directly on the sinogram raw data.

In general, a minimization of the log-likelihood function
alone leads to very noisy images. To compensate for this, a
regularization term (prior) 𝑅 is added to the objective func-
tion. It incorporates a priori knowledge about the material
images 𝑓

𝑘

𝑗
that are to be reconstructed. Convenient priors

suppress small differences between neighboring pixels but
preserve contrast edges. They usually take the form

𝑅
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where 𝑃 is the number of image pixels and 𝑙 labels the N
𝑗

neighboring pixels of a considered image pixel 𝑗. The index
𝑘 labels the 𝐾 material images that are to be reconstructed.
We require the penalty functions 𝜓 to be strictly convex
and twice continuously differentiable with respect to 𝑓𝑘

𝑗
. This

requirement is necessary [16] to allow parallelization while
assuring convergence of the final algorithm.We implemented
a prior suggested by Green [22]. The computational effort for
this prior is higher compared to frequently utilized quadratic
priors, but since it is a differentiable approximation of the
Huber prior [23] it can better preserve contrast edges. The
addition of the prior term to the negative log-likelihood
function yields

Φ (f) = −𝐿 (f) + 𝜂R (f) (5)

as new objective function, with the scalar product
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The parameter 𝜂 ≡ {𝜂𝑘} governs the strength of regular-
ization. Moreover, we made use of the fact that the number
of pulses 𝑁

𝑖
registered in a sinogram pixel depends on the

fractions f of materials constituting the scanned object; that
is, 𝑁
𝑖
= 𝑁
𝑖
(𝑓𝑘
𝑗
). The dependence is given by Lambert-Beer’s

law in (7) and (9) as described below.

2.1.2. Physical Model: Polyenergetic Lambert-Beer’s Law. The
goal of computed tomography is to reconstruct an attenuation
map 𝜇

𝑗
describing the interior of a scanned object. The

attenuation map cannot be measured directly, but only via
projections𝑁

𝑖
of the object.The link between the attenuation

map 𝜇
𝑗
and its projections 𝑁

𝑖
is given by Lambert-Beer’s

law. This model correctly reflects the physical behavior for
a monoenergetic X-ray source. But in clinical practice X-
rays are created by X-ray tubes which emit quanta distributed
over a continuous spectrum S(𝐸) of energies. Image recon-
structions based on Lambert-Beer’s law, like filtered back-
projection (FBP), neglect the polychromenature of theX-rays

and can therefore lead to serious beam-hardening artifacts
that degrade image quality.The artifacts need to be corrected,
which usually happens in a preprocessing step. To avoid
their generation already in the reconstruction process, it is
necessary to know the materials composing the object and
integrate Lambert-Beer’s law for polyenergetic X-rays (cf.
[15])

𝑁
𝑏

𝑖
= ∫
𝐸max,𝑏

𝐸min,𝑏

𝑁
𝑖,0
S
𝑏
(𝐸) exp(−

𝑃

∑
𝑗=1

𝑎
𝑖𝑗
𝜇
𝑗 (𝐸)) d𝐸

= ∫𝑁
𝑏

𝑖,0
(𝐸) exp(−

𝑃

∑
𝑗=1

𝑎
𝑖𝑗
𝜇
𝑗 (𝐸)) d𝐸,

(7)

into the reconstruction algorithm. In (7)𝑁𝑏
𝑖,0
(𝐸) is defined as
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bin is sensitive to. For realistic PCDsS𝑏(𝐸) can be calculated
from the tube spectrum S(𝐸) via

S
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where Σ(𝐸, 𝐸󸀠) is the normalized detector response function.
It states the probability of the detector assigning energy𝐸󸀠 to a
measured photon with true energy 𝐸. The systemmatrix𝐴 ≡

{𝑎
𝑖𝑗
} governs the contribution of the 𝑗th image pixel to the 𝑖th

projection, so it implicitly contains the scanner geometry.

2.1.3. Material CompositionModel. Neglecting Rayleigh scat-
tering, there are two physical effects relevant for the atten-
uation in clinical CT examinations: Compton scattering
and photoelectric effect. This fact would limit the number
of materials separable with energy-resolved CT to 𝐾 =

2. Fortunately, due to the unique spectral lines of each
chemical element more than two materials can be separated,
if at least 𝐾 − 2 of the 𝐾 materials exhibit one or more
individual spectral lines in the range of the applied X-ray
spectrum and all of them are mutually exclusive regarding
their constituting chemical elements. Under that assumption,
we can decompose each material into a linear combination
of 𝐾 basis materials with their respective energy-depending
attenuation coefficient 𝜇𝑘(𝐸)

