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Abstract

Background: Jatropha curcas is an oil-bearing plant, and has seeds with high oil content (~ 40%). Several
advantages, such as easy genetic transformation and short generation duration, have led to the emergence of J.
curcas as a model for woody energy plants. With the development of high-throughput sequencing, the genome of
Jatropha curcas has been sequenced by different groups and a mass of transcriptome data was released. How to
integrate and analyze these omics data is crucial for functional genomics research on J. curcas.

Results: By establishing pipelines for processing novel gene identification, gene function annotation, and gene
network construction, we systematically integrated and analyzed a series of J. curcas transcriptome data. Based on
these data, we constructed a J. curcas database (JCDB), which not only includes general gene information, gene
functional annotation, gene interaction networks, and gene expression matrices but also provides tools for
browsing, searching, and downloading data, as well as online BLAST, the JBrowse genome browser, ID conversion,
heatmaps, and gene network analysis tools.

Conclusions: JCDB is the most comprehensive and well annotated knowledge base for J. curcas. We believe it will
make a valuable contribution to the functional genomics study of J. curcas. The database is accessible at http://jcdb.
xtbg.ac.cn.
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Background
Jatropha curcas is a perennial shrub belonging to the
Euphorbiaceae family. It is a tropical species that is na-
tive to Mexico and Central America and now thrives in
Latin America, Africa, India, and South East Asia [1–5].
As a multi-functional plant, it has been used in trad-
itional medicine and for hedges, animal feed, and fire-
wood [6–9]. With the gradual depletion and cost
escalation of fossil energy resources, J. curcas is now
attracting much attention for its potential use for biofuel

production, because of its high seed oil content (the
seeds of J. curcas contain ~ 40% oil) [10], easy propaga-
tion, rapid growth, and ability to grow in a wide range of
conditions, including degraded, sodic, alkaline, and con-
taminated soils [7, 11].
J. curcas has a relatively small genome, which is orga-

nized in 22 chromosomes (2n) [12]. The J. curcas gen-
ome has been sequenced by four groups worldwide
[13–17]. For the RefSeq representative version from the
Wu laboratory, the assembled genome is 320.5 Mb [15].
J. curcas also has several advantages, including easy
genetic transformation and short generation duration,
which make it an attractive wood energy model plant
for function genome analysis, particular among the Eu-
phorbiaceae [18–20]. J. curcas is also a potential model
for studies of flower sex determination in monoecious
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trees, as most J. curcas germplasms are monoecious,
bearing male and female flowers on the same inflores-
cence [21, 22].
In recent years, there have been significant advances in

the application of transcriptome analysis to J. curcas
[22–31]. Using bioinformatics tools and a comprehen-
sive knowledge database to integrate all these genome
and transcriptome data is crucial for further functional
genomics research on J. curcas. Advances in J. curcas re-
search have led to the creation of several J. curcas gen-
etic information resources. For instance, the Jatropha
Genome Database (JAT_r4.5) focuses on the J. curcas
genome sequence and annotation [13], and KaPPA-
View4 is a KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes) pathway viewer for J. curcas [32]. Although each
of these resources provides valuable information, there is
a lack of database unification and integration of the J.
curcas genome and transcriptome with a broad set of
multi-omics analysis results, such as gene functional an-
notation, gene expression matrices, and gene interaction
networks.
In this study, we constructed a J. curcas database

(JCDB) that is dedicated to providing a comprehensive
platform for J. curcas functional genomics research. By
establishing pipelines for processing novel gene identifi-
cation, gene function annotation, gene expression level
quantification, and gene network construction, we sys-
tematically integrated and analyzed a series of J. curcas
transcriptome data, which were used to generate JCDB.
The database includes general gene information (in-
cluding genomic coordinates and sequences), gene
functional annotation (including gene ontology (GO),
KEGG, Pfam, and InterPro), gene interaction networks
(gene co-expression and protein-protein interaction
(PPI) networks), and gene expression matrices. We also
provide tools for browsing, searching, and downloading
all data, as well as user-friendly web services such as
BLAST, the JBrowse genome browser, ID conversion,
heatmaps, and gene network analysis tools. In the case
studies presented here, we demonstrate the possibility
of using JCDB to mine genes related to flowering and
lipid synthesis pathways in J. curcas. We believe that
JCDB represents a valuable and unique resource for
further functional genomics studies of J. curcas.

Construction and content
Transcriptome data retrieving and processing
To acquire comprehensive genomic information for J.
curcas, we developed a pipeline for transcriptome data
collection, integration, and novel gene identification,
including non-coding RNAs (Fig. 1a). First, publicly
available transcriptome data of J. curcas were down-
loaded from NCBI’s Sequence Read Archive (SRA) data-
base. Detailed information was collated for each sample,

including experimental description, organizational infor-
mation, and references. (Additional file 1). The SRA data
was dumped into the FASTQ format using the fastq-
dump utility from the NCBI SRA Toolkit v.2.5.2 [33].
Raw reads were quality trimmed using Trimmomatic
(version 0.32) with parameters “LEADING:20 TRAIL-
ING:20 MINLEN:36” [34]. Then, all clean reads were
mapped onto the J. curcas genome (JatCur_1.0) [15]
using TopHat 2 (version 2.1.0), with default parameters
except maximum intron length, which was set to 20,000
bp [35]. Next, the mapped reads were assembled using
Cufflinks (version 2.2.1) with the RefSeq genome as a
guide, and a combined transcriptome assembly was
generated using Cuffmerge [36]. Finally, genes that were
identified by Cuffcompare as non-overlapping with
known genes, having more than one exon, longer than
200 bp, and with FPKM (fragments per kilobase per
million) greater than 0.1 were considered as novel gene
candidates.

Novel protein-coding and non-coding gene identification
As shown in Fig. 1a, novel transcript sequences were
first used as query for a BLASTX search against the
NCBI non-redundant protein (NR) database with default
parameters. Then, open reading frames (ORFs) of these
matches were identified using TransDecoder v4.1.0
(https://github.com/TransDecoder/TransDecoder).
Matches with a completed ORF were annotated as
protein-coding genes. Non-coding genes were further
identified using CPC (Version 0.9-r2) [37] and CNCI
(Version 2) [38] among the genes not matching the NCBI
NR database. The remaining genes were annotated as
transcripts of unknown coding potential (TUCPs).

Protein-coding and novel non-coding gene annotation
All the protein-coding and novel non-coding genes in
JCDB were annotated using the in-house gene annota-
tion pipeline (Fig. 1b). For the annotation of protein-
coding genes, Pfam [39] was used for protein domain
and gene family analysis. GO annotations were assigned
using InterProScan [40] and Blast2GO [41]. KEGG an-
notations were assigned using the online service KAAS
[42]. For the annotation of novel non-coding genes, we
downloaded all small non-coding RNA and long non-
coding RNA (lncRNA) sequences from the plant
ncRNA database PNRD [43] and annotated the JCDB
novel non-coding genes using a BLAST search with de-
fault parameters. In total, there were 27 novel non-
coding genes with BLAST hits to PNRD, including 22
microRNA (miRNA) host genes, two long intergenic
non-coding RNAs (lincRNAs), and three lncRNAs of
unknown type.
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Co-expression network construction
As shown in Fig. 1c, for conventional RNA-Seq data,
gene expression profiles were identified and normalized
using Cuffnorm [36]. For digital gene expression data,
read count tables were created using htseq-count in the
HTSeq toolkit [44] and then normalized using the
DESeq method [45]. The two types of expression matrix
were merged and normalized again using the upper-
quartile method [44]. A gene co-expression network was
constructed using the Spearman’s rank correlation coef-
ficients of gene pairs across the samples. Gene pairs with
correlation value higher than 0.6 and adjusted P-value
less than 0.01 were regarded as showing co-expression.

Protein-protein interaction network construction
Arabidopsis protein interactions were collected from the
literature [46–48] and from three databases (AtPID 5.0
[49], AtPIN 9.0 [50], and PAIR 3.0 [51]), giving a total of
18,037 Arabidopsis genes and 241,468 interactions. Ara-
bidopsis protein sequences were downloaded from
TAIR10 [52]. The pairwise similarity matching tool
InParanoid [53] with default settings was used to find
orthologous groups between the J. curcas and Arabidop-
sis proteomes. The J. curcas PPI network was inferred
from the Arabidopsis PPI network [46–51] by homology
mapping (Fig. 1c).

System implementation
The JCDB server was built using Apache/2.4.6 (CentOS),
PHP (version 5.4.16), and relational database MySQL
(version 5.5.48). The entity relationship diagram is pro-
vided in Additional file 2. The physical server was a 4
Intel(R) Xeon(R) CPU E5–2640 v3 @ 2.60 GHz with 8
GB RAM. All data and information were stored in
MySQL tables to facilitate efficient management, search,
and display. A combination of Thinkphp (version 3.2),
Bootstrap (version 3.3.7), and JQuery (version 3.3.7)
were used to construct the website. The network was vi-
sualized using Cytoscape.js (version 3.8).

Utility and discussion
Search JCDB
The ‘Search page of JCDB (Fig. 2a) provides three differ-
ent types of search services. ‘Keyword Search’ uses key-
words including gene types (such as protein_coding and
ncRNA), gene symbols (such as bZIP, myb, and bHLH),
and gene/transcript/protein IDs (such as JCDBG00001,
JCDBR00001, and JCDBP00001) from JCDB or other
databases (such as RefSeq, JAT_r4.5, and GenBank).
‘Position Search’ finds genes/transcripts/proteins located
in one specific genomic region specified by the users.
‘Network Search’ provides a gene’s direct network neigh-
bors in the PPI or co-expression network.

Fig. 1 JCDB pipelines for data retrieval and processing. a Novel gene discovery pipeline. b Coding and non-coding gene (ncRNA) annotation
pipeline. c Gene co-expression and PPI network construction pipeline
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Fig. 2 Screenshots of the JCDB online tools. a Keyword search, position search, and network search. b JCDBtools, the web-based toolkit. c
JBrowse, the genome browser. d Online BLAST search

Zhang et al. BMC Genomics 2019, 20(Suppl 9):958 Page 4 of 9



JCDBTools
JCDBTools is a web-based toolkit that provides five tools
to help molecular biologists use JCDB more efficiently
(Fig. 2b). ‘Sequence Retrieving’ can be used to retrieve
genome sequences by providing genomic coordinates.
‘ID Conversion’ converts gene/transcript/protein IDs be-
tween JCDB and other databases (including RefSeq,
JAT_r4.5, and GenBank). ‘Heatmap’ can be used to re-
trieve the gene expression patterns of a group of genes
from different samples. ‘Network Construction’ can be
used to extract a sub-network for user-specified genes
from the global PPI or co-expression network. ‘Neighbor
Gene Extraction’ can be used to extract the nearest
neighbors of a sub-network in the global PPI or co-
expression network.

JBrowse
JCDB integrates genome browser JBrowse [54] to pro-
vide easy-to-use panning and zooming navigation of the

J. curcas reference genome (Fig. 2c). JBrowse includes
various tracks, such as the J. curcas genome sequence,
gene annotation GFF files from JCDB and RefSeq, and
transcriptome-aligned BAM files for different samples.

BLAST service
The BLAST server (Fig. 2d) was implemented using
ViroBLAST [55], which is a user-friendly tool for inter-
facing with the command-line NCBI BLAST+ toolkits.
For user convenience, JCDB BLAST provides nucleotide
databases (RefSeq genome/RNA, JCDB gene/RNA, and
GenBank RNA/CDS) and protein databases (JCDB Pro-
tein, GenBank Protein, and RefSeq Protein).

Browse JCDB
Users can browse all JCDB genes directly on the ‘Browse’
page (Fig. 3a), which provides basic annotations for each
gene, such as gene name, gene type, and genomic loca-
tion. Users can also select and download FASTA files for

Fig. 3 Screenshots of the browse and detail information pages. a The Browse page. b Detailed gene functional annotations. c Gene structural
information. d Gene expression heatmap. e Gene co-expression network and PPI network
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genes if required. Detailed information page for a spe-
cific gene can be accessed by clicking on the gene ID.
For each gene, JCDB aims to provide as much compre-
hensive information as possible, including detailed GO,
KEGG, InterPro, and Pfam functional annotations
(Fig. 3b); structural information for each gene isoform
(Fig. 3c); gene expression heatmaps (Fig. 3d); and co-
expression and PPI sub-networks (Fig. 3e). In the gene
expression heatmap panel, users can select the number
of co-expressed genes that they want to display. In the
gene sub-network panel, users can click and drag each
gene node to move it, or click each gene ID to redirect
to its detail page. The network is also displayed as a
table on the right-hand side with a search function.
Users can sort the table by column.

Database statistics
Statistics for JCDB are summarized in Table 1. The
current database release contains a total of 25,297 genes
and 33,785 transcripts, including protein-coding genes
(22,446, about 89%), non-coding genes (2391, about 9%),
and TUCP genes (460, about 2%). Compared with exist-
ing J. curcas databases [13, 15, 32], JCDB includes more
non-coding genes and more annotation information, as
well as unique gene networks and expression profiles
(Table 2). In JCDB, about 58, 40, and 74% of genes have
GO, KEGG, and Pfam annotations, respectively; there
are also about 90% genes in the co-expression network,
38% genes in the PPI network, and 114 expression pro-
files for 25,297 genes. Users can freely download all the
above annotation files via the Download page.

Case studies
JCDB provides a comprehensive platform for J. curcas
functional genomics research by integrating information

from various sources, including gene functional annota-
tions and gene interaction networks, and various tools
including BLAST search and gene network analysis.
Here, we demonstrate the use of the information and
tools provided by JCDB to mine some important gene
pathways in J. curcas.
In order to better understand the genetic control of

fatty acid and lipid biosynthesis in J. curcas, we col-
lected 132 oil-related genes from Arabidopsis and iden-
tified oil-related gene candidates in J. curcas using the
JCDB BLAST search. Using the ‘Network Construction’
function in JCDBTools, we obtained a J. curcas oil-
related gene sub-network, which showed that these J.
curcas oil-related genes were closely connected (Fig. 4a).
We also used the ‘Neighbor Gene Extraction’ function
in JCDBTools to find J. curcas-specific oil-related genes.
We first extracted all the nearest neighbors of the
known oil-related genes and then retained those that
interacted with known oil-related genes in both the PPI
and co-expression networks. We examined the GO an-
notations of these J. curcas specific oil-related gene
candidates using GOATOOLS [56] (Fig. 4b). Consistent
with our assumption, these genes appeared to be re-
lated to oil synthesis. The top enriched GO terms for
biological process (BP) included biosynthetic process,
small molecule metabolic process, and oxoacid and car-
boxylic acid metabolic process; the top cellular compo-
nent (CC) term was macromolecular complex; and the
top molecular function (MF) terms were ligase activity,
transferase activity, transferring acyl groups, and cata-
lytic activity.
We also investigated the flowering-related pathway

in J. curcas. By manually reviewing the published lit-
erature, we identified 303 flowering-related genes of
Arabidopsis. Then, using the same method, a total of
187 flowering-related genes in J. curcas were identified
through homologous search, and the nearest neigh-
bors and sub-network of these known flowering-
related genes were also obtained. In the sub-network,
the J. curcas-specific flowering-related gene candidates
were closely connected with the known flowering-
related genes. All the top 10 candidates had more than
25 interactions, including JCDBG05506 (Fig. 4c).
Searching for this gene in JCDB revealed that
JCDBG05506 is a MADS-box protein, with annota-
tions including “FLOWERING LOCUS C” and “tran-
scription factor”. Furthermore, we counted the protein
domain annotations of the top 50 J. curcas-specific
flowering-related gene candidates and found eight
genes containing a homeobox domain, as well as two
genes containing the zinc finger PHD-type domain
and two genes containing the MADS-box domain
(Fig. 4d). All of these protein domains are reported to
be related to flowering [56–58].

Table 1 Gene statistics and data integrated in JCDB

Category Number

Genes/transcripts

All 25,297/33,785

Protein-coding 22,446 (89%)

Non-coding 2391 (9%)

TUCP 460 (2%)

Gene annotation

Gene ontology 14,714 (58%)

KEGG pathway 10,217 (40%)

Pfam domain 18,829 (74%)

Genes in network

Co-expression network 22,749 (90%)

PPI network 9602 (38%)

Expression profiles 114
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Table 2 Comparison of gene annotations in JCDB with other Jatropha databases

Database Protein ncRNA GO KEGG Pfam Network Expression

JAT_r4.5 [13] 30,203 0 x x x x x

KaPPA-View4 -Jatropha [32] 40,929 0 x √ x √ √

RefSeq [15] 21,574 2013 x x x x x

JCDB 22,446 2391 √ √ √ √ √

Fig. 4 Case studies: gene function prediction using JCDBTools. a Sub-network of oil-related genes in J. curcas (red: known, green: prediction). b
GO enrichment analysis of predicted oil-related genes (blue: BP, orange: CC, green: MF). c Numbers of known flowering-related genes interacting
with predicted flowering-related genes (top 10). d Protein domain information for the top 50 predicted flowering-related genes
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Conclusions
The plant J. curcas has attracted much attention world-
wide owing to its potential for biofuel production. How-
ever, current databases for J. curcas did not effectively
integrate multiple data sources and lacked useful tools
for data presentation and analysis, and thus could not
meet the needs of functional genomics study. For these
reasons, we built JCDB, an integrated knowledge base,
which includes not only basic gene information but also
gene functional annotations, gene expression profiles,
and gene network information. JCDB also provides a
user-friendly platform for data presentation and analysis,
offering a variety of tools including BLAST, the JBrowse
genome browser, and JCDBTools. JCDB is the most
comprehensive and well-annotated database available for
J. curcas functional genomics research. Future work will
include developing new tools to assist users with in-
depth exploration of JCDB. We believe JCDB will con-
tinue to provide a valuable and unique resource for J.
curcas functional genomics studies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6356-z.

Additional file 1. The transcriptome data sources of Jatropha curcas.

Additional file 2. The entity relationship diagram of JCDB.
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