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Abstract  

Recent studies have provided key information about SARS-CoV-2 vaccines’ efficacy and 

effectiveness (VE). One important question that remains is whether the protection conferred by 

vaccines wanes over time. However, estimates over time are subject to bias from differential 

depletion of susceptibles between vaccinated and unvaccinated groups. Here we examine the 

extent to which biases occur under different scenarios and assess whether serologic testing has 

the potential to correct this bias. By identifying non-vaccine antibodies, these tests could identify 
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individuals with prior infection. We find in scenarios with high baseline VE, differential depletion 

of susceptibles creates minimal bias in VE estimates, suggesting that any observed declines are 

likely not due to spurious waning alone. However, if baseline VE is lower, the bias for leaky 

vaccines (that reduce individual probability of infection given contact) is larger and should be 

corrected by excluding individuals with past infection if the mechanism is known to be leaky. 

Conducting analyses both unadjusted and adjusted for past infection could give lower and upper 

bounds for the true VE. Studies of VE should therefore enroll individuals regardless of prior 

infection history but also collect information, ideally through serologic testing, on this critical 

variable. 

 

Vaccines are a critical tool for combatting the COVID-19 pandemic. Clinical trials and 

observational studies have provided key information about the vaccines’ efficacy and 

effectiveness  (VE). One important question that remains to be answered is whether or not the 

protection conferred by vaccines wanes over time. However, estimates of effectiveness over 

time are subject to bias from differential depletion of susceptibles between vaccinated and 

unvaccinated groups. This bias occurs when individuals who are no longer at risk of infection 

due to protection from past infection are included in the analysis; assuming the VE is greater 

than zero, these individuals with prior infection are more likely to be unvaccinated than 

vaccinated. Therefore, over time, more uninfected and unvaccinated individuals who are not at 

risk of infection are included in the analysis, biasing VE estimates downward. This bias grows 

as infection spreads and makes the VE incorrectly appear to wane over time (i.e. spurious 

waning) (1–4). Although some studies attempt to restrict analysis to those without prior infection, 

often many past infections will go undetected or unreported, particularly for pathogens with a 

large proportion of asymptomatic or mild infections. Additionally, in a population with individuals 

who have heterogeneous risk of infection (for example due to occupational exposure or choice 
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to wear a face covering), the riskiest individuals will be depleted preferentially among the 

unvaccinated group when the vaccine is effective, leading to the same bias downwards in VE, 

growing over time and thus seemingly showing waning of VE (1).   

Serologic testing for SARS-CoV-2 antibodies has the potential to help correct the first bias. By 

identifying non-vaccine antibodies (e.g. N-protein), these tests could be used to identify 

individuals with prior infection and exclude them from studies of VE over time. Likewise, 

adjustment for individual-level risk of infection (in practice, for proxies such as occupation or 

behavior) can help address the second bias.  

While each of these issues can in principle affect VE estimates and induce a spurious 

impression of waning VE, the magnitude of this bias under various assumptions about baseline 

VE is not clear, nor has it been shown before to our knowledge how adjustments can solve the 

problems. Here we examine the extent to which these biases occur under different scenarios 

and assess approaches to alleviate bias under various assumptions.   

Methods 

Network and epidemic 

We first create a network model of 20,000 individuals, similar to models described previously 

(2,5). The probability of connections between individuals in the network is calibrated in 

combination with the parameter for the probability of infection given contact to result in a 

reproduction number (R) of 1.25 or 1.50 (see Table 1 for a full list of parameters) (6). We seed 

an epidemic of a SARS-CoV-2-like pathogen with ten exposed individuals. Each day, each 

susceptible individual has a daily probability of infection from their infected connections in the 

network. A random half of the population is high risk, and the other half is low risk. High risk 

individuals have a daily probability of infection three times that of low risk individuals. This binary 
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risk status is a simplified proxy for multiple factors that could affect individuals’ risks for infection, 

such as occupation, demographics, geography, or behavioral patterns (7–9).  

