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along with promising statistical models for the monitoring 
of the disease.
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Introduction

Psoriasis is an immune-mediated skin disorder, where in 
addition to visible scaly inflamed plaques on the skin, the 
joints and nails might also be affected. The cause of psoria-
sis remains uncertain, but it is known that a genetic predis-
position accompanied with environmental factors, such as 
stress, smoking, and alcohol abuse, can lead to the develop-
ment of the disease. Psoriasis patients are also at a higher 
risk for metabolic syndrome, cardiovascular diseases, and 
overall morbidity [14]. The past work on psoriasis has 
focused mainly on the genetical background and immunol-
ogy of the disease with fewer papers published on metabo-
lomics [6, 31]. Metabolomics is an emerging field in the 
omics family that concerns with the identification and 
quantitation of small molecules including amino acids, car-
bohydrates and their derivatives, biogenic amines, lipids, 
and more. Current work on the metabolomics of psoriasis 
is very limited with only a number of published papers. 
Kamleh and his colleagues have discovered changes in 
free-circulating amino acids, namely, arginine, proline, ala-
nine, glutamate, aspartate, glycine, serine, and threonine, 
which levels are elevated in the plasma of patient psoriasis. 
The levels of amino acids revert to normal after the bio-
logical treatment with TNFα receptor blocker Etanercept 
[21]. In another study by Armstrong et al., higher concen-
trations of alpha ketoglutaric acid and glucuronic acid and 
lower levels of asparagine and glutamine were determined 
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in psoriasis patients’ serum. In addition, patients with both 
psoriasis and psoriatic arthritis showed higher levels of lig-
noceric acid and a lower level of alpha ketoglutaric acid in 
the serum when compared to patients with psoriasis alone 
[4].

Metabolomics employs many different methods to ana-
lyze samples which vary depending on the medium, col-
lection methods and time [25, 60]. Therefore, using varied 
approaches to measurements can yield in a higher coverage 
of available metabolites. In this study, serum samples from 
psoriasis patients and controls were analyzed using a tar-
geted approach that analyses the concentrations of known 
metabolites, e.g., amino acids, lipids, biogenic amines, etc. 
and an untargeted profiling that helps to discover metabo-
lites not included in the targeted method.

Metabolomics produces a lot of data for every measured 
sample which makes data interpretation challenging. Many 
different mathematical methods have been used including 
partial least squares discriminant analysis or principal com-
ponent analysis (PCA) [15]. Using machine learning and 
algorithms for metabolomic profiling is a promising solu-
tion for data interpretation and automation [35, 41].

Materials and methods

Recruitment of volunteers

For untargeted analysis, a total of 40 volunteers were 
included in this study—20 diagnosed with plaque psoriasis 
and 20 age and sex-matched controls (13 men, 7 women, 
age range 20–75). For targeted analysis, the number of 
volunteers were expanded to 106—55 psoriasis patients 
(37 men, 18 women, age range 20–75) and 51 controls 
(15 women, 36 men, age range 23–75). The subjects with 
plaque psoriasis recruited for this study were patients in the 
Clinic of Dermatology at the University Hospital of Tartu. 
The participating subjects were diagnosed with plaque pso-
riasis by dermatologists. Psoriasis Area and Severity Index 
(PASI) scores were calculated ranging from 1 to 34 to allow 
the analysis of a wide disease span. Controls were recruited 
either from the same clinic or from the Clinic of Trau-
matology. Exclusion criteria for the patients and controls 
included any other skin diseases, diabetes, gout, hyperten-
sion, and the taking of prescription medication. Detailed 
questionnaires were filled out that covered age, sex, skin 
type, comorbidities, smoking status, and PASI scores.

Blood sample collection and storing

Fasting blood samples were collected before breakfast in 
the morning into 5 ml Vacutainer (REF 367614) tubes that 
have micronized silica particles for the acceleration of the 

clotting process. The collected blood was left to clot for 
1 h at room temperature after which it was centrifuged at 
1300×g for 20 min. The supernatant serum was aliquoted 
into 300 µl fractions and placed in the freezer at −80 °C.