𝜇
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The number of materials 𝐾 forming the material basis may
not exceed the number 𝐵 of available spectrally different data
sets to guarantee that the system of equations is not under-
determined. The choice of the material basis must depend
on the composition of the scanned object and is crucial
for the accuracy of the composition estimation. A suitable
choice for clinical applications should include water, since
it resembles well the attenuation behavior of the majority of
human tissue [24–26]. Additional basis materials should be
chosen dependent on the imaging task. Calcium or a suiting
mixture of materials could be included if osseous body parts
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Figure 1: One-dimensional illustration of the optimization transfer
principle.𝑄(𝑓; 𝑓(𝑛)) is a surrogate function to the objective function
Φ(𝑓) at iteration step (𝑛). Hence, it is tangential toΦ(𝑓) at 𝑓(𝑛). The
abscissa of the minimum of 𝑄(𝑓; 𝑓(𝑛)) is the new estimate 𝑓(𝑛+1).
It in turn marks the position where the next surrogate function
𝑄(𝑓; 𝑓

(𝑛+1)
) is constructed, tangential toΦ(𝑓).

are to be identified. If an injected iodine-based contrast agent
is to be identified, which is frequently used in clinical CT
examinations to enhance the contrast of cancerous tissue,
iodine should be included.

A correct and reliable separation of materials requires a
different absorption behavior of each basis material in the
range of the applied tube spectrum. If attenuation coefficients
of differentmaterials have the same energy dependency in the
energy range covered by the spectrum, thosematerials cannot
be distinguished by means of spectrally resolved CT.

2.1.4. Optimization Transfer Principle. The proposed algo-
rithm applies the optimization transfer principle introduced
by De Pierro [16, 27]. According to this principle, the objec-
tive function is locally approximated by surrogate functions
that are easier to minimize (cf. Figure 1). In fact, we will
approximate the objective function by parabolic surrogates
whose minima are known analytically. A new surrogate
function is generated in each iteration step (𝑛). The following
conditions imposed to a surrogate 𝑄 are sufficient [18] to
guarantee convergence of the algorithm:

𝑄(f(𝑛); f(𝑛)) = Φ (f(𝑛)) ,

𝜕𝑄 (f ; f(𝑛))
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,

𝑄 (f ; f(𝑛)) ≥ Φ (f) .

(10)

Equations (10) ensure that each surrogate always lies com-
pletely above the objective function Φ(f) and is tangential to
it at the current iteration step.

2.2. Algorithm Derivation

2.2.1. Surrogate Objective Functions. Our derivation of the
separable surrogate objective function and the update

equation follows the procedure presented in [19]. In a first
step, the energy integral in the physical model, (7), is moved
out of the log-likelihood term of the objective function (5).
Therefore, we define
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With these definitions, the polychromatic Lambert-Beer law
(7) can be rewritten as
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we can replace −𝐿(f) by the surrogate 𝑄
1
(f , f(𝑛)) by applying

Jensen’s inequality for convex functions
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We end up with the new surrogate function
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optimization transfer principle (10) is satisfied. Practically,
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we will use the Hessian of ℎ𝑏
𝑖
(𝐸, 𝑙
𝑖
) instead. With this choice

the monotonicity of the algorithm cannot be guaranteed
mathematically anymore. If we forced the line integrals 𝑙𝑘

𝑖

to be positive, there would exist curvatures that provably
ensures monotonic convergence [18]. However, this con-
straint might affect the capability of the algorithm to model
materials not incorporated in the material basis. Materials
not part of the basis are represented as a linear combination
of the basis materials (see (9)) which also requires negative
coefficients 𝑓

𝑘

𝑗
. A weaker form of the positivity constraint

merely postulates that∑𝐾
𝑘=1

𝑓𝑘
𝑗
≥ 0would be compatible with

the model. Whether this constraint still guarantees mono-
tonic convergence and the existence of an optimal (in the
sense of convergence rate, cf. [18]) curvature remains an open
question.

Finally, we replace𝑄
2
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𝑃

∑
𝑗=1

𝛼
𝑖𝑗
𝜆
𝑘

𝑖𝑗
(𝐸, 𝑓
𝑘

𝑗
) ,

(20)

with

𝛼
𝑖𝑗
=

𝑎
𝑖𝑗

∑
𝑃

𝑗=1
𝑎
𝑖𝑗

,

𝑃

∑
𝑗=1

𝛼
𝑖𝑗
= 1, (21)

𝑙
𝑘(𝑛)

𝑖
(𝐸) =

𝑃

∑
𝑗=1

𝑎
𝑖𝑗
𝜇
𝑘
(𝐸) 𝑓
𝑘,(𝑛)

𝑗
. (22)

Applying once again Jensen’s inequality, we pull the sum over
the image pixels 𝑗 out of 𝑞𝑏,(𝑛)

𝑖
(𝐸, ∑
𝑃

𝑗=1
𝛼
𝑖𝑗
𝜆𝑘
𝑖𝑗
(𝐸, 𝑓𝑘
𝑗
)) which

yields our final surrogate function 𝑄
3
(f , f(𝑛))

𝑄
3
(f , f(𝑛))

=

𝐵

∑
𝑏=1

𝑁

∑
𝑖=1

𝑃

∑
𝑗=1

∫
𝑁𝑏
𝑖,0
(𝐸)

𝛽
𝑏,(𝑛)

𝑖

𝛼
𝑖𝑗
⋅ 𝑞
𝑏,(𝑛)

𝑖
(𝐸, 𝜆
𝑘

𝑖𝑗
(𝑓
𝑘

𝑗
)) d𝐸.