We assume that half of those who are infected become symptomatic and that people are 

infectious for seven days. We assume that symptomatic, pre-symptomatic, and asymptomatic 

infected individuals have the same level of infectiousness. After individuals recover, we assume 

that complete protection from natural immunity lasts for 90 days (10), after which individuals can 

be reinfected; we then assume recovered individuals’ susceptibility is 95% lower than those 

without prior infection, resulting in low numbers of reinfection during the study period examined 

in the simulations (11). It is unknown exactly how VE differs for recovered individuals, although 

there is evidence that vaccination further reduces previously infected individuals’ risk (12). For 

simplicity we assume vaccinated recovered individuals' susceptibility is further decreased by the 

same amount as for vaccinated susceptible individuals.  

Scenarios 

We simulate random vaccination (to prevent unmeasured confounding) of 2500 individuals, or 

12.5% of the population, on the first day of the simulation. Another 2500 unvaccinated 

individuals are also randomly selected for potential follow-up over the course of the simulations. 

We compare four primary scenarios (Table 2). In the first scenario, vaccine efficacy against 

susceptibility to infection (VES) is 0.90, and vaccine efficacy against progression to symptoms 

(VEP) is 0.5. These measures combine to give a vaccine efficacy against symptomatic disease 

(VESP), the primary outcome of most SARS-CoV-2 vaccine trials (13–16), of 0.95, under the 

formula 𝑉𝐸𝑆𝑃 = 1 − (1 − 𝑉𝐸𝑆)(1 − 𝑉𝐸𝑃)(17). These values are similar to those that have been 

observed in the trials (13,15) and initial observational studies (18–20) of the mRNA vaccines. In 

the second scenario, we assume VES and VESP are 0.7, similar to the findings from the Janssen 

vaccine trial (14).  
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In the first two scenarios, we assume the vaccine is “leaky”, meaning it reduces the probability 

of infection given contact to an equal degree, but not perfectly, in all vaccinated individuals (3). 

However, in the third scenario, to assess the impact of the vaccine mechanism, we model an 

all-or-nothing vaccine, meaning it protects a certain proportion of vaccinated individuals 

completely and provides no protection to the rest. In this scenario, VES and VESP are both 0.9. In 

supplementary scenarios, we also examine an all-or-nothing vaccine with lower VES and VESP 

,as well as a leaky vaccine with VESP = 0.95, similar to Scenario 1, but with lower VES and higher 

VEP. (21).  

Finally, in scenario 4, we examine a setting with a leaky vaccine with VESP = 0.95 in which some 

of the population has already been infected and recovered before the simulations and 

vaccination begin. We explore a range from 0-30% of individuals with prior infection under a 

higher R than in the other scenarios (R=2.0) to prevent herd immunity from prior infections from 

substantially slowing the epidemics before spurious waning can be observed. In these 

simulations, 20 individuals are exposed on the first day and 100 individuals are infectious 

(except in the simulations with 0 individuals previously infected).  

Analyses 

Test-negative design 

We then simulate sampling of cases, or individuals with COVID-19 (symptoms and positive 

virologic test), on a given day and a random 1:4 sample of controls (i.e. individuals without 

COVID-19), similar to a test-negative design (TND). We repeat this sampling for seven different 

time periods, every 25 days from day 75 to day 225, treating each day independently. Given the 

faster epidemics in scenario 4 with the higher R, we examine every 25 days from day 25 to day 

150. We then estimate VESP -- the estimand that is in practice estimated in a standard TND, 

although the progression to symptoms aspect is not always acknowledged (22) -- using four 
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analyses. We focus on VESP as it was the primary outcome in vaccine trials and due to potential 

biases that can arise in TNDs when estimating VE against all infection when vaccines affect 

disease severity (23).  

