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Abstract: A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated
by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were
synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of
reactants, pH 3, temperature 32 ◦C and 72 h reaction time. The AgNPs-GA were characterized
by various analytical techniques and their size was determined to be 5–30 nm. FTIR spectroscopy
indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in
supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm
which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability
of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that
AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of
biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7
and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative
effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50%
(IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis
was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore,
AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast
cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly
capable of producing AgNPs-GA with favourable physicochemical and biological properties.

Keywords: biosynthesis; silver nanoparticles; MCF-7; MCF-7/TAMR-1; MCF-10A; cytotoxicity; apoptosis

1. Introduction

Nanoparticles are ultrafine particles with sizes of nanometer order, denoting the minus 9th power
of ten, namely one billionth [1]. By this definition, particles whose sizes are between 1 to 100 nm are
regarded as nanoparticles. The multifunctional effects of silver nanoparticles (AgNPs) have made these
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nanomaterials potent compounds for biomedical, agricultural and pharmaceutical applications [2,3].
AgNPs differ from bulk and micron size silver in their size, shape, and stability [4]. Several techniques
are commonly employed to synthesize AgNPs, including chemical synthesis [5], electrochemical
synthesis [6], radiation synthesis [7] and photochemical synthesis [8]. In comparison with other
methods, biological synthesis of AgNPs has received a great interest due to its eco-friendly mode of
synthesis with passable biomedical properties [9].

The ultrafine size of the nanoparticles manifests in useful functions. For example, finer particles are
apt to be absorbed more easily through biological membranes [1]. The size and shape of AgNPs can be
controlled through optimization of different parameters such as temperature, pH, precursors, reducing
agents, and other experimental conditions [4]. It has been demonstrated that plant extracts, bacteria,
fungi yeasts and algae can be used as reducing and/or stabilizing compounds to transform silver ions
(Ag+) from silver salts into nanoparticles [10]. This approach has been actively pursued in recent years
to address the drawbacks of other physiochemical methods [10]. Among the biological methods, the
use of plant extracts for the synthesis of AgNPs have been preferred due to the fact it is a green, simple,
rapid and economically scalable room temperature method [11]. Several plant extracts including
Ocimum sanctum [12], Rumex hymenosepolus [13], Alternanthera sessilis [14], Eleutherococcus senticosus [15]
and Cassia auriculata [16] have been used to produce “green” AgNPs.

Garcinia atroviridis (G. atroviridis) or locally known as “asam gelugor” among Malaysians, is used
in a folk medicine for the treatment of abdominal pain, infections, gastric and pains associated
with pregnancy [17,18]. The plant is native to the Peninsular Malaysia, Thailand, Myanmar and
Indian regions [19]. The fruits, leaves, and stem bark extracts of G. atroviridis are found to be a rich
source of bioactive secondary metabolites, including phenolic, flavonoid and tannin compounds
such as xanthones (atroviridin), benzoquinones (atrovirinone), cambogin, garcinol, camboginal,
triflavanone (garcineflavanone A) and biflavonols (garcineflavonol A) [20–22]. These phytochemicals
have been reported to display diverse pharmacological activities including antioxidant [22,23],
antimicrobial [23,24], anti-proliferative [17,23,25], anti-inflammatory [24], anti-cholinesterases [21] and
anti-hyperlipidemic effects [20]. Interestingly, it has been reported that some of these phytometabolites
such as phenolic compounds, were capable to transform inorganic silver ions into nanoparticles [10].

Breast cancer is one of the most common forms of cancer observed in women and the disease
is commonly associated with prolonged exposure to estrogens [26]. The most acknowledged
mechanism of estrogen carcinogenicity is through its binding to estrogen receptor α (ERα) [27].
This binding enhances production of growth factors through direct and/or indirect actions which led
to breast cell proliferation [27]. Moreover, the percentage of ER-positive cells generally increases in
proliferative benign disease which explains why about 50–80% of breast cancer cases are classified as
ERα-positive [28]. Clinically, ERα-positive breast cancer is treated with antiestrogen therapy, such as
tamoxifen, that is designed to interrupt the function of ERα [29]. On a molecular basis, tamoxifen binds
to ERα and competitively inhibits estrogen binding in the breast [30]. However, antiestrogen resistance
frequently occurs, that eventually leads to treatment failure, disease progression and death [30].

In the present study, silver nanoparticles (AgNPs-GA) was biosynthesized following a “bottom-
up” approach [31] using G. atroviridis leaf water extract to react with silver salt. The main objectives of
the present study were to biosynthesize silver nanoparticles using G. atroviridis and characterize their
physicochemical properties, followed by an investigation of their anti-proliferative potential against
human breast cancer cells in vitro. Further, induction of apoptosis was evaluated by comparing the
effects of AgNPs-GA in MCF-7, MCF-7/TAMR-1 and MCF-10A cells in vitro.

2. Results and Discussion

2.1. Characterization of Biosynthesized Silver Nanoparticles

The following characterization methods were used to confirm the formation of AgNPs-GA
biosynthesized using G. atroviridis leaf extract.
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2.1.1. Ultra Violet-Visible (UV-Vis) Spectroscopic Analysis of AgNPs-GA

In the present study, AgNPs-GA were biosynthesized using a previously reported method with a
slight modification [32,33]. AgNPs-GA were thus biosynthesized through a series of optimizations
of different reaction parameters including the concentrations of silver salt (AgNO3) and leaf extract,
mixing ratio of reactants, temperature and pH. The optimized reaction conditions for the biosynthesis
AgNPs-GA are summarized in Table 1.

Table 1. Summary of various optimized reactions condition for the biosynthesis AgNPs-GA.