(23)

For the deduction of the separable surrogate 𝑆(f , f(𝑛)) of the
regularization term we followed De Pierro [16] and ended up
with

𝜂𝑆 (f , f(𝑛)) =
1

2

𝐾

∑
𝑘=1

𝜂
𝑘

𝑃

∑
𝑗=1

( ∑
𝑙∈N𝑗

𝑤
𝑗𝑙

⋅ log cosh(
2𝑓
𝑘,(𝑛)

𝑗
− 𝑓
𝑘,(𝑛−1)

𝑗
− 𝑓
𝑘,(𝑛−1)

𝑙

𝛾𝑘
)) .

(24)

2.2.2. Minimization Method. To minimize the surrogate
objective function 𝑄

3
+ 𝜂𝑆 we apply the Newton-Raphson

method:

f(𝑛+1) = f(𝑛) − (∇ (𝑄
3
(f , f(𝑛)) + 𝑆 (f , f(𝑛)))

⋅ (H
𝑄3

+H𝜂𝑆)
−1

)
󵄨󵄨󵄨󵄨󵄨󵄨f=f(𝑛)

,

(25)

H
𝑄3

and H𝜂𝑆 are the Hessian matrices, that is, the second
derivatives of 𝑄

3
and 𝜂𝑆, respectively. Hence, the (𝑛 + 1)st

iteration step for the 𝑘th material image does only depend
on the measured data of the 𝑏th energy bin and the material
images previously calculated in the 𝑛th iteration step. This
permits parallel updates of all𝐾material images.

Evaluating the gradient of 𝑄
3
at the current iteration f(𝑛)

yields

𝜕𝑄
3
(f , f(𝑛))
𝜕𝑓𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨f=f(𝑛)
=

𝐵

∑
𝑏=1

𝑁

∑
𝑖=1

(1 −
𝑁𝑏
𝑖

𝑁
𝑏,(𝑛)

𝑖

)
𝜕𝑁
𝑏,(𝑛)

𝑖

𝜕𝑓𝑘
𝑗

. (26)

For the elements of the second derivative of 𝑄
3
one gets

𝜕2𝑄
3

𝜕𝑓𝑘
𝑗
𝜕𝑓𝑚
𝑗

=

𝐵

∑
𝑏=1

𝑁

∑
𝑖=1

∫
𝑁𝑏
𝑖,0
(𝐸)

𝛽
𝑏,(𝑛)

𝑖

𝛼
𝑖𝑗
𝐶
𝑏𝑘𝑚,(𝑛)

𝑖

𝜕𝜆𝑘
𝑖𝑗

𝜕𝑓𝑘
𝑗

𝜕𝜆𝑚
𝑖𝑗

𝜕𝑓𝑚
𝑗

=

𝐵

∑
𝑏=1

𝑁

∑
𝑖=1

∫
𝑁
𝑏

𝑖,0
(𝐸)

𝛽
𝑏,(𝑛)

𝑖
𝛼
𝑖𝑗

𝑎
2

𝑖𝑗
𝜇
𝑘
(𝐸) 𝜇
𝑚
(𝐸) 𝐶
𝑏𝑘𝑚,(𝑛)

𝑖
d𝐸.

(27)

Using the Hessian 𝜕2ℎ𝑏
𝑖
(𝐸, 𝑙
𝑖
)/𝜕𝑙𝑘
𝑖
𝜕𝑙𝑚
𝑖

of ℎ𝑏
𝑖
(𝐸, 𝑙
𝑖
) instead of

a curvature 𝐶
𝑏𝑘𝑚,(𝑛)

𝑖
that satisfies the conditions of the

optimization transfer principle we get

𝜕2𝑄
3

𝜕𝑓𝑘
𝑗
𝜕𝑓𝑚
𝑗

=

𝐵

∑
𝑏=1

𝑁

∑
𝑖=1

∫
𝑁𝑏
𝑖,0
(𝐸)

𝛽
𝑏,(𝑛)

𝑖
𝛼
𝑖𝑗

𝑎
2

𝑖𝑗
𝜇
𝑘
(𝐸) 𝜇
𝑚
(𝐸)𝑁

𝑏

𝑖
d𝐸

=

𝐵

∑
𝑏=1

𝑁

∑
𝑖=1

𝑎
𝑖𝑗

𝑁𝑏
𝑖

𝑁
𝑏

𝑖

(

𝑃

∑
𝑗=1

𝑎
𝑖𝑗
)

⋅ ∫𝑁
𝑏

𝑖,0
(𝐸) 𝜇
𝑘
(𝐸) 𝜇
𝑚
(𝐸) exp (−𝑙(𝑛)

𝑖
) d𝐸.

(28)

In the last step 𝛼
𝑖𝑗
and 𝛽

𝑏,(𝑛)

𝑖
were replaced by their respective

definitions (21) and (13). The derivatives of the surrogates
𝑆(f , f(𝑛)) of the regularization function are

𝜕 (𝜂𝑆)

𝜕𝑓𝑘
𝑗

= 𝜂
𝑘
∑
𝑙∈N𝑗

𝑤
𝑗𝑙

𝛾𝑘

⋅ tanh(
2𝑓
𝑘,(𝑛)

𝑗
− 𝑓
𝑘,(𝑛−1)

𝑗
− 𝑓
𝑘,(𝑛−1)

𝑙

𝛾𝑘
) ,
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𝜕2 (𝜂𝑆)

𝜕𝑓𝑘
𝑗
𝜕𝑓𝑚
𝑗

= 𝛿
𝑘𝑚

𝜂
𝑘
∑
𝑙∈N𝑗

2𝑤
𝑗𝑙

(𝛾𝑘)
2

⋅ (1 − tanh2(
2𝑓
𝑘,(𝑛)

𝑗
− 𝑓
𝑘,(𝑛−1)

𝑗
− 𝑓
𝑘,(𝑛−1)

𝑙

𝛾𝑘
)) ,

(29)

with the Kronecker symbol 𝛿
𝑘𝑚
.

2.2.3. Summary of the Algorithm. In the following we give a
brief step by step overview over the algorithm:

(1) First, one has to compute the line integrals 𝑙
𝑘,(𝑛)

𝑖
(𝐸,

f𝑘,(𝑛)) of the material images by forward-projecting
them; see (11). Subsequently, determine 𝑡

𝑖
(𝐸, f𝑘,(𝑛)) as

given by (12). For an adequate initialization of the
algorithm provide the initial material images from
material separated FBP images reconstructed from
the raw data.

(2) Next, determine the 𝑁𝑏,(𝑛)
𝑖

by multiplying 𝑡
𝑖
(𝐸, f𝑘,(𝑛))

with the mean number of photons𝑁
𝑖,0
emitted by the

tube and the respective spectrum S𝑏 the 𝑏th energy
bin is sensitive to. Finally, discretize the integral in
(7) an carry out the summation. The spectra S𝑏 can
be calculated from the detector response function as
stated by (8).

(3) Additionally, calculate

∫𝑁
𝑏

𝑖,0
(𝐸) 𝜇
𝑘
(𝐸) exp(−

𝑃

∑
𝑗=1

𝑎
𝑖𝑗
𝜇
𝑗 (𝐸)) d𝐸, (30)

which equates to (1/𝑎
𝑖𝑗
)(𝜕𝑁
𝑏,(𝑛)

𝑖
/𝜕𝑓𝑘
𝑗
).

(4) Finally, one can determine∇𝑄
3
(f , f(𝑛)) following (26).

(5) The Hesse-matrix 𝜕2𝑄
3
/𝜕𝑓𝑘
𝑗
𝜕𝑓𝑚
𝑗
can be achieved in a

similar fashion, using (28). It should be mentioned
that (∑𝑃

𝑗=1
𝑎
𝑖𝑗
) in (28) is a simple forward-projection

of an image containing all ones, so it can be precom-
puted.

(6) Multiplying the inverted Hesse-matrix with the pre-
viously calculated gradient and subtracting the result
from the current material images f(𝑛) yield the
updated material images f(𝑛+1).

2.3. System Setup

2.3.1. Accuracy Analysis with Ideal PCD Data. We started
evaluating the accuracy of the algorithm by reconstructing
𝐾 = 2 material images from ideal simulation data of a water
filled acrylic glass cylinder, generated with the DRASIM soft-
ware [28]. In this context, ideal means that the detector per-
fectly separates the irradiating tube spectrum into 𝐵 disjoint

Figure 2: Normalized scaled densities of the modeled 30 cm
diameter water phantom containing small cylinders of various
concentrations of iodine with windowing of 𝐶 = 0 and𝑊 = 100.

energy bins. Effects like K-escape, charge sharing, electronic
noise, and pulse pileup do not occur. For the evaluation of the
algorithmwe choose the number of energy thresholds and by
that the number of energy bins to 𝐵 = 2, matching the num-
ber 𝐾 of material images to be reconstructed. The cylinder
phantom has a diameter of 30 cm, containing five small cylin-
ders with various concentrations of iodine. The iodine con-
centration increases from𝑓

iodine = 0.00243 counterclockwise
to 𝑓iodine = 0.01215 in equidistant steps, with the upper con-
trast cylinder (cf. Figure 2), having the lowest concentration.

The scans were simulated in fan-beam geometry with
a field of view (FOV) of 52 cm. The isocenter to detector
distance was 𝑟CD = 49 cm and the focus to isocenter distance
𝑟FC = 60 cm. The virtual detector features 4 rows with 3680
quadratic subpixels, each with a pitch of 250 𝜇m. Data simu-
lated with that geometry are fused to macropixels previous
to further processing. A macropixel contains the summed
counts of 4 × 4 small pixels. Each fifth column of small pixels
is excluded to account for the covering due to a collimator
grating.

Over an angular range of 540∘ 1664 projections were
taken, exposing the phantom to a 140 kVp tube spectrum.The
additional angular range of 180∘ in addition to a full cycle
is required by the employed rebinning algorithm. Rebinning
converts the sinogram data from fan-beam to parallel-beam
geometry prior to reconstruction. In doing so, the detector
quarter-shift is used to double the sampling.

The tube was driven with a current of 100mA. The
emitted spectrum, irradiated onto the cylinder phantom, was
prefiltered with 0.9mm of titanium and 3.5mm aluminum.
Wedidnot account for a bowtie filter in the simulations, albeit
it could be respected in the detector response function (8)
via an additional factor that depends on the sinogram pixel
index 𝑖. The simulated detector has two counter thresholds,
providing two spectrally separated data sets.

We chose iodine and water as basis materials and initial-
ized the algorithm with the ground truth, that is, the correct
material images 𝑓

𝑘

𝑗
. Since acrylic glass is not part of the
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Figure 3: Normalized tube spectrum, prefiltered with 0.9mm Ti and 3.5mm Al. Shown are the sensitive ranges of the low bin (blue, solid
line) and the high energy bin (green, dashed line) for the ideal (a) and the realistic ((b)–(d)) two-bin PCD, respectively.The energy resolution
in the plots is 1 keV.

material basis, the borders of the cylinder phantom will be
represented as a linear combination of iodine and water.

The energy resolution of the algorithm was set to 5 keV.
This determines the precision of approximation of the energy
integral in (7). The bin-spectra S𝑏(𝐸) are provided with the
same resolution. Bin-spectra are the parts of the tube spec-
trum the energy bins of a PCD are sensitive to (see Fig-
ure 3(a)). The mass attenuation coefficients 𝑚𝑘(𝐸) and the
material densities 𝜌𝑘 for the calculation of attenuation values
𝜇𝑘(𝐸) = 𝑚𝑘(𝐸)𝜌𝑘 were taken from the EPDL library
[26] and Kuchling [29], respectively. To evaluate the mass
attenuation coefficients at the sample points of the bin-
spectra the mass attenuation coefficients from the EPDL

library were interpolated. The interpolation was conducted
piecewise if the considered material possesses one or more
absorption edges within the energy range of the bin-spec-
tra.

2.3.2. Dependence of Convergence Speed on Energy Bin Selec-
tion. Real photon-counting detectors are not able to separate
the registered photons into perfectly disjoint energy bins.
This is mainly a consequence of signal sharing between
neighboring pixels. Together with pulse pileup, it leads to
a considerable overlap of the sensitive ranges of individual
energy bins. Hence, the spectral resolution and consequently
the amount of spectral information gathered is reduced
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compared to ideal PCDs. Since the material separation
capability strongly depends on the basis materials difference
in absorption behavior among the energy bins, we expect the
convergence rate of our algorithm to depend on the choice of
energy bins.

The algorithm requires knowledge of the specific bin-
spectra S𝑏(𝐸), that is, the part of the tube spectrum an
energy bin is sensitive to, to correctly reconstruct material
fractions; see (7). The specific spectra for arbitrary, realistic
bins can be calculated via the detector response function
Σ(𝐸, 𝐸

󸀠); see (8). We acquired the response function with
a resolution of 1 keV by simulating monoenergetic scans
without phantom, with X-ray energies between 20.5 and
139.5 keV, using the SimSD simulation tool [30, 31]. The
tool accounts for all relevant physical processes occurring
in realistic PCDs. To keep the influence of pulse pileup on
the detector response low (<1.5%), we chose a small X-ray
flux of 4.8 ⋅ 10

6 (1/smm2) and used a clocked readout to
discriminate pulses. The calculation of the response function
assumes a virtual CdTe-detector with a bulk thickness of
1.6mm, biased with a voltage of 1 kV, and the same (pixel)
size as the detector described in Section 2.3.1. We sample the
monoenergetic response functions with thresholds between
4 and 173 keV, again with a resolution of 1 keV. The detector
response to each photon energy is approximated by averaging
the response of 10k detector pixels. Figures 3(b)–3(d) show
the sensitive range of two energy bins calculated from the
detector response function for the chosen prefiltered 140 keV
tube spectrum (cf. Section 2.3.1) for the investigated bin
configurations. With the SimSD tool [30, 31] we also created
realistic data sets from the cylindrical phantom for a 2-bin
PCD, where realistic means that we consider pulse pileup, K-
escape, charge sharing, and electronic noise. Figure 2 shows
the normalized, scaled total density ((𝜌tot−𝜌H2O)/𝜌H2O) ⋅1000
of the cylindrical phantom with image values centered at𝐶 =

0 with a window width of𝑊 = 100.
To investigate the dependence of convergence speed on

the selected counter thresholds, we fixed the low energy
counter at 20 keV and varied the high energy counter between
50 keV and 80 keV in steps of 15 keV.We created two data sets
for each of the three energy bin configurations that only differ
in their noise realization.This enables us to evaluate the image
noise in difference images, avoiding systematic errors.

In comparison to ideal PCD data (cf. Section 2.3.1), a
pileup correction is applied to the realistic raw data before
reconstructing them with the proposed algorithm. The cor-
rection is based on a high-order polynomial that we fit to
the mean true count rate plotted versus the respective mean
count rate measured by the detector. We initialized the algo-
rithm with the material fractions estimated from material
separated FBP images. First, the FBP images are recon-
structed from the simulated raw data after a combined water-
BHC and pulse pileup correction had been applied. Next, the
FBP images on Hounsfield scale are converted to attenuation
values

𝜇
𝑏

𝑗
= (

HU
1000

− 1) 𝜇
𝑏,H2O
𝑗

(31)

with

𝜇
𝑏,H2O
𝑗

=
∫
𝐸
𝑏

max

𝐸
𝑏

min
𝜇
H2O
𝑗

(𝐸)S𝑏 (𝐸) d𝐸

∫
𝐸
𝑏

max

𝐸
𝑏

min
S𝑏 (𝐸) d𝐸

. (32)

Finally, the initial material fractions f(0) are calculated from
the attenuation maps 𝜇𝑏

𝑗
via

f(0) = M
−1
𝜇, (33)

with f(0) ≡ {𝑓
𝑘,(0)

𝑗
} and 𝜇 ≡ {𝜇𝑏

𝑗
}. The matrix M ≡ 𝜇𝑘𝑏 con-

tains the attenuation values of the 𝐾 pure basis materials
for the respective bin-spectrum S𝑏(𝐸). 𝜇𝑘𝑏 can be calculated
using the tabulated attenuation values from [26]

𝜇
𝑘𝑏

=
∫
𝐸
𝑏

max

𝐸
𝑏

min
𝜇𝑘 (𝐸)S𝑏 (𝐸) d𝐸

∫
𝐸
𝑏

max

𝐸
𝑏

min
S𝑏 (𝐸) d𝐸

. (34)

3. Results

3.1. Accuracy Analysis with Ideal PCD Data. We compared
the results of two different reconstructions of the same raw
data sets. In the first case we reconstructed the material
images from the ideal PCD data without any regularization;
that is, 𝜂 = 0. For the second case we employed regularization
with 𝜂

𝑘 ⋅ 𝛾𝑘 = 1 ⋅ 10−5. Parameters 𝛾𝑘 were selected depending
on the consideredmaterial 𝑘 by taking into account the image
noise contained in the respective initial material images
reconstructed from realistic data. After 1000 iterations the
material fractions aswell as their uncertaintieswere evaluated
for both cases within the two ROIs that are depicted in
Figures 4(a) and 4(b). ROI

1
is indicated by a dashed circle

located within the highest iodine contrast cylinder and at the
respective position in the water image. ROI

2
is indicated by a

solid circle located at the lowest iodine contrast cylinder and
at the respective position in thewater image.The results of the
ROI analysis are summarized in Table 1. The table also lists
the mean deviations from the ground truth Δ𝑓

∗ = |𝑓∗,(0) −

𝑓∗,(1000)| within the ROIs. Figure 4 shows the true material
images for iodine (a) and water (b), as well as the difference
between the respective images and the ground truth after
1000 iterations for both investigated cases ((c)–(f)).

3.2. Dependence of Convergence Speed on Energy Bin Selection.
The initial material images as well as the final material images
after 1000 iterations are exemplarily shown in Figure 5 for the
data set featuring the (20–65 keV, 65–140 keV) bin configura-
tion. Compared to the ground truth images shown in Figures
4(a) and 4(b) significant beam-hardening artifacts are visible
between the iodine contrast probes. They are caused by the
FBP reconstruction based on the monoenergetic version of
Lambert-Beer’s law. Due to these artifacts, the iodine contrast
is considerably underestimated and images of the iodine
contrast probes also show up in the initial water material
image.
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(a) Iodine image; ground truth; 𝐶 = 0,𝑊= 0.5 ⋅ 10−3 (b) Water image; ground truth; 𝐶 = 1,𝑊= 0.4

(c) Iodine image; 1000 iterations, ground truth; 𝜂 = 0;
𝐶 = 0,𝑊= 2.0 ⋅ 10−3

(d) Water image; 1000 iterations, ground truth; 𝜂 = 0;
𝐶 = 0,𝑊= 0.1

(e) Iodine image; 1000 iterations, ground truth;𝐶 = 0,
𝑊= 2.0 ⋅ 10

−3

(f) Water image; 1000 iterations, ground truth; 𝐶 = 0,
𝑊= 0.1

Figure 4: Reconstructed material images from data of an ideal PCD with the proposed algorithm with an energy resolution of 5 keV, after
1000 iterations and a subtraction of the respective ground truth image.
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(a) Initial iodine image, 𝐶 = 0,𝑊= 5 ⋅ 10−3 (b) Initial water image, 𝐶 = 1,𝑊= 0.4

(c) Final iodine image, 𝐶 = 0,𝑊= 5 ⋅ 10−3 (d) Final water image, 𝐶 = 1,𝑊= 0.4

Figure 5: Initial ((a), (b)) and final ((c), (d))material images fromdata set of a realistic PCDwith the proposed algorithm after 1000 iterations.
The selected regularization parameters were 𝛾iodine = 8.6 ⋅ 10

−5, 𝛾H2O = 1.4 ⋅ 10
−2, and 𝜂

∗
⋅ 𝛾
∗
= 1 ⋅ 10

−5.

Similarly to the ideal material images in Section 2.3.1,
all material images have been evaluated within identically
positioned ROIs. The image noise, that is, the standard devi-
ation of the ROI data, is not estimated directly in the recon-
structed images. Instead, the images reconstructed from the
two data sets that only differ in their noise realization are
subtracted and the image noise is evaluated within the result-
ing difference image. Eventually, the measured image noise
is scaled by a factor of 1/√2 to account for Gaussian error
propagation.

The deviation of the measured material fraction 𝑓∗,(1000)

from the ground truth as well as the respective image noise
is plotted against iteration number in Figure 6 for both basis
materials and the various bin configurations.

4. Discussion

4.1. Accuracy Analysis with Ideal PCD Data. Considering the
results of the reconstruction with deactivated regularization
(see Figures 4(c) and 4(d)), the chosen internal energy resolu-
tion of 5 keV seems sufficient, since the deviations Δ𝑓∗ from

the ground truth are very small after 1000 iterations.The final
images from nonregularized reconstruction mainly exhibit
moiré pattern residuals that are typical discretization artifacts
from the forward- and back-projectors. Those artifacts are
much more prominent than the high-frequency, random
noise residuals expected from a statistical reconstruction
algorithm. So we conclude that the standard deviations
𝜎
𝑓
∗ calculated from the ROI data are a rough measure of

discretization artifacts. The standard deviation is of equal
magnitude as the deviationsΔ𝑓∗, which aremainly caused by
the limited internal energy resolution. This confirms that for
the utilized projection operator an internal energy resolution
of 5 keV is adequate.

If regularization is employed, standard deviation in both
material images is reduced, especially in the contrast probes
within the iodine image. In return though, the precision
of the material fraction estimation is reduced slightly for
data within ROI

1
, that is, the probe with the highest iodine

contrast. We suppose that this loss in precision comes from
the way regularization is applied to the material images.
Although thematerial images are linked bymeasured spectral
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Figure 6: Normalized deviation of the iodine ((a), (b)) and water ((c), (d)) fraction from the ground truth (Δ𝑓iodine|water/𝑓GT), evaluated
within the ROIs shown in Figures 4(a) and 4(b), respectively.

data sets 𝑙
𝑖
(𝐸, f) = ∑

𝐾

𝑘=1
∑
𝑃

𝑗=1
𝑎
𝑖𝑗
𝑓𝑘
𝑗
𝜇𝑘(𝐸), regularization is

applied to each material image individually. If the regulariza-
tion is not perfectly edge-preserving this leads to a bias, affect-
ing the precision of thematerial image estimate. Suppose that
by regularization of the iodine material image the edges of a
contrast probe are smoothed out as illustrated in Figure 8(a).
The requirement

𝑓
iodine
𝑗

𝜇
iodine

(𝐸) + 𝑓
H2O
𝑗

𝜇
H2O (𝐸) = const. (35)

and by far stronger attenuation coefficient of iodine in the
considered energywindow inevitably cause the smoothed out

edge to reappear in the water image with increased ampli-
tude; see Figure 8(b). The regularization of the water image
assures that the imprinted edges from the iodine image get
smoothed and blurred and in turn also influence the iodine,
albeit to a much lesser extent. Thus, accumulated over the
number of iterations this effect slightly influences the mean
contrast measured within the ROIs in both images. The
more prominent the contrast edge, the stronger the resulting
deviation caused by regularization (cf. Table 1). A strictly
edge-preserving prior like the Huber prior might reduce
this issue but was not tested, since it does not fulfill the
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Figure 7: Normalized standard deviation, evaluated within the ROIs shown in Figures 4(a) and 4(b), respectively. The standard deviation is
normalized to the standard deviation measured in the initial iodine or water image for the respective threshold combination.

convergence criteria according to [16] and a divergence of the
algorithm seemed likely.

4.2. Dependence of Convergence Speed on Energy Bin Selection.
Generally, the choice of the second derivative of ℎ𝑏

𝑖
(𝐸, 𝑙
𝑖
)

seems to be valid, since in all investigated cases the algorithm
converged. As conjectured, it proves true that the conver-
gence speed depends on the selected thresholds. While for
thresholds located at 20|65 keV and 20|80 keV the algorithm
shows a similar convergence rate (cf. Figure 6), it converges
noticeably slower for the threshold combination 20|50 keV.
On the one hand, this is due to a reduced separation between

the two bin-spectra S𝑏(𝐸); see Figure 3(b). On the other
hand, it is a consequence of comparably worse initial images
which are affected by the large overlap of the bin-spectra as
well. Therefore, not only is an increase of the number of thre-
sholds in a PCD necessary to allow a separation of more than
two basismaterials, but the respective data sets also have to be
spectrally well separated. In addition, the absorption behav-
ior of the basis materials must be sufficiently distinct. For
instance, a separation of water and fat will hardly converge
with the proposed algorithm due to the similar absorption
behavior of thesematerials within the energy range of clinical
CT.
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Figure 8: Illustration of the impression of edges from the iodine image onto the water image at 𝐸 = 65 keV (cf. (35)). Shown are cuts through
the material images crossing the highest contrast cylinder of the phantom shown in Figure 2.

Table 1: Results of the accuracy analysis of the algorithm with
and w/o regularization (regul.). The material fractions 𝑓∗,(1000) were
measured after 1000 iterations in the respective material images
within ROIs located as indicated in Figures 4(a) and 4(b). The
standard deviation of the ROI data 𝜎

𝑓
∗ measures the fluctuation

induced by the forward- and back-projector. The values of Δ𝑓
∗

quantify the offset between the ground truth 𝑓∗,(0) and the material
fraction after 1000 iterations.

W/o regul. With regul.

ROI
1

𝑓iodine,(1000) 0.01220 0.01221
Δ𝑓iodine 0.54 ⋅ 10−4 0.66 ⋅ 10−4

𝜎
𝑓
iodine 0.32 ⋅ 10

−4
0.18 ⋅ 10

−4

𝑓H2O,(1000) 0.99818 0.99770
Δ𝑓H2O 0.18 ⋅ 10−2 0.23 ⋅ 10−2

𝜎
𝑓
H2O 0.19 ⋅ 10

−2
0.18 ⋅ 10

−2

ROI
2

𝑓iodine,(1000) 0.00245 0.00245
Δ𝑓

iodine
0.17 ⋅ 10

−4
0.18 ⋅ 10

−4

𝜎
𝑓
iodine 0.14 ⋅ 10−4 0.08 ⋅ 10−4

𝑓
H2O,(1000) 0.99940 0.99965
Δ𝑓H2O 0.60 ⋅ 10−3 0.35 ⋅ 10−3

𝜎
𝑓
H2O 0.15 ⋅ 10−2 0.12 ⋅ 10−2

Addressing the dark shades between the contrast probes,
caused by beam-hardening of the polychromatic X-ray tube
spectrum, those artifacts are noticeably reduced after 1000
steps of iteration.

Remarkably, the image noise measured in ROI
1
within

the highest contrast rod of the iodine image is increasing
beyond the respective image noise within the FBP starting
image. This happens since within the first iterations mainly

the mean iodine contrast is scaled to match the respective
sinogram data. Scaling all image values by a certain factor
affects the standard deviation aswell. Since the initial estimate
of the highest iodine contrast is not very accurate and regu-
larization primarily limits high-frequency noise from being
added to the material images, it cannot prevent an initial
increase of image noise in this case. For the smallest contrast,
the initial image represents a decent estimate of the actual
iodine fraction and changes made by the algorithm within
the first few iterations are less severe, so an increase of image
noise can be prevented by regularization.

Summarizing the results of Figure 6, the algorithm per-
forms well in correcting beam-hardening artifacts and quan-
titatively determining the material fractions for a two-bin
PCD, if the material basis is chosen properly.

With the utilized regularization function and parameters
a significant reduction of image noise in bothmaterial images
was achievable; see Figure 7.

5. Conclusions

An iterative statistical reconstruction algorithm has been
introduced that successively approximates the negative log-
likelihood function by paraboloidal surrogate functions.
With the proposed algorithm a direct reconstruction of a set
ofmaterial images is possible from energy-resolved sinogram
data. Since the algorithm considers the polychromatic nature
of X-rays generated by typical clinical X-ray sources the
algorithm includes an implicit beam-hardening correction
for the selected basis materials. Apart from that the algorithm
has been tailored for reconstruction of material images from
datameasuredwith photon-counting detectors by taking into
account correlations introduced between energy bin data sets
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in the detection process via the detector response function.
It was shown that an internal energy resolution of 5 keV is
sufficient to yield quantitative results if a propermaterial basis
is selected. Compared to reconstruction algorithms utilized
on current commercial scanners the proposed algorithm con-
verges rather slowly. This might make an immediate imple-
mentation in those scanners unlikely, despite the possibility
for parallel computation.
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