Materials

HPLC-grade solvents [acetonitrile, water, and formic acid 
(FA)] were purchased from Sigma-Aldrich (Germany). For 
the targeted approach, an Agilent Zorbax Eclipse XDB 
C18, 3.0  ×  100  mm, 3.5  µm with Pre-Column Securit-
yGuard, Phenomenex, C18, 4 × 3 mm was used with the 
AbsoluteIDQ p180 kit (Biocrates Life Sciences AG, Inns-
bruck, Austria). For chromatographic separation in the 
untargeted part, a SeQuant® ZIC®-pHILIC (5  µm poly-
mer) PEEK 150 × 4.6 mm metal-free HPLC column and 
ZIC®-pHILIC Guard column PEEK 20 × 2.1 m were used.

Mass‑spectrometric‑targeted analysis

For targeted analysis, the serum samples were thawed on 
ice and prepared according to the specifications detailed in 
the AbsoluteIDQ p180 kit’s user manual. Shortly, 10 µl of 
serum was pipetted onto 96-well plate filter inserts, inter-
nal standards added, and samples dried under nitrogen and 
derivatized using phenylisothiocyanate. The samples were 
measured using a combination of flow injection analysis 
and through a C18 column. The prepared kit plate was ana-
lyzed on a QTRAP 4500 (ABSciex, USA) mass spectrom-
eter which was coupled to an Agilent 1260 series HPLC 
(USA). The results from the analysis were quantified con-
centrations of different acylcarnitines, amino acids, bio-
genic amines, hexose, glycerophospholipids, sphingolipids, 
and ratios of different metabolites.

Mass‑spectrometric‑untargeted analysis

Blood samples were left to thaw on ice. 100  µl of serum 
was pipetted into a new Eppendorf tube, where 400 µl of 
acetonitrile was added for protein precipitation. The tube 
was vortexed vigorously for 2  min and left for 15  min at 
room temperature. The mixture was centrifuged for 15 min 
at 15,800×g and 4 °C. The supernatant was transferred to a 
clean tube, the samples were randomized, and 10 µl of sam-
ple was used for analysis. A Shimadzu HPLC (Japan) was 
coupled to a 3200 QTRAP (ABSciex, USA) mass spec-
trometer, where the parameters were as follows: solvents 
used were acetonitrile + 0.1% FA, water + 0.1% FA, runt-
ime 62 min, gradient flow rate 0.3 ml/min from 80% ace-
tonitrile to 20% in 32 min, to 5% in 1 min, at 5% for 8 min, 
then to 100% in 5  min, at 100% for 8  min, then re-equi-
libration at 80% for 8  min. The turbo spray’s curtain gas 
was set to 10 au, collision gas to “High”, ionspray voltage 
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to 4500  V, temperature to 300  °C, declustering potential 
to 20 V, entrance potential to 10 V, and collision energy to 
10 V in measurements and 20, 30, or 40 V in fragmentation 
analysis. The samples were measured in both positive and 
negative mode from 50 to 1500 mass-to-charge ratios (m/z). 
Fragmentation analysis was performed using the same set-
tings and column but in Enhanced Product Ion mode for the 
statistically significant masses.

Identification of metabolites

The spectra from the fragmentation analysis were com-
pared to spectra from public databases METLIN [52], 
HMDB [59], MassBank [18], and LipidMaps [11]. A com-
pound was considered identified when the fragmentation 
spectra, its peaks, and relative heights of peaks of a certain 
m/z were identical to a spectrum from an online database.

Data processing

For the untargeted analysis, the acquired .wiff files were 
converted to .mzXML using the MSConvert software [10]. 
The data were analyzed in RStudio version 0.98.501 [55], 
where peaks were extracted using XCMS [53] and further 
processed using mzMatch.R [48] which included the com-
bining of biological replicates, Reproducibility Standard 
Deviation filtering, retention time correction, blank filter-
ing, gap filling, filtering on the number of detections (mini-
mum of six), and matching of related peaks. After data pro-
cessing, a Wilcoxon–Mann–Whitney test was performed 
to determine the peaks and their corresponding retention 
times that differ statistically differently between subjects 
with plaque psoriasis and controls. The differentiating 
m/z-s were selected for fragmentation analysis. For tar-
geted analysis, a Wilcoxon–Mann–Whitney test was used 
to determine which metabolites differ statistically signifi-
cantly between controls and subjects with plaque psoriasis.

Principal component analysis was applied for the visu-
alization of general differences between the groups on data 
from both targeted and untargeted analysis measurements 
[20].