In the first analysis (baseline), we estimate VESP by calculating the odds ratio (OR), using data 

from all individuals sampled:  

VESP = 1 −  
𝑁𝐷+𝑉+  ⁄ 𝑁𝐷−𝑉+

𝑁𝐷+𝑉−  ⁄ 𝑁𝐷−𝑉− 
 , where D is disease (symptoms and a positive virologic test) 

and V is vaccine. 

In the second analysis, we estimate the OR using logistic regression, controlling for risk (i.e. the 

binary measure described above for increased or decreased susceptibility to infection).  

In the third analysis, we simulate serologic testing for non-vaccine antibodies (i.e. evidence of 

past infection) and then restrict the analysis to individuals who had not previously been infected. 

In the fourth analysis, we both restrict to those without evidence of previous infection and also 

control for risk. In the primary analyses, we assume perfect sensitivity and specificity of the 

serologic test for prior infection, but we relax these assumptions in sensitivity analyses. We 

examine lower sensitivity for cases and controls and lower specificity for cases only, as 

antibodies detected could reflect either current or prior infection.  

Cohort / randomized controlled trial design 

As a comparison to the TND, we repeat the same four analyses to estimate VE using a cohort 

design, where the time of symptomatic infection is known for the 5000 people under follow-up. 

We again examine different lengths of follow-up for this study design. We assume no 

unmeasured confounding: that is, no common causes of vaccination and infection, as would be 

true with adequate control for confounders. In practice, this study could be done using an 
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electronic health records database using stratification, matching, or modeling for example to 

control for confounding factors such as occupation, age, insurance, and other factors affecting 

both vaccination and the likelihood of infection given vaccination. Because there is no 

unmeasured confounding and vaccination is random in these simulations, this design is 

comparable to a randomized controlled trial (RCT) in which all symptomatic cases are identified.     

Sensitivity analyses 

We vary key parameters of interest to examine their impact on the results. First, we vary the 

reduction in susceptibility conferred by past infection, using a value of 70% (24) reduction 

compared to the baseline parameter of 95% reduction. Next, we vary the proportion of the 

population that is high risk, examining a scenario in which only 10% of the population is high 

risk, with five times higher risk than lower risk individuals. Finally, we vary the proportion of 

infections that are symptomatic, using a higher value of 0.8 (23) compared to the baseline of 

0.5.  

Ethics: This activity was reviewed by CDC and was conducted consistent with applicable federal law 

and CDC policy. 

 

Results 

 

In scenario 1 with high VES and VESP, we find that for most time points, all four TND analyses 

return estimates of VESP  close to the true value of 0.95 (Figure 1). However, in the simulations 

with R=1.5, the first two analyses that do not exclude prior infection result in downward biases 

for days further from vaccination (i.e. as low as 0.89 200 days from vaccination). This bias 

occurs at later dates and in the higher transmission scenarios (i.e. when more cases have 

occurred) due to differential depletion of susceptibles between vaccinated and unvaccinated 
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individuals over time; the bias is alleviated by excluding those with prior infection from the 

analysis. Similar results are found in an additional analysis with the same VESP but different VES 

and VEP (Web Figure 1 and Web Table 1). Note, in these and other simulations with high VE, 

when the number of cases is very low at either the beginning or end of the epidemic, 

imprecision can result in VE estimates of 1 (if all cases are by chance unvaccinated).  

 

In scenario 2, with a lower value of VES and VESP of 0.7, the first and second analyses that do 

not exclude prior infection are biased further downwards than in scenario 1 (i.e. as low as 0.36 

225 days from vaccination when R = 1.5); this bias also occurs earlier than in scenario 1 and for 

both R values (Figure 2) because the epidemic is larger due to lower VE. In addition, in this 

scenario, the third analysis that excludes those with prior infection but does not control for risk 

has a more pronounced bias (lowest value of 0.64 compared to true VESP  of 0.7 on day 225 

when R=1.5) than in scenario 1 (lowest value of 0.94 compared to true VESP  of 0.95 on day 200 

when R=1.5).  

 

In scenario 3, which models an all-or-nothing vaccine mechanism instead of a leaky 

mechanism, excluding prior infections results in a bias upward away from the true VESP of 0.9 

(Figure 3), with some values approaching 1. This bias is more pronounced in the higher R 

simulations, on later days, and for lower values of VESP; for example, on day 200 in the R=1.5 

simulations, the VESP from the analysis excluding prior infection and adjusting for risk is 0.83, 

compared to the true value of 0.7 (Web Figure 2 and Web Table 1)  

 

In scenario 4, we see that the degree of spurious waning bias increases with the number of 

cumulative cases since vaccination (Web Figure 3 and Web Table 2). This trend occurs 

because the bias is driven by differential depletion of susceptibles between vaccinated and 

unvaccinated individuals. In the simulations with 0% prior infection at the time of vaccination, the 
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epidemic and vaccination begin simultaneously; thus, when evaluating VE at later dates, 

because the vaccine reduces risk of infection, those who have been infected prior to the date of 

interest are more likely to be unvaccinated, causing bias. Assuming prior infection doesn’t affect 

the decision to be vaccinated, in the simulations where the epidemic begins prior to vaccination, 

the distribution of vaccination status among those infected becomes more balanced because 

the infections prior to vaccination are expected to be evenly split between vaccinated and 

unvaccinated individuals. This is why the bias increases with cumulative cases since 

vaccination began, rather than with overall cumulative cases (i.e. before and after 

vaccination).The cumulative cases since vaccination is a function of many variables, including 

timing of vaccination relative to the epidemic, force of infection, and VE values.  

 

In the cohort study analysis, which under our assumptions is equivalent to an RCT, we find 

similar trends to those observed in the TND (Figures 4-6); however, the cohort studies that do 

not exclude those with prior infection are less biased than equivalent TND studies for each 

scenario. In scenario 1, with the highest VESP, the bias is negligible. The bias is smaller 

because in cohort studies and RCTs, those with past symptomatic infection are censored at the 

time of infection, meaning fewer people are incorrectly treated as still at risk in the analysis.  

 

In sensitivity analyses, we relax assumptions of perfect tests for prior infection and examine 

lower sensitivity for both cases and controls and lower specificity for cases. We find that while 

lower sensitivity results in slight downward biases of the estimates, which are more pronounced 

in scenario 2 than scenario 1 (Web Figures 4 and 5), lower specificity for cases does not induce 

a bias (Web Figure 6). This is because imperfect specificity only reduces the sample size, but 

we assume it does not do so differentially by vaccination status. A study of breakthrough 

infections in Israel found antibody levels on day of diagnosis were not greatly impacted by the 

current infection, suggesting imperfect specificity may not be a large concern (25).  
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Finally, in analyses that vary the parameters for reduction in susceptibility following infection and 

the proportion of the population at high risk, we find similar results to the baseline scenario 

(Web Figures 7-8). In analyses with a higher proportion symptomatic, we find less bias as 

expected given that a smaller proportion of cases will go undetected (Web Figure 9); we focus 

here on the cohort/RCT designs in which all symptomatic cases are identified and therefore the 

proportion symptomatic is a key parameter of interest.   

 

 

Discussion  

 

We find that in scenarios with high baseline VE, differential depletion of susceptibles creates 

minimal bias in VE estimates and in the time trend of these estimates; therefore, there is little 

suggestion of spurious waning from comparing later to earlier VE estimates. While it is important 

to control for known predictors of risk, estimates that do not account for prior infection status will 

likely not be far off from the truth. In fact, without knowledge of the vaccine mechanism (i.e. 

leaky or all-or-nothing), it may be better to not condition on prior infection status: if the vaccine is 

leaky, the baseline estimates may be slightly underestimated, but if the vaccine is all-or-nothing, 

the adjusted estimates will overestimate the true VE. This upward bias occurs because 

excluding people with past infection with an all-or-nothing vaccine removes people for whom the 

vaccine did not work at all and focuses the analysis on those for whom the vaccine may be 

effective; with leaky vaccines, the individuals who are removed in the adjusted analysis are 

random (after accounting for risk factors). Evaluating how the estimates from different analyses 

change over time could give potential insight into the type of vaccine mechanism.  
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Because the bias from failing to exclude prior infection in the analysis of a leaky vaccine with 

high initial VE is expected to be small under the null hypothesis of no waning VE, if the VE 

appears to wane substantially, this finding is likely not entirely due to bias. If true waning occurs, 

spurious waning bias may become a more relevant consideration (as in scenarios with a lower 

baseline VE); that is, estimates may reflect a combination of real and spurious waning. Six 

month efficacy results from the mRNA vaccine trials show mixed findings regarding waning, with 

Moderna showing consistent efficacy over time (26) and Pfizer’s estimates slightly declining 

(27). It is challenging to disentangle if this decline is due to lower effectiveness against variants, 

true waning, spurious waning, or some combination of these factors; given the minimal bias 

found in our RCT-like analysis of vaccines with high VE (Figure 4), our findings suggest the 

decline is likely not due to spurious waning alone. Similarly, spurious waning is likely not the 

only cause of the declines in effectiveness observed in Israel, given the high effectiveness 

estimated when vaccines were first given (19,20), the magnitude of the declines and that they 

occurred following a period of low incidence (28).  

 

If baseline VE is lower, the bias over time for leaky vaccines is larger and ideally should be 

corrected if the mechanism is known to be leaky. However, leaky and all-or-nothing 

mechanisms are two extremes; in reality, vaccines will fail to take in some individuals due to 

improper handling or injection so most vaccines are leaky vs. nothing. By examining both 

mechanisms, our analyses show the range of possible biases. In the absence of other sources 

of bias, conducting analyses both unadjusted and adjusted for past infection could give lower 

and upper bounds for the true VE. Studies of VE over time should therefore enroll individuals 

regardless of prior infection history but also collect information on this critical variable for use in 

the analysis; when possible, prior infection status should be assessed using serology as even 

an imperfect serologic test will improve sensitivity over self-report alone.  
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This study has several limitations. First, we make many simplifying assumptions in the model. 

For example, we assume all individuals are grouped into one large community and do not 

examine the potential impact of geographic heterogeneity. Other studies have shown epidemic 

dynamics due to differences in geography are important to control for in vaccine (29) and 

serologic (5) studies. We also assume perfect sensitivity and specificity of virologic tests, as 

implications of these parameters have been explored in detail previously (30,31). There are 

many potential biases in studies of vaccine effectiveness, which are described in detail in World 

Health Organization guidance (30); here we focus specifically on spurious waning bias from 

differential depletion of susceptibles. While we incorporate heterogeneity in risk of acquiring 

infection, we do not model differences in risk of transmitting infection (e.g. due to host factors). 

Second, using serologic tests to identify prior infection is subject to error from imperfect test 

characteristics and waning of antibodies over time. However, we find only small biases in VE 

estimates from imperfect sensitivity, and information on past infection can also be obtained 

through self-report or medical records. Third, as described above, we assume random 

vaccination and no unmeasured confounding; the strategies discussed here alone do not 

address most other sources of potential confounding, which are important to account for in 

analyses, particularly given that vaccine rollout in some cases prioritized those at highest risk to 

receive vaccines first. Fourth, we simulated epidemics with higher R values than much of the 

United States experienced during most of the pandemic to uncover scenarios where spurious 

waning might be of concern (https://covidestim.org/). These values should not affect the 

conclusions from the simulations, as we find that the main determinant of the extent and 

magnitude of bias is the proportion of the population that has been infected since vaccination, 

which is influenced by a combination of several factors, including R values, the point in the 

epidemic trajectory when the vaccine was introduced, and prevalence of high vs low risk 

individuals in the population. Finally, we assume no true waning or other reasons for decreased 
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effectiveness, such as new variants; future research should explore methods for disentangling 

these potential explanations for observed declines in effectiveness over time.    

 

Assessing duration of protection from COVID-19 vaccines is important for anticipating future 

dynamics of this pandemic. Here we have outlined circumstances under which bias can arise in 

these estimates and identified approaches to alleviate these biases.  
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Table 1. Parameters and associated values used in network model simulations 

Parameter Value(s) 

Population size 20,000 people 

Average degree (number of connections in network) 36, 43, 58 people 

Average beta (probability of infection per contact) 0.005 

Reproduction number (R) 1.25, 1.50, 2.00 

Proportion symptomatic 0.5, 0.8 a 

Number of initial cases 10, 20 cases 

Incubation period 5 days b 

Infectious period 7 days 

Proportion at high risk 0.5, 0.1 

Relative beta for high risk 1.5, 3.57 

Relative beta for low risk 0.5, 0.71 

Days with complete protection from past infection 90 days c 

Relative beta for those recovered after 90 days 0.05 d, 0.3 e 

Proportion of population vaccinated 0.125 

Proportion previously recovered at start of simulation 0, 0.1, 0.2, 0.3 

a Buitrago-Garcia et al. (32) 
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b McAloon et al. (33). 

c CDC (10). 

d Abu-Raddad et al. (11). 

e Hansen et al. (24). 
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Table 2. Scenarios the network model evaluated to assess the potential for spurious waninga 
 

Scenario Type Reproduction 

number 

Proportion 

previously 

infected and 

recovered 

on day 1 

Vaccine 

efficacy 

against 

symptomati

c disease 

(VESP) 

Vaccine 

efficacy 

against 

susceptibilit

y to 

infection 

(VES) 

Vaccine 

efficacy 

against 

progression 

to 

symptoms 

(VEP) 

Main scenarios 

Scenario 1 Leaky 1.25, 1.50 0 0.95 0.90 0.50 

Scenario 2 Leaky 1.25, 1.50 0 0.70 0.70 0 

Scenario 3  All-or-nothing 1.25, 1.50 0 0.90 0.90 0 

Scenario 4 Leaky 2.0 0, 0.1, 0.2, 

0.3 

0.95 0.90 0.50 

Supplemental scenarios 

Scenario 5 Leaky 1.25, 1.50 0 0.95 0.65 0.86 

Scenario 6 All-or-nothing 1.25, 1.50 0 0.70 0.70 0 

a Each scenario includes multiple values of either the reproduction number of the proportion 

previously infected and recovered on day 1.  
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Table 3. Cases on each day of analysis for Scenarios 1-3 

Scenario R Day Cases Cumulative cases 

Scenario 1 1.25 75 5 13 

Scenario 1 1.25 100 10 30 

Scenario 1 1.25 125 19 60 

Scenario 1 1.25 150 31 112 

Scenario 1 1.25 175 42 191 

Scenario 1 1.25 200 48 278 

Scenario 1 1.25 225 44 364 

Scenario 1 1.5 75 20 38 

Scenario 1 1.5 100 51 112 

Scenario 1 1.5 125 102 282 

Scenario 1 1.5 150 113 502 

Scenario 1 1.5 175 68 642 

Scenario 1 1.5 200 26 698 

Scenario 1 1.5 225 8 721 

Scenario 2 1.25 75 8 21 

Scenario 2 1.25 100 17 47 

Scenario 2 1.25 125 34 100 

Scenario 2 1.25 150 56 190 

Scenario 2 1.25 175 75 325 

Scenario 2 1.25 200 77 472 

Scenario 2 1.25 225 56 586 

Scenario 2 1.5 75 30 58 

Scenario 2 1.5 100 84 184 

Scenario 2 1.5 125 166 454 

Scenario 2 1.5 150 167 754 
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Scenario 2 1.5 175 86 933 

Scenario 2 1.5 200 28 996 

Scenario 2 1.5 225 8 1014 

Scenario 3 1.25 75 6 15 

Scenario 3 1.25 100 10 32 

Scenario 3 1.25 125 18 63 

Scenario 3 1.25 150 29 112 

Scenario 3 1.25 175 39 184 

Scenario 3 1.25 200 42 266 

Scenario 3 1.25 225 38 334 

Scenario 3 1.5 75 17 37 

Scenario 3 1.5 100 48 108 

Scenario 3 1.5 125 92 254 

Scenario 3 1.5 150 104 446 

Scenario 3 1.5 175 67 588 

Scenario 3 1.5 200 29 656 

Scenario 3 1.5 225 10 686 
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Figure 1.  

Vaccine efficacy against symptomatic disease for scenario 1 (VESP = 0.95, VES = 0.9, VEP = 0.5 for a 

leaky vaccine) with a test-negative design. Columns are days since vaccination, and rows are values of 

the reproduction number R. Median and IQR of 100 simulations shown. See Table 3 for number of cases, 

which refers to the median number of people with COVID-19 included in that day’s analysis, and 

cumulative cases, which refers to the median total number of cases of COVID-19 by that day since 

vaccination (denominator 5000). 

Method A) Baseline,  

Method B) Baseline + control for risk 

Method C) Exclude past infection 

Method D) Exclude past infection + control for risk 

 

Figure 2 

Vaccine efficacy against symptomatic disease for scenario 2 (VESP = 0.7, VES = 0.7, VEP = 0 for a leaky 

vaccine) with a test-negative design. Columns are days since vaccination, and rows are values of the 

reproduction number R. Median and IQR of 100 simulations shown. See Table 3 for number of cases, 

which refers to the median number of people with COVID-19 included in that day’s analysis, and 

cumulative cases, which refers to the median total number of cases of COVID-19 by that day since 

vaccination (denominator 5000). 

Method A) Baseline,  

Method B) Baseline + control for risk 

Method C) Exclude past infection 

Method D) Exclude past infection + control for risk 
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Figure 3 

Vaccine efficacy against symptomatic disease for scenario 3 (VESP = 0.9, VES = 0.9, VEP = 0 for an all-or-

nothing vaccine) with a test-negative design. Columns are days since vaccination, and rows are values of 

the reproduction number R. Median and IQR of 100 simulations shown. See Table 3 for number of cases, 

which refers to the median number of people with COVID-19 included in that day’s analysis, and 

cumulative cases, which refers to the median total number of cases of COVID-19 by that day since 

vaccination (denominator 5000). 

Method A) Baseline,  

Method B) Baseline + control for risk 

Method C) Exclude past infection 

Method D) Exclude past infection + control for risk 

 

Figure 4  

Vaccine efficacy against symptomatic disease for scenario 1 (VESP = 0.95, VES = 0.9, VEP = 0.5 for a 

leaky vaccine) with a cohort/randomized controlled trial design. Columns are days since vaccination, and 

rows are values of the reproduction number R. Median and IQR of 100 simulations shown. See Table 3 

for number of cases, which refers to the median number of people with COVID-19 included in that day’s 

analysis, and cumulative cases, which refers to the median total number of cases of COVID-19 by that 

day since vaccination (denominator 5000). 

Method A) Baseline,  

Method B) Baseline + control for risk 

Method C) Exclude past infection 

Method D) Exclude past infection + control for risk 
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Figure 5 

Vaccine efficacy against symptomatic disease for scenario 2 (VESP = 0.7, VES = 0.7, VEP = 0 for a leaky 

vaccine) with a cohort/randomized controlled trial design. Columns are days