Optimized Reactions Condition Optimum Values

Concentration of AgNO3 0.1 M
Concentration of G. atroviridis leaf extract (Leaf-GA) 10% (w/v)

Mixing ratio of reactants 1:4 (ratio of Leaf-GA to AgNO3)
Incubation temperature of the medium 32 ◦C

pH of the medium 3
Incubation time 72 h

The optimal concentrations of leaf extract and aqueous AgNO3 were 10% (w/v) and 0.1 M,
respectively and the best mixing ratio of both reactants was 1:4. In the present study, AgNPs-GA were
formed after 72 h reaction time and at 32 ◦C. It is well-documented that AgNPs exhibit a yellowish
brown color in aqueous solution due to excitation of surface plasmon vibrations in AgNPs, and the
color started to change to dark brown due to reduction of silver ion, which indicated the formation of
AgNPs [34]. In agreement with Ismail et al. [34], the color of AgNPs-GA samples was transformed to
darker brown after 72 h of reaction time between the G. atroviridis leaf extract (Leaf-GA) and AgNO3

(Figure 1, insert).
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Figure 1. UV-Vis absorption spectrum recorded at optimum reaction condition and visible observation
(insert) of biosynthesized AgNPs-GA at 24 h, 48 h and 72 h.

AgNPs is known to possess optical properties which may interact with specific wavelengths of
light [35]. The optical absorption spectra of AgNPs-GA were determined by UV-Vis spectrophotometry.
The standard range of UV-Vis absorption maximum for AgNPs is described to be between 400 to
500 nm due to the excitation mode of their localized surface plasmon resonance (LSPR) [36]. The
frequency and the strength of resonance are determined by the size and shape of the particles as well as
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the dielectric function of the surrounding medium [37]. The formation of AgNPs-GA occurred at pH
3.02, as displayed by a plasmon band at 450 nm, characteristic of nanosized silver, whilst broadening
of peak indicated that the particles are polydispersed (Figure 1). This finding is in accordance with
the reported literature [10]. It has been suggested that a larger number of functional groups that can
bind and nucleate metal ions become accessible at pH 3.0 and 4.0, which resulted in small-sized metal
nanoparticles [10].

2.1.2. Scanning Electron Microscopy (SEM) Analysis

The morphology of the biosynthesized AgNPs-GA was analyzed using SEM. Representative SEM
images of the control, commercial AgNPs and biosynthesized AgNPs-GA under optimum conditions
at various incubation times (24, 48 and 72 h) are shown in Figure 2a–d.

Molecules 2020, 25, x FOR PEER REVIEW 4 of 26 

 

AgNPs is known to possess optical properties which may interact with specific wavelengths of 
light [35]. The optical absorption spectra of AgNPs-GA were determined by UV-Vis 
spectrophotometry. The standard range of UV-Vis absorption maximum for AgNPs is described to 
be between 400 to 500 nm due to the excitation mode of their localized surface plasmon resonance 
(LSPR) [36]. The frequency and the strength of resonance are determined by the size and shape of the 
particles as well as the dielectric function of the surrounding medium [37]. The formation of AgNPs-
GA occurred at pH 3.02, as displayed by a plasmon band at 450 nm, characteristic of nanosized silver, 
whilst broadening of peak indicated that the particles are polydispersed (Figure 1). This finding is in 
accordance with the reported literature [10]. It has been suggested that a larger number of functional 
groups that can bind and nucleate metal ions become accessible at pH 3.0 and 4.0, which resulted in 
small-sized metal nanoparticles [10]. 

2.1.2. Scanning Electron Microscopy (SEM) Analysis 

The morphology of the biosynthesized AgNPs-GA was analyzed using SEM. Representative 
SEM images of the control, commercial AgNPs and biosynthesized AgNPs-GA under optimum 
conditions at various incubation times (24, 48 and 72 h) are shown in Figure 2a–d. 

 
Figure 2. (a–c) SEM images of AgNPs-GA biosynthesis at 24 h, 48 h and 72 h of incubation period, 
respectively and (d) commercial AgNPs. 

Silver nanoparticles can be of different shapes such as spheres, rods, wires and triangles [38]. 
Based on our SEM analysis, spherical AgNPs were formed on the surface and most of the 
nanoparticles are aggregated as clusters as the incubation time increased from 24–72 h. This might 

Figure 2. (a–c) SEM images of AgNPs-GA biosynthesis at 24 h, 48 h and 72 h of incubation period,
respectively and (d) commercial AgNPs.

Silver nanoparticles can be of different shapes such as spheres, rods, wires and triangles [38]. Based
on our SEM analysis, spherical AgNPs were formed on the surface and most of the nanoparticles are
aggregated as clusters as the incubation time increased from 24–72 h. This might due to cross-linking
during sample preparation, thus resulting in the observed small variation of the nanoparticle size [39].

2.1.3. Transmission Electron Microscopy (TEM) Analysis

The size and shape of the biosynthesized AgNPs-GA under optimum conditions were examined
using TEM analysis. The AgNPs-GA formed were predominantly spherical in shape (Figure 3a). Silver
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nanoparticles can be of different sizes, which range from a few up to 100 nm [38]. The particle size
distribution histogram shows that the biosynthesized AgNPs-GA formed were in the range of 5–30 nm,
with a mean value of 8.12 nm (Figure 3b). This finding indicated that the biosynthesis of AgNPs-GA
results in a narrow distribution of well monodispersed nanoparticles. Previous reports had shown that
the synthesis of plant mediated AgNPs are mostly spherical in shape [40,41]. It is interesting to note that
a thin layer of organic materials from the plant is noticed on the TEM image. This could be attributed
to the presence of biomolecules in the leaf extract, as reported by previous studies which employed the
plant extracts in the biosynthesis [42]. This assumption was further validated by FTIR analysis.
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Figure 3. (a) TEM image of biosynthesized AgNPs-GA and (b) size distribution of biosynthesized AgNP-GA.

2.1.4. Dynamic Light Scattering (DLS) Analysis

The Z-average hydrodynamic diameters of AgNPs-GA was approximately 174.6 nm (Figure 4a)
and zeta potential of the nanoparticles was −24.4 mV (Figure 4b) which can be defined as metastable.
The polydispersity index (PDI) value of AgNPs-GA was found to be 0.4 that shows a moderate
dispersity. A nanoparticle scheme with PDI value < 0.1 is measured as highly monodisperse, while
PDI value > 0.4 and value in range of 0.1–0.4 are specified that the system has greatly polydisperse
and moderately disperse distribution in the corresponding order [43]. Accordingly, biosynthesized
AgNPs-GA display better particle size distribution characteristics.
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The difference in the average crystallite diameter achieved from the Scherrer equation and
Z-average hydrodynamic diameter from the DLS particle size analysis could be assigned that the
hydrodynamic diameter is inclusive of any plant biomolecule coating on the nanoparticles, while the
crystallite diameter is merely its core diameter [43]. In addition, the DLS-calculated size is slightly
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bigger as compared to the particle size calculated from TEM micrographs, which could be explained
by the fact the DLS method result is calculated from the hydrodynamic radius [44].

In comparison to the observations obtained by TEM, the DLS analysis indicated that the size
distribution of AgNPs-GA showed a broad distribution. This could be due to several factors such
as hydrodynamic radius measurement and the intensity. Taken together, it could be suggested that
AgNPs-GA is metastable and showed a good dispersity, in between monodispersed and polydispersed.

2.1.5. X-ray Diffraction (XRD) Analysis

The crystalline nature of the biosynthesized AgNPs-GA was determined by XRD analysis in the
range of 30–70◦ at 2θ angles (Figure 5a). The XRD spectrum showed four prominent diffraction peaks
at 2θ values of 38.12◦, 44.20◦, 64.68◦, and 77.55◦, corresponding to (111), (200), (220), and (311) Bragg’s
reflections planes of the faced-centered cubic (fcc) structure of metallic silver. The observed values
are in good agreement with reference of fcc structure from Joint Committee of Powder Diffraction
Standard (JCPDS No 03-065-2871) (Figure 5b), confirming the biosynthesis of AgNPs [45]. The average
particle size of AgNPs-GA is determined using the Debye-Scherrer equation and the average particle
size was found to be 14.64 nm. The additional peaks marked as (*) were also observed in the XRD
spectrum. These peaks might due to the presence of the organic compounds in the leaf extract which
contributed to the silver ions (Ag+) reduction and stabilization of the AgNPs (Ag0) formed [46].
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comparison to XRD standard graph.

2.1.6. Fourier-Transform Infrared (FTIR) Analysis

Figure 6 shows the FTIR spectra of G. atroviridis leaf extract and its biosynthesized AgNPs-GA.
In general, the FTIR spectrum of the extract exhibited major absorption bands at 3332 cm−1 (–OH
stretching), 2920 and 2851 cm−1 (–CH stretching), 1728 cm−1 (–C=O stretching), 1622 cm−1 (–C=C–
stretching) and 1030 cm−1 (–C–O stretching) [47,48]. The observed bands suggest the occurrence of
flavonoids and phenolic compounds in the plant extract [21,48]. On the other hand, a majority of the
absorption bands were present in the spectrum of AgNPs-GA with some marginal shifts, indicating
the reduction of silver ions (Ag+) and the detection of some of the residual phenolic compounds from
the extract [49]. Thus, the analysis suggested the dual role of G. atroviridis extract, which acts as the
green reducing agent as well as the stabilizing agent in the formation of AgNPs [49].
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2.2. Effect of AgNPs-GA on Cell Viability

The potential growth-inhibitory effect of biosynthesized AgNPs-GA were investigated against
MCF-7 and MCF-7/TAMR-1 cell lines. Prior to the determination of the anti-proliferative effects of
AgNPs-GA, both cell lines were treated with different concentrations of tamoxifen for up to 72 h and
cell viability was measured by MTT assay in order to determine the degree of resistance acquired by
MCF-7/TAMR-1 cells. When both cell lines were treated with 30 µM tamoxifen at 24 h, cell viability
of MCF-7/TAMR-1 was significantly higher (62.7%) than that of MCF-7 (37.3%), demonstrating
MCF-7/TAMR-1 cells are resistance to tamoxifen about 1.7 fold-different in comparison to MCF-7 cells
(Figure 7a,b). MCF-10A cells were found to be more sensitive upon tamoxifen treatment, especially at
concentrations 20–30 µM where the cell viability was reduced maximum (Figure 7c).

Tamoxifen is the first-line chemotherapeutic drug prescribed for ER-positive breast cancer patients.
However, its use is hampered by the frequently occurring development of resistance during therapy
and it has been the subject of intense study over recent years. Therefore, new strategies against these
resistant cancer cells are urgently needed. In this study, we have primarily tested the efficacy of
AgNPs-GA as potential anti-proliferative agent against ER-positive breast cancer cell lines, MCF-7 and
MCF-7/TAMR-1.

Both cells were originally purchased from American Type Culture Collection (ATCC, Rockville,
MD, USA) and Merck (Darmstadt, Germany), respectively. MCF-7/TAMR-1 is a tamoxifen-resistant cell
line derived from the MCF-7/SO.5 cell line that has been adapted to grow at low serum concentration
under the long-term treatment with 1 µM with tamoxifen. This cell line provides a model cell
system for studying tamoxifen resistance, such as investigating and identifying new agent against
tamoxifen-resistant growth. Tamoxifen resistant cells are characterized by less free sulfhydryl-groups
(glutathione) [50]. Due to these insufficient amounts of glutathione, the authors had suggested
that TamR cells were more sensitive to dicarbonyl stress. Dicarbonyl stress can result in damage to
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intracellular proteins, mitochondrial dysfunction and oxidative stress, which eventually leads to cell
death [51,52].
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Figure 7. The anti-proliferative effect of tamoxifen on (a) MCF-7, (b) MCF-7/TAMR-1 and (c) MCF-10A
cells within 24–72 h of treatment. The anti-proliferative effect of tamoxifen (1.0–30 µM) was assessed
by MTT assay. Data shown are the mean values ± S.D. for three independent experiments. Statistical
analysis was performed using Student’s t test with a p < 0.05, b p < 0.01 and c p < 0.001, significantly
different to untreated cells.

Nass and colleagues [50] have also postulated that tamoxifen resistant cells are more sensitive
to oxidative stress, which can be resulted by increasing endogenous production of ROS or a reduced
expression of antioxidant defence systems [50]. Along with other studies, there is strong evidence
for a link between AgNP-mediated production of ROS, the subsequent generation of oxidative
stress and cytotoxicity [53,54]. For example, the biosynthesized AgNPs have been demonstrated to
induce cytotoxicity in hepatocytes and fibroblasts due to oxidative damage to the cell membrane [54].
These findings prompted our interest to investigate whether AgNPs-GA can induce cell death in
MCF-7/TAMR-1 cells as well.

In this study, the anti-proliferative effects of AgNPs-GA at varying concentrations (10–100 µg/mL)
were evaluated against MCF-7, MCF-7/TAMR-1 and MCF-10A human breast cell lines. The MCF-10A
cell line was included as a representative of a human non-cancerous breast cell line. The obtained
results at each incubation period (24–72 h) are illustrated in Figure 8a–c. Figure 8a shows clearly that
increasing the concentration of AgNPs-GA from 10 to 100 µg/mL adversely decreased the proliferation
of MCF-7 cells. At 24 h, MCF-7 cells remained viable about 65% and 10% after treated with 10 and
100 µg/mL of AgNPs-GA, respectively. The anti-proliferative effect of AgNPs-GA in MCF-7 cells
also follows a time-dependent manner. After 72 h of incubation these cells were further inhibited
by almost 97% by AgNPs-GA at concentration of 100 µg/mL. Compared with untreated cells, these
differences in proliferation were statistically significant. Similar to MCF-7 cells, the anti-proliferative
effect of AgNPs-GA against the MCF-7/TAMR-1 cell line also follows a concentration-dependent
manner (Figure 8b). For instance, AgNPs-GA did not show significant anti-proliferative effects in
MCF-7/TAMR-1 cells at concentrations lower than 20 µg/mL within a 24 h incubation period. A similar
time-dependent response profile was also observed in MCF-7/TAMR-1 cells treated with AgNPs-GA.
The viability of MCF-7/TAMR-1 cells was significantly decreased to 8.3%, 11.1% and 5.7% after treatment
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with a 100 µg/mL concentration of AgNPs-GA at 24, 48 and 72 h, respectively (Figure 7b). Compared
with untreated cells, these differences in proliferation were statistically significant. The results also
showed that AgNPs-GA reduced the viability of MCF-10A cells in a concentration-dependent manner
(Figure 8c). As shown, AgNPs-GA displayed about 80% anti-proliferative activity at concentrations
greater than 50 µg/mL. In vitro cell studies reported that the ability of AgNPs to cause toxicity and
decrease membrane integrity is dependent on the type and size of cells [55]. In addition, the architectural
differences between cancer and normal cells may also determine their specific elasticity and responses
towards the potential toxicity possessed by AgNPs [56,57]. Geltmeier et al. had described that MCF-7
cells manifest higher elasticity and larger size compared to MCF-10A cells [56]. Furthermore, single
cells of various cancer types were about two-fold softer than corresponding normal tissue cells [58].
Therefore, differences in the aforementioned cell modelling, like diameter, shape and volume of cells
nuclei between MCF-7 and MCF-10 cells, at least in part, responsible for the differential cytotoxic
effects of AgNPs-GA as observed in the present study. These findings suggest that MCF-10A cells
are more susceptible to AgNPs-GA cytotoxicity, a potential vulnerability that could be improved in
future studies. The most commonly described mechanism of cytotoxicity of AgNPs is through their
silver ion release. Once a nanoparticle is located within a site, it has the ability to protractedly release
silver ions, thus increasing the potential toxic impact [59]. For example, Kittler et al. reported that the
release of silver ions led to a considerably increased toxicity of silver nanoparticles toward human
mesenchymal stem cells [59]. Preclinical studies on biologically synthesized AgNPs and transactivator
of transcription (TAT)-modified nanosilver possess cytotoxic activity toward MDA-MB-231 and
MCF-7/ADR resistant cancer cells, respectively [60,61]. The physiochemical properties of AgNPs
(e.g., size, shape, concentration) also play important roles to their cytotoxic effects. Generally, AgNPs
are highly toxic at concentrations ranging from 5–10 µg/mL and sizes from 10–100 nm, which have been
demonstrated by in vitro tests [4]. It can be assumed based on several studies which demonstrated
nanosized particles are several times more catalytic, thus becoming more reactive [4].
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Figure 8. The anti-proliferative effect of biosynthesized AgNPs-GA on (a) MCF-7, (b) MCF-7/TAMR-1
and (c) MCF-10A cells within 24–72 h of treatment. The anti-proliferative effect of AgNPs-GA
(10–100 µg/mL) was assessed by MTT assay. Tamoxifen (30 µM) was used as positive control. Data
shown are the mean values± S.D. for three independent experiments. Statistical analysis was performed
using Student’s t test with a p < 0.05, b p < 0.01 and c p < 0.001, significantly different to untreated cells.

For example, the high surface area-to-volume ratio enhances the surface properties of AgNPs,
thereby increasing their interaction with cell membrane proteins and activate signalling pathways to
generate reactive oxygen species (ROS) [4,62]. This ROS generation leads to damage of proteins and
nucleic acids and finally causing apoptosis and inhibition of cell proliferation [4,62]. Furthermore,
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reactive oxygen species (ROS) generation capability could make them more toxic than their bulk
counterparts [4,62].

A commercially available AgNPs nanopowder was used as standard control for AgNPs-GA,
and its anti-proliferative effect against MCF-7, MCF-7/TAMR-1 and MCF-10A cell lines are shown
in Figure 9a–c. In comparison to biologically synthesized AgNPs from G. atroviridis leaf extract,
commercial AgNPs inhibited 50% of MCF-7 cells only at concentrations higher than 70 µg/mL after
72 h of treatment (Figure 9a). In MCF-7/TAMR-1 cells, commercial AgNPs displayed about 30% growth
inhibition only at concentration of 50 µg/mL after 72 h of treatment (Figure 9b). Only at the highest
concentration tested in this study (100 µg/mL) did they display about 40% growth inhibition against
normal cell line, MCF-10A cells after 72 h of treatment (Figure 9c). It was thus observed that commercial
AgNPs were less cytotoxic in comparison to the biosynthesized AgNPs-GA. This could be due to a
synergistic effect of the biosynthesized AgNPs-GA and their biological coating that may increase the
inhibitory effect against MCF-7 and MCF-7/TAMR-1 cells.

According to the FTIR analysis findings it can be postulated that flavonoids and phenolic
compounds present in G. atroviridis leaf extract, at least in part, may contribute to the aforementioned
anti-proliferative effect of AgNPs-GA to both MCF-7/TAMR-1 and MCF-7 cell lines. Besides FTIR
analysis, we had previously characterized the phytochemical contents of G. atroviridis leaf extract by
using gas chromatography-mass spectrometry (GC-MS). (E)-β-Farnesene (58.5%) and β-caryophyllene
(16.9%) were the most abundant sesquiterpene metabolites found in its leaves [17]. β-caryophyllene
was previously demonstrated to potentiate the anticancer effects of paclitaxel on MCF-7, DLD-1 and
L-929 cell lines [63].
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Figure 9. The anti-proliferative effect of commercial AgNPs on (a) MCF-7, (b) MCF-7/TAMR-1 and
(c) MCF-10A cells within 24–72 h of treatment. The anti-proliferative effect of commercial AgNPs
(10–100 µg/mL) was assessed by MTT assay. Tamoxifen (30 µM) was used as positive control. Data
shown are the mean values± S.D. for three independent experiments. Statistical analysis was performed
using Student’s t test with a p < 0.05, b p < 0.01 and c p < 0.001, significantly different to untreated cells.

Altogether, these findings provide additional evidence of the anti-proliferative effect of AgNPs-GA,
through its synergistic action with the other plant metabolites presence in the leaf extract. Figure 10
shows the anti-proliferative effects of G. atroviridis leaf extract (Leaf-GA) against MCF-7, MCF-7/TAMR-1
and MCF-10A cell lines. In MCF-7 cells, a uniform of about 30% growth inhibition were observed within
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10–100 µg/mL concentrations of Leaf-GA after 72 h of treatment (Figure 10a). In MCF-7/TAMR-1 cells,
about 20% of growth inhibition were observed after 72 h of treatment with Leaf-GA at concentrations
above 30 µg/mL (Figure 10b). In MCF-10A cells, 100 µg/mL of Leaf-GA displayed about 40% growth
inhibition after 72 h of treatment (Figure 10c). Taken together, AgNPs-GA was found to be more
cytotoxic than its leaf extract, Leaf-GA. The increased cytotoxicity of AgNPs-GA which was differed
to corresponding bulk materials (Leaf-GA) even though they shared the same chemical composition.
This can be due to nanostructuring of materials (AgNPs-GA) resulting in an amplified ratio of reactive
surface atoms to inert core atoms and subsequent increased surface reactivity [55].
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Figure 10. The anti-proliferative effect of Leaf-GA on (a) MCF-7, (b) MCF-7/TAMR-1 and (c) MCF-10A
cells within 24–72 h of treatment. The anti-proliferative effect of commercial Leaf-GA (10–100 µg/mL)
was assessed by MTT assay. Tamoxifen (30 µM) was used as positive control. Data shown are the mean
values ± S.D. for three independent experiments. Statistical analysis was performed using Student’s t
test with a p < 0.05, b p < 0.01 and c p < 0.001, significantly different to untreated cells.

2.3. IC50 and SI Values of AgNPs-GA, Leaf-GA, Commercial AgNPs and Tamoxifen

Fifty percent of cell death values, which determine the inhibitory concentration (IC50) value of
each treatment are summarized in Table 2 (left panel). The degree of selectivity of a cytotoxic agent
towards targeted cancer cells in comparison to their normal counterparts can be expressed by its
selectivity index (SI) value. SI values of each treatment were further calculated based on the IC50 value
obtained in normal cells divided by IC50 value obtained in cancer cells [64,65]. SI values of AgNPs-GA,
Leaf-GA, commercial AgNPs and tamoxifen are shown in Table 2 (right panel). Findings of the present
study showed that AgNPs-GA was selectively cytotoxic to MCF-7 cells after 72 h of treatment, with SI
value of 2.5. Even though AgNPs-GA possesses strong anti-proliferative effect against MCF-7/TAMR-1
cells, the SI value calculated for this cytotoxic agent was below than 2.0, which indicates its properties
as a general toxin [66,67]. The SI values of tamoxifen in MCF-7 and MCF-7/TAMR-1 cells were 1.7 and
1.3, respectively, after 72 h of treatment. However, SI value for Leaf-GA and commercial AgNPs could
not be calculated since neither treatment inhibited 50% of cell proliferation with the concentrations
tested in this study. Studies have shown that cytotoxic agents with SI values of 2 and above are
more toxic towards cancer cells in comparison to normal cells [66,67]. Based on the calculated IC50

values, these results suggest that AgNPs-GA is cytotoxic against both MCF-7 and MCF-7/TAMR-1 cells,
when compared to Leaf-GA and commercial AgNPs. Based on the calculated SI values, AgNPs-GA
generates general toxicity with no selectivity between breast cancer and normal cells, a potential
vulnerability that could be improvised in future studies.
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Table 2. IC50 and SI values of AgNPs-GA, Leaf-GA, commercial AgNPs and tamoxifen in MCF-7,
MCF-7/TAMR-1 and MCF-10A cell lines.

Treatment/Time Point Cell Line/Average of IC50 (µg/mL) Selective Index (IC50 in Normal Cells/IC50 in Cancer

MCF-7 MCF-7/TAMR-1 MCF-10A MCF-7 MCF-7/TAMR-1

AgNPs-GA
24 h 15.0 34.0 7.0 0.5 0.2
48 h 8.0 34.0 6.0 0.8 0.2
72 h 2.0 32.0 5.0 2.5 0.2

Leaf-GA
24 h >100 >100 >100 - -
48 h >100 >100 >100 - -
72 h >100 >100 >100 - -

AgNPs (commercial)
24 h >100 >100 >100 - -
48 h 100 >100 >100 - -
72 h 58.0 >100 >100 - -

Tamoxifen
24 h 22.5 >30 17.0 0.8 -
48 h 14.0 22.0 17.0 1.2 0.8
72 h 8.8 11.5 15.0 1.7 1.3

2.4. Comparison of Induction of Apoptosis in MCF-7, MCF-7/TAMR-1 and MCF-10A Cells Treated with
AgNPs-GA, Leaf-GA and Commercial AgNPs with Annexin V-FITC and Propidium Iodide

The induction of apoptosis, after the treatment with IC50 concentration of AgNPs-GA, Leaf-GA
(100 µg/mL), commercial AgNPs (100 µg/mL) and tamoxifen (1 and 30 µM) were assessed by flow
cytometry after staining with Annexin V-FITC and propidium iodide (PI). The flow cytometry results
are shown in Figures 11–13.

In Figure 11a, Figure 12a, and Figure 13a, the total percentage of cells located in lower and
upper right quadrant regions were considered as the percentage of total apoptosis. These results were
summarized in bar graphs as shown in Figure 11b, Figure 12b, and Figure 13b. At 24 h of treatment,
the rate of total apoptosis (early and late apoptosis) in MCF-7 cells treated with AgNPs-GA, Leaf-GA
and commercial AgNPs were 39.77 ± 1.3%, 9.55 ± 2.6% and 40.52 ± 0.9%, respectively (Figure 11b).
The percentage of apoptotic cells was significantly increased to 80.15 ± 2.3% and 78.35 ± 2.2% in MCF-7
cells treated with AgNPs-GA after 48 h and 72 h of treatment, respectively.

Commercial AgNPs resulted in 56.16 ± 0.3% and 60.91 ± 0.01% of apoptosis in MCF-7 cells after
48 h and 72 h of treatment, respectively. On the contrary, there was no significant increase in the
percentage of apoptotic cells by Leaf-GA compared to the untreated cells. In MCF-7/TAMR-1 cells, total
apoptosis observed was 43.69 ± 10.5%, 16.71 ± 0.3% and 21.46 ± 3% after 24 h treated with AgNPs-GA,
Leaf-GA and commercial AgNPs, respectively (Figure 12b).

A higher rate of apoptosis was recorded after 72 h treatment with AgNPs-GA than Leaf-GA and
commercial AgNPs in this cell line. At 72 h of treatment, AgNPs-GA caused 56.14 ± 6.4% of apoptosis,
whilst Leaf-GA and commercial AgNPs demonstrated 19.8 ± 0.3% and 24.57 ± 0.2% of apoptosis
induction in MCF-7/TAMR-1 cells. These results clearly indicated that AgNPs-GA potently inhibited
the growth of MCF-7/TAMR-1 cells through the mechanism of apoptosis. In MCF-10A non-cancerous
human breast cell line, total apoptosis induced by AgNPs-GA, Leaf-GA and commercial AgNPs was
37.6 ± 0.7%, 7.7 ± 1.8% and 24.12 ± 1.7%, respectively, after 72 h of treatment (Figure 13b).

At similar incubation period, the percentage of apoptotic cells was 44.15 ± 0.1% in MCF-10A cells
with AgNPs-GA at twice IC50 concentration (30 µg/mL). Previous studies have demonstrated that
the physicochemical and structural properties of AgNPs play a major role in their interactions with
cells [53]. Furthermore, variations in these properties among different AgNPs may result in different
toxicological effects.

The mechanism responsible for AgNPs’ toxicity to human cells have been reported to involve
with decrease membrane integrity in a variety of human cell lines such as HeLa [68]. During apoptosis,
cells undergo characteristic morphological destructions, like the loss of membrane integrity. This in
turn, causes the translocation of phosphatidylserine (PS) to the outer leaflet of the plasma membrane.
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In the present study, the appearance of PS in apoptotic cells was detected by Annexin V-FITC. Taken
together, our findings may provide ample evidence that AgNPs-GA possessed its anti-proliferative
effect at least in part, associated with the activation of apoptosis.Molecules 2020, 25, x FOR PEER REVIEW 17 of 26 
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Figure 11. (a) Representative dot plot showing annexin-V-FITC-/PI- (lower left quadrant/viable cells),
annexin-V-FITC+/PI− (lower right quadrant/early apoptotic cells), annexin-V-FITC+/PI+ (upper right
quadrant/late apoptotic cells) and annexin-V-FITC-/PI+ (upper left quadrant/necrotic cells) in MCF-7
cells as acquired by flow cytometry. (b) Percentage of total apoptosis (early and late apoptosis) in
MCF-7 cells after 24–72 h incubation period with medium alone (untreated), AgNPs-GA (15 µg/mL),
leaf extract (100 µg/mL), AgNPs (100 µg/mL), tamoxifen (1 µM) and positive control (tamoxifen 30 µM).
Data shown are the mean values ± S.D. for three independent experiments. Statistical analysis was
performed using Student’s t test with a p < 0.05, b p < 0.01 and c p < 0.001, significantly different to
untreated cells.
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Figure 12. (a) Representative dot plot showing annexin-V-FITC−/PI− (lower left quadrant/viable
cells), annexin-V-FITC+/PI− (lower right quadrant/early apoptotic cells), annexin-V-FITC+/PI+ (upper
right quadrant/late apoptotic cells) and annexin-V-FITC−/PI+ (upper left quadrant/necrotic cells) in
MCF-7/TAMR-1 cells as acquired by flow cytometry. (b) Percentage of total apoptosis (early and late
apoptosis) in MCF-7/TAMR-1 cells after 24–72 h incubation period with medium alone (untreated),
AgNPs-GA (15 µg/mL), leaf extract (100 µg/mL), AgNPs (100 µg/mL), tamoxifen (1 µM) and positive
control (tamoxifen 30 µM). Data shown are the mean values ± S.D. for three independent experiments.
Statistical analysis was performed using Student’s t test with a p < 0.05, b p < 0.01 and c p < 0.001,
significantly different to untreated cells.
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Figure 13. (a) Representative dot plot showing annexin-V-FITC−/PI− (lower left quadrant/viable cells),
annexin-V-FITC+/PI− (lower right quadrant/early apoptotic cells), annexin-V-FITC+/PI+ (upper right
quadrant/late apoptotic cells) and annexin-V-FITC−/PI+ (upper left quadrant/necrotic cells) in MCF-10A
cells as acquired by flow cytometry. (b) Percentage of total apoptosis (early and late apoptosis)
in MCF-10A cells after 24–72 h incubation period with medium alone (untreated), AgNPs-GA (15
and 30 µg/mL), leaf extract (100 µg/mL), AgNPs (100 µg/mL), tamoxifen (1 µM) and positive control
(tamoxifen 30µM). Data shown are the mean values± S.D. for three independent experiments. Statistical
analysis was performed using Student’s t test with a p < 0.05, b p < 0.01 and c p < 0.001, significantly
different to untreated cells.

3. Materials and Methods

3.1. Plant Material and Leaf Extract Preparation

Leaves of G. atroviridis were collected from Kepala Batas (Penang, Malaysia). A voucher specimen
(11764) has been deposited with the herbarium of Universiti Sains Malaysia, Penang, Malaysia. Fresh
leaves were washed with distilled water and the debris removed. Then, the leaves were dried in an
industrial hot air oven at 40 ◦C for 3 days and ground using an herb grinder. Briefly, 10 g leaf powder
was mixed with 100 mL deionised water in a beaker. The mixture was warmed in a water bath at 60 ◦C
for 10 min. After cooled down at room temperature, the crude extract was filtered using Whatman
filter paper No. 1 and the filtrate was stored at 4 ◦C for further use.
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3.2. Biosynthesis of Silver Nanoparticles (AgNPs-GA)

In the present study, AgNPs-GA were biosynthesised using a previously reported method with
a slight modification. Several parameters which include concentration of silver salt (AgNO3) and
G. atroviridis leaf extract, mixing ratio of reactants, temperature and pH were optimised in the course of
AgNPs-GA. The concentration range of AgNO3 (Nacalai Tesque Chemicals, Nakagyo-ku Kyoto, Japan)
and leaf extract used in this study were 0.001–0.1 M and 5–20% (w/v), respectively. The mixing ratio
of AgNO3 to leaf extract was optimised at 1:4, 1:9 and 2:3 with 100 mL as final volume. The optimal
reaction time was determined from 24 h to 72 h of incubation period. The concentration of AgNO3,
leaf extract and mixing ratio of reactants that yield an absorption peak at 400–450 nm in the UV-Visible
spectrum were further assessed across different temperatures (room temperature, 32 ◦C, and 37 ◦C).
The pH of reaction mixture were also measured in order to optimise the yield and properties (e.g., size
and shape), of AgNPs-GA, Similarly, the change in color of the reaction mixture from light yellow to
dark brown was also observed and the samples were subjected to characterisation.

3.3. Characterization of Silver Nanoparticles

Silver nanoparticles (AgNPs-GA) were purified by centrifugation at 10,000 rpm for 15 min and
the pellets were thoroughly washed (thrice) with deionised water and resulting colloidal suspension
was characterised using various analytical instruments as described below.

3.3.1. Ultra Violet Visible (UV-Vis) Spectroscopy

UV-Vis spectra was measured using a Lambda 25 UV-Vis spectrophotometer (Perkin Elmer,
Waltham, MA, USA). All measurements were performed within the range of 350–600 nm with
1 nm intervals.

3.3.2. Scanning Electron Microscopy (SEM)

The morphology of AgNPs was studied using scanning electron microscopy (FEI SEM, Quanta
FEI 650, Field Electron and Ion Company, Hillsboro, OR, USA) at an accelerated voltage of 15 kV. One
drop of the dispersion containing AgNPs was placed on a small aluminium plate and dried at room
temperature. The dried AgNPs were then coated with gold metal under high vacuum and examined.
Representative SEM images were reported.

3.3.3. Transmission Electron Microscopy (TEM)

Bright field TEM images for AgNPs were obtained using a transmission electron microscope
(Philips CM12, FEI Ltd., Eindhoven, The Netherlands) operated at 120 Kv. Images were recorded using
a SIS MegaView III digital camera (SIS Analytics, Hamburg, Germany) and analyzed with software
ImageJ. To prepare samples for TEM, AgNPs was dissolved in 90% ethanol and sonicated for 3 min.
Then, a drop of AgNPs suspension was placed on a carbon-coated copper grid. The sample was
allowed to air-dry for 3 min at room temperature and the grid is examined with TEM.

3.3.4. The Surface Zeta Potential Distribution of Silver Nanoparticles/Dynamic Light Scattering
Analysis (DLS)

Size distribution and zeta potential of bio-reduced AgNPs were measured using DLS (Zetasizer
Nano ZS, ZEN3600, Malvern Instruments Ltd., Malvern, Worcestershire, UK). The mean size and its
zeta potential of the particles were obtained.

3.3.5. X-ray Diffraction (XRD)

X-ray diffraction measurement was carried out to determine the crystallographic structure and
crystallite size (grain size) of AgNPs. The freeze dried AgNPs were coated onto XRD grid and analyzed
using an X-ray diffractometer (X’Pert-Pro, PANalytical, Veeco, New York, NY, USA) operated at 40 kV
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and a current of 30 mA with Cu Kα radiation at 2θ angel. The scanning was performed in the region of
2θ from 20◦ to 80◦.

3.3.6. Fourier-Transform Infrared (FTIR) Spectroscopy

The FTIR analyses were recorded on a Perkin Elmer FTIR spectrophotometer (Perkin Elmer,
Waltham, MA, USA). Spectra were collected at a spatial resolution of 4 cm−1 in the transmission mode,
between 4000 and 400 cm−1, respectively.

3.4. Cell Culture

The human breast cancer cell lines MCF-7 and MCF-7/TAMR-1 were purchased from the American
Type Culture Collection (ATCC, Rockville, MD, USA) and Merck (Darmstadt, Germany), respectively.
MCF-7 cells were routinely cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco,
Burlington, ON, Canada) supplemented with 10% fetal bovine serum (FBS, Gibco) while MCF-7/TAMR-1
cells were routinely cultured in phenol red-free DMEM/F12 medium (Gibco) supplemented with 1%
FBS, 6 ng/mL insulin (Gibco) and 1 µM tamoxifen (Nacalai Tesque) following the manufacturer’s
recommendation. The cell cultures were maintained at 37 ◦C in a humidified atmosphere with 5% CO2

to reach 70–80% confluence. The monolayer cells were detached with trypsin–ethylene diamine tetra
acetic acid (trypsin-EDTA, Gibco) to prepare single cell suspensions.

3.4.1. Cell Proliferation Assay

The anti-proliferative effect of biosynthesised AgNPs-GA in MCF-7 and MCF-7/TamR-1 cancer
cells was analysed using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay
(Sigma Aldrich, St. Louis MO, USA). The MTT assay measures cell metabolic activity based on the
reduction of tetrazolium dye MTT into its insoluble purple-colored formazan. The amount of formazan
is directly proportional to the number of viable cells and inversely proportional to the cytotoxicity
degree. MCF-7 cells were seeded at a concentration of 2 × 104 cells/100 µL complete medium in 96-well
flat-bottomed microtiter plates and left to adhere for 24 h at 37 ◦C in 5% CO2 incubator. MCF-7/TAMR-1
cells were seeded at a concentration of 5 × 104 cells/100 µL complete medium and left to adhere for
48 h at 37 ◦C, 5% CO2. The complete medium was changed and cells were treated with AgNPs-GA
(10–100 µg/mL). Tamoxifen (30 µM) and culture medium were also included which served as positive
and negative controls, respectively. Three replicates were performed for each treatment and controls.
The plates were further incubated for 24, 48 and 72 h at 37 ◦C, 5% CO2. At each incubation period,
MTT solution with volume of 10 µL (5 mg/mL) was added into each well and incubated at 37 ◦C, 5%
CO2 for another 4 h. The solution in each well containing media, unbound MTT and dead cells were
aspirated and 100 µL dimethyl sulphoxide (DMSO, QReCTM, Auckland, New Zealand) was added
to each well to solubilize the purple formazan crystals. The plate was placed on shaker for 2 min
to thoroughly dissolve the MTT color product. The reduction of the MTT solution was determined
spectrophotometrically at 570 nm with 630 nm as reference wavelength using a microplate reader
(PowerWaveXS, Bio-Tek, Winooski, VT, USA). The optical density (O.D.) value of the solution directly
represents relative cell numbers. The O.D. values were converted into percentages of cell proliferation
using the following formula:

Cell proliferation (%) = [(O.D. treatment − O.D. blank)/(O.D. untreated cell − O.D. blank)] × 100% (1)

3.4.2. Selectivity Index (SI)

The degree of selectivity of the cytotoxic agent was expressed by its SI vaue as suggested by
Badisa et al. [64]. A high SI value (>2) of an agent suggests selective toxicity against cancer cells, while
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an agent with SI value < 2 is considered to give general toxicity which can cause cytotoxicity in normal
cells [65]. Each SI value was calculated using the formula:

SI = IC50 normal cell/IC50 cancer cell (2)

3.5. Apoptosis Assay

Annexin V-FITC was used as a marker of phosphatidylserine exposure and propidium iodide (PI)
as a marker for dead cells (FITC Annexin V Apoptosis Detection Kit I; BD BiosciencesSan Jose, CA, USA).
This combination allows differentiation among viable cells (annexin V-negative, PI-negative), early
apoptotic cells (annexin V-positive, PI-negative), late apoptotic cells (annexin V-positive, PI-positive)
and necrotic cells (annexin V-negative, PI-positive). Each cell line was seeded and treated with
AgNPs-GA (15 µg/mL) or Leaf-GA (100 µg/mL) or commercial AgNPs (Sigma Aldrich, 100 µg/mL) or
tamoxifen (1 and 30 µM) or culture medium alone as negative control (untreated cells). The cells were
incubated for 24–72 h of treatment prior flow cytometric analysis. At each incubation period, cells
were harvested by centrifugation and washed twice with phosphate buffer saline (PBS). Aliquots of 1 ×
106 cells/mL were resuspended in 1 × binding buffer provided with the kit. Hundred microliters of the
solution (1 × 105 cells) were transferred into a flow tube. A volume of 5 µL of Annexin V-FITC and 5 µL
of PI were added and cells were incubated at room temperature in the dark for 15 min. Following this,
400 µL of 1 × binding buffer were added into each tube prior flow cytometry acquisition and analysis.
A minimum of 20,000 cells were analyzed by using FACS Calibur flow cytometry and CellQuest Pro
software (Becton Dickinson, Franklin Lakes, NJ, USA).

3.6. Statistical Analysis

Data were expressed as mean ± standard deviation (S.D.) and all the experiments were repeated
independently three times. Statistical differences between control versus treatment for all experiments
were determined using Student’s t–test.

4. Conclusions

The important findings of this study include the biological technique used to synthesise AgNPs
using G. atroviridis leaf extract followed by the characterization of AgNPs-GA formation. The leaf
extract from G. atroviridis was found to be highly capable of producing AgNPs with favourable
physicochemical and biological properties. In this study, AgNPs-GA were biosynthesized from the
silver salt through the reducing power of phenolic compounds present in the leaf extract. This may
suggest that G. atroviridis leaf extract works synergistically with its bioactive molecules and could be
used as an efficient natural bioreducing agent for the production of silver nanoparticles. The various
parameters including silver salt and leaf extract concentrations, mixing ratio, pH, temperature and
reaction time exert an important role in the formation of AgNPs-GA. Various analytical techniques were
used to characterize the newly biosynthesized AgNPs-GA and their size was determined to be 5–30 nm.
The findings of the present study also showed that AgNPs-GA were spherical and face-centered-cubic
in shape. The method of AgNPs-GA synthesis introduced in this study, therefore, holds great potential
as a simple, low-cost, and environmentally friendly approach. This report also emphasizes that
AgNPs-GA exert selective anti-proliferative and apoptotic effects towards human breast cancer MCF-7
and MCF-7/TAMR-1 cells when compared to their effect on the normal cell line tested. Furthermore,
the biosynthesised AgNPs-GA were proved to possess improved anti-proliferative activity by inducing
apoptosis in MCF-7 and MCF-7/TAMR-1 breast cancer cells in comparison with commercial AgNPs
and leaf extract. Taken together, these findings imply that the biological synthesized AgNPs using leaf
extract holds promising approach and potent candidate against breast cancer, particularly to those
who are tamoxifen-resistant, however details mechanism of its actions would be needed.
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