Metadata and pre‑processing

The collected data are suitable for the purposes of mode-
ling, since the disease and control classes are of equal size. 
Although there are twice as many males, the distribution of 
ages and diagnosis is very similar between both sexes (Fig-
ure S1). Prior to analysis, metabolites, which showed zero 
or close to zero variance between samples, were removed. 
Scaling and centering was applied to all values in the data 
set.

Modeling

For the accurate discrimination between psoriasis patients 
and controls, we used a popular machine learning and 
bioinformatics field’s method—random forest algorithm 
[17]. It has been shown to work well in a wide variety of 
biological problems including the identifying of regula-
tory regions [39], classifying metabolomics data [1], and 
selecting highly reliable biomarkers for the diagnosis of 
Alzheimer’s disease [36]. Random forest is an extension 
of another machine learning technique—decision tree [38] 
which builds a series of conditions (decisions) that best 
describe the underlying distribution of classes. Generated 
by the algorithm the series of decisions can be visualized 
as a tree-like structure. Random forest is an ensemble of 
decision trees built using random subsets of original train-
ing data.

Feature selection and cross validation

To select only relevant metabolite features for our classifi-
cations, we used three feature selection methods. Two were 
wrapper methods: a genetic algorithm [33] and a recur-
sive feature elimination and one was a filter method [46]. 
All three methods were used in parallel to cross-check the 
results. All of them used external cross validation [3] to 
avoid unwanted bias that could be introduced by aggressive 
feature selection procedures.

Due to the lack of training data, the use of fivefold cross-
validation strategy was applied as suggested by Ambroise 
et al. [3]. We only report average area under receiver oper-
ating characteristic (AUROC) values for our feature selec-
tion models. We used random forest with all three feature 
selection techniques. Modeling was implemented using R 
version 3.3.1 and package ‘caret’ 6.0.71 [27].

Results

Metabolites from the targeted approach that differ statis-
tically significantly in the serum of subjects with plaque 
psoriasis from controls are shown in Table 1. We found the 
differences in acylcarnitine levels, mainly in the concentra-
tions of nonaylcarnitine (C9), dodecanoylcarnitine (C12), 
decadienylcarnitine (C10.2), and pimelylcarnitine (C7.DC) 
which are all lower in concentrations in psoriasis subjects’ 
serum.

Phosphatidylcholine diacyls (PC aa) C36:5/C36:6 and 
phosphatidylcholine acyl-alkyls (PC ae) C38:0/C40.6 all 
showed higher levels in controls’ serum. Statistically signif-
icantly differing levels of amino acids were found to be for 
glutamate (Glu), ornithine (Orn), phenylalanine (Phe), and 
methioninesulfoxide (Met.SO). Amino acid concentrations 
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in samples were statistically significantly higher in psoria-
sis subjects compared to controls. Ratios of acylcarnitine 
to free carnitine (C2…C0), short-chain acylcarnitines to 
free carnitine (X.C2.C3…C0), citrulline to ornithine (Cit…
Orn), esterified to free carnitine (Total.AC…C0), putres-
cine to ornithine (Putrescine…Orn), and long-chain acyl-
carnitines to free carnitine ([C16 + C18]/C0) were all sta-
tistically significantly higher in controls, whereas the levels 
of the fraction of sulfoxidized methionine of the unmodi-
fied methionine pool (Met.SO…Met) were higher in pso-
riasis patients.

All metabolites which levels differed statistically sig-
nificantly in the untargeted measurements are shown in 
Table  2. Identification was successful for 12 metabolites 
out of 22 (supplementary Figures  S2–S13). All of the 
discovered metabolites showed higher levels in samples 
of psoriasis patients. They include urea, taurine, phytol, 
1,11-undecanedicarboxylic acid, glycerophosphocholines 
PC(16:0/18:2), PC(18:1/0:0), PC(16:0/18:1), PC(16:0/0:0), 
PC(20:4/0:0), PC(18:1/0:0), and phosphatidylethanolamine 
PE(20:4/0:0).

PCA plot from targeted metabolites which are summed 
based on their metabolite classes (Fig. 1) shows two over-
lapping clusters of controls and psoriasis groups. The 
group clustering is best observed along principal compo-
nent one that accounts for 35% of variability. For principal 
component one, the metabolites responsible for the cluster-
ing of groups are biogenic amines, glycerophospholipids, 

and metabolite ratios. The combined PCA plot of the posi-
tive and negative ionization analyses from the untargeted 
approach displays very clear clustering of the groups on the 
axis of PC 1 that accounts for 55% of variability (Fig. 2). 
As expected, there is not a single metabolite that is solely 
responsible for the clustering of groups in the PCA plot, 
but a combination of many metabolites both identified and 
unidentified. The better clustering can be explained by the 
inclusion of fewer metabolites due to the lower accuracy 
of the mass spectrometer in addition to the application of 
many filtering techniques used in data pre-processing.

A random forest classifier with three different feature 
selection methods was trained. Each combination of ran-
dom forest and feature selection method has been trained 
on the whole data set using fivefold cross validation to 
ensure fair model performance estimate.

We report that with recursive feature elimination, our 
random forest model achieved 0.86 AUC, 0.77 sensitivity 
and 0.74 specificity averaged across five repetitions. With 
this method, 15 metabolites were selected into a final 
model. Feature selection using internal importance meas-
ures that applied inside random forest model yielded 46 
metabolites and 0.85 AUC resampling performance with 
sensitivity and specificity 0.77 and 0.74 correspondingly. 
Finally, the best model that used genetic algorithm for 
feature selection kept 90 features and achieved 0.85 AUC. 
9 metabolites/ratios was selected by all three methods 
and these are Met.SO, Cit…Orn, Met.SO…Met, X.C2.

Table 1   Statistically significantly different metabolites and their ratios from targeted analysis

Metabolite abbreviation Metabolite p value Psoriasis mean μM ± SD Control mean μM ± SD

Met.SO Methioninesulfoxide 6.06E−06 0.88 ± 0.37 0.51 ± 0.27
Met.SO…Met Fraction of sulfoxidized methionine of the unmodi-

fied methionine pool
2.65E−05 0.04 ± 0.02 0.02 ± 0.01

C9 Nonaylcarnitine 0.002 0.04 ± 0.01 0.05 ± 0.01
Glu Glutamate 0.002 92.85 ± 66.43 49.06 ± 22.76
Cit…Orn Ratio of citrulline to ornithine 0.002 0.37 ± 0.13 0.44 ± 0.12
C2…C0 ratio of acetylcarnitine to free carnitine 0.004 0.17 ± 0.08 0.22 ± 0.08
X.C2.C3…C0 Ratio of short-chain acylcarnitines to free carnitine 0.005 0.18 ± 0.08 0.23 ± 0.08
PC.aa.C36.6 Phosphatidylcholine diacyl C36:6 0.006 0.68 ± 0.27 0.89 ± 0.33
Total.AC…C0 Ratio of esterified to free carnitine 0.006 0.25 ± 0.1 0.31 ± 0.1
PC.ae.C38.0 Phosphatidylcholine acyl-alkyl C38:0 0.007 1.73 ± 0.5 2.17 ± 0.69
C7.DC Pimelylcarnitine 0.011 0.019 ± 0.006 0.024 ± 0.008
Orn Ornithine 0.011 99.79 ± 29.44 82.28 ± 20.85
PC.ae.C40.6 Phosphatidylcholine acyl-alkyl C40:6 0.011 3.39 ± 0.99 4.02 ± 1.01
Putrescine…Orn Ratio of putrescine to ornithine 0.013 0.001 ± 0.001 0.002 ± 0.001
PC.aa.C36.5 Phosphatidylcholine diacyl C36:5 0.019 24.78 ± 13.25 34.34 ± 19.98
Phe Phenylalanine 0.026 82.91 ± 18.96 72.46 ± 13.51
[C16 + C18]/C0 Ratio of long-chain acylcarnitines to free carnitine 0.027 0.004 ± 0.001 0.005 ± 0.001
C12 Dodecanoylcarnitine 0.036 0.1 ± 0.036 0.124 ± 0.051
C10.2 Decadienylcarnitine 0.044 0.069 ± 0.021 0.076 ± 0.02
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Table 2   Statistically 
significantly different m/z-s 
from untargeted analysis

Mass-to-
charge 
ratio

p value Intensity levels higher 
in psoriasis or controls?

Metabolite

Negative ionization 189 2.80E−07 Psoriasis No match in databases
802.5 8.28E−05 Psoriasis PC(16:0/18:2) + FA
556.32 2.91E−04 Psoriasis PC(18:1/0:0)
129.17 4.82E−05 Psoriasis No match in databases
249 1.46E−04 Psoriasis No match in databases
198 8.36E−05 Psoriasis No match in databases
325.5 1.03E−04 Psoriasis No match in databases
249 1.30E−04 Psoriasis No match in databases
243.12 9.73E−08 Psoriasis 1,11-Undecanedicarboxylic acid

Positive ionization 760.56 7.91E−07 Psoriasis PC(16:0/18:1)
496.38 8.15E−07 Psoriasis PC(16:0/0:0)
159 3.07E−06 Psoriasis No match in databases
126 1.59E−03 Psoriasis Taurine
544.38 1.31E−06 Psoriasis PC(20:4/0:0)
282 1.58E−06 Psoriasis No match in databases
297 1.10E−05 Psoriasis No match in databases
297.059 4.30E−03 Psoriasis Phytol
522.36 2.79E−03 Psoriasis PC(18:1/0:0)
120 3.94E−06 Psoriasis No match in databases
502.38 0.0108 Psoriasis PE(20:4/0:0)
679.5 5.54E−08 Psoriasis No match in databases
60.69 1.23E−05 Psoriasis Urea

Fig. 1   PCA plot of the targeted analysis. Psoriasis samples are 
marked as gray triangles and control samples as black circles. The 
metabolite groups responsible for the separation are marked at the 

end of the arrows. X and Y axes represent the percentage of variabil-
ity explained by principal components one and two
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C3…C0, C2…C0, C9, Orn, C7.DC, and PC.aa.C38.5. 
Figure  3 shows the difference in concentrations of nine 
overlapping metabolites between healthy subjects and 
psoriasis patients. All of these differences are statistically 

significant with the exception of PC.aa.C38.5, whereas 
the maximum Wilcoxon test p value equals 0.011 for Orn 
and the minimal 6.06E−06 for Met.SO.

Fig. 2   PCA plot of the untargeted analysis. Controls are shown as 
gray triangles, while psoriasis patients are marked as black circles. 
The metabolites responsible for the separation are shown at the end 

of the arrows. X and Y axes represent the percentage of variability 
explained by principal components one and two

Fig. 3   Distribution of standardized signals for nine metabolites overlapping in all three modeling methods. Red dots represent standardized con-
centrations for psoriasis patients, while blue ones represent controls
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Discussion

The elevated levels of amino acids in the serum of psoria-
sis patients established in this present study can be linked 
to the higher demand for amino acids in the hyperprolif-
erative epidermis, where de novo synthesis of proteins is 
upregulated and the rate of mitosis in basal keratinocytes is 
increased compared to non-lesional skin [37]. In our study, 
all of the statistically significantly different levels of amino 
acids are from the non-essential amino acid pool with the 
exception of phenylalanine. Ornithine is part of the urea 
cycle and its levels in the serum were discovered to be over-
expressed in psoriatic patients. Arginase I (EC 3.5.3.1) 
catalyzes arginine hydrolysis to urea and ornithine and 
has been demonstrated to be a limiting factor for cell pro-
liferation [58]. Higher activity of arginase has been dem-
onstrated in psoriatic skin [2] which can be linked to the 
hyperproliferating keratinocytes and higher concentrations 
of ornithine. The end product of the ornithine cycle is urea 
that we discovered in the untargeted analysis to have higher 
levels in psoriatic patients’ serum. The ratio of the fraction 
of symmetrically dimethylated arginine of the unmodified 
arginine pool nor ADMA showed statistically significant 
differences in serums (p values 0.35 and 0.31, respec-
tively), thus contradicting the recent results by Bilgic et al. 
[5]. This illustrates the variability of psoriasis cohorts and 
the necessity for an even larger cohort studies to confirm 
the results of either study. Glutamate which level is sig-
nificantly higher in psoriasis patients samples (p = 0.002) 
can be converted by glutamine synthetase (EC 6.3.1.2) to 
glutamine which is subsequently converted by carbamoyl-
phosphate synthetase (EC 6.3.4.16) to carbamoyl-P which 
is then converted by ornithine carbamoyltransferase (EC 
2.1.3.3) to citrulline that is an essential component of the 
urea cycle [23]. It can be hypothesized that in addition to 
the overproduction of the urea cycle intermediates in psori-
atic patients, the increase in concentrations of said metabo-
lites come from changes in proteins that are deiminated (or 
citrullinated) in the skin mainly K1 [49], K10, and filag-
grin proteins [22]. The decreased deimination of psoriatic 
cornified cell layer proteins has been shown for K1 [19]. 
Fewer cells that express K10 were detected in lesional skin 
[34]. Filaggrin, filaggrin-2, and their mRNAs in psoriatic 
skin samples were found to be significantly reduced [32]. 
Since less citrulline is produced in psoriatic skin, a cumu-
lation of urea cycle intermediates can be explained. The 
ratio of citrulline to ornithine is lower in psoriasis patients, 
thus indicating the lower activity of ornithine carbamoyl-
transferase and the cumulation of ornithine. In addition, the 
ratio of putrescine to ornithine is lower in psoriasis patients 
showing a reduction in the activity of ornithine decarboxy-
lase (EC 4.1.1.17) and to overall changes in the urea cycle. 
These findings correlate well with Kang et  al. [24] who 

also noted the upregulation of metabolites in the urea cycle. 
Phenylalanine is a non-essential amino acid meaning that 
its uptake is dependent on diet. Phenylalanine is hydroxy-
lated to tyrosine by phenylalanine hydroxylase (PAH, EC 
1.14.16.1). PAH activity has been shown to be lower in 
psoriasis patients [26] and increases after UVB-light expo-
sure [47], thus lowering the amount of Phe in the serum. 
Although the role of excess Phe in psoriasis is unclear, a 
connection with UV therapy and its effect can be noted.

Methioninesulfoxide (Met.SO) is the oxidized form of 
methionine that reacts with free radicals and goes through 
the oxidation process [7]. The higher concentration of Met.
SO and the ratio for the fraction of sulfoxidized methionine 
of the unmodified methionine pool are both indicative of 
oxidative stress in psoriasis patients’ serum.

Carnitine is synthesized from lysine and methionine 
[23] and has a variety of functions that include the trans-
port of different fatty acids to mitochondria for branched 
α-keto acid oxidation, mitochondrial fatty acid oxidation, 
and trapping of acyl-CoA metabolites that may impair 
gluconeogenesis, the citric cycle, and the urea cycle [40] 
among many other functions. In omnivores, up to 75% per-
cent of carnitine comes from dietary sources or can be from 
endogenous origins in the case of strict vegetarians [42]. 
In healthy individuals, up to 80% of carnitine from food 
is absorbed [43]. The lower concentration values of vari-
ous carnitines and acylcarnitines found in psoriasis patients 
can either be explained by the unlikely change in diet that 
is less abundant in dairy products, fish, meat, and poultry 
or the increase in fatty acid oxidation in lesional skin due 
to the increased energy consumption of rapidly proliferat-
ing cells. Caspary et  al. have shown the latter [9], where 
the increased activity of carnitine palmitoyltransferase-1 
(CPT-1) was demonstrated in lesional skin. CPT-1 is the 
enzyme responsible for the rate of transport of long-chain 
fatty acids into mitochondria. This correlates well with our 
results that show a significant decrease in the concentra-
tions of C9, C12, C10.2, and C7.DC in psoriasis subjects 
compared to controls. On the opposite, CPT-1 and CPT-2 
deficiency has been shown to increase the concentrations 
of C14.1, C12, C16, C18:1, and C0 [50]. In addition to the 
changes in circulating carnitine levels, the ratios C2…C0, 
X.C2.C3…C0 and [C16  +  C18]/C0 are all indicators of 
overall β-oxidation activity. Since the ratios are all higher 
in controls, it might be a sign of altered lipid use activity in 
the energy production in psoriasis.

The higher rate of proliferation for skin cells could also 
explain the lower concentrations of phosphatidylcholines in 
psoriasis patients’ blood serum that are essential parts of 
cell membranes. In targeted analysis, all of the phosphati-
dylcholines had lower concentrations in subjects with pso-
riasis. PC-s from untargeted analysis, however, had higher 
values in psoriasis patients’ serums which can be explained 
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by the different methods and machinery used in the dif-
ferent approaches. The untargeted method strongly favors 
the solubility of lipophilic molecules, thus making some 
metabolites statistically different that were not in the tar-
geted approach. LysoPC-s have been shown to induce the 
chemotaxis of T-lymphocytes [45], thus fueling the con-
stant inflammation in the epidermis. A higher concentra-
tion of choline which is an essential precursor for phospho-
cholines has been noted in lesional psoriatic skin [51].

In targeted analysis, taurine had a higher concentra-
tion in psoriasis patients (122.6 µM) compared to controls 
(107.4 µM), but the change was not significant (p = 0.24). 
In untargeted analysis, taurine was also higher in psoriasis 
subjects and the change was considered statistically signifi-
cant (p < 0.00159). Taurine is considered as a semi-essen-
tial amino acid that is not incorporated into proteins, but 
has different biological roles including the regulation of 
cell volume, anti-oxidative, anti-apoptotic, and anti-inflam-
matory effects [28]. Higher concentrations of taurine were 
measured in psoriatic skin compared to uninvolved skin 
[51].

Phytol is the carbon side chain of chlorophylls that is 
released by bacteria present in the gut of ruminants’ intes-
tines. From there, it becomes widely available in the adi-
pose tissue and dairy products of the animal [12]. This 
branched-fatty alcohol has been shown to activate peroxi-
some proliferator-activated receptor α in the liver followed 
by an effect on the control of lipid abnormalities in diabe-
tes, obesity, and hyperlipidemia [13]. In addition, phytol is 
converted into phytanic acid in the liver [57]. Phytanic acid 
was demonstrated to increase oxidative stress and reduce 
the antioxidant potential in rats [29]. Alpha-methylacyl-
CoA racemase (AMACR) is responsible for the regula-
tion and metabolism of dietary branched-chain lipids [30]. 
In summary, it can be hypothesized that in psoriasis, the 
patients might have alpha and beta oxidation deficiencies 
which helps to explain the abnormal levels of acylcarniti-
nes in the serum. The increase in the levels of phytol and 
phytanic acid contributes to oxidative stress and the con-
tinued inflammation of the skin in psoriatic patients. The 
single nucleotide polymorphism of AMACR in patients 
with psoriasis could also contribute to the increased level 
of phytol but that remains to be shown. Currently, a reduc-
tion of red meat and dairy products could potentially lower 
phytol levels in the serum. A meta-analysis has shown that 
dietary regulation and weight loss are important in achiev-
ing PASI 75 scores [56]. A reduced intake of phytol from 
dairy products and red meat might certainly have an effect 
on that.

An excess of 1,11-undecanedicarboxylic acid has 
been found in patients with Zellweger syndrome and 
adrenoleukodystrophy [44]. 1,11-undecanedicarboxylic 
acid together with phytanic acid could be indicative of 

peroxisome disorders, but the exact role remains unclear. 
Peroxisome proliferator-activated receptor-γ (PPARγ) 
has been demonstrated to be responsible for the regula-
tion of lipid metabolism and glucose homeostasis along 
with cell differentiation and growth regulation [54]. Since 
the activity of PPARγ is lower in psoriatic skin [16], then 
higher concentrations of phytol, 1,11-undecanedicarbox-
ylic acid, and different phosphatidylcholines could be a 
direct result of that.

Applying predictive models is still very new, but could 
1 day be used routinely in the clinic for a better moni-
toring of the treatment or to provide help with diagno-
sis. The models we reported could very well be used for 
both. Building classification models are simpler, since it 
is a binary problem, but for the PASI regression model, 
the problem of measuring PASI scores by different physi-
cians arises. It has been reported that an intra-class cor-
relation coefficient of 0.804 was achieved when different 
doctors measured PASI scores on the same patients [8], 
so a more precise method of measurement, e.g., on the 
molecular level, could provide better treatment monitor-
ing options.

In conclusion, our analysis demonstrated that patients 
with psoriasis have an impaired amino acid and lipid 
metabolism and a disbalance in the components of the 
bilipid cellular membrane. These findings will help to 
understand the pathogenesis of the disease which could 
lead to the better treatment of patients in the clinic. Our 
reported models and the discovered metabolites could be 
useful in helping to diagnose plaque psoriasis or monitor 
treatment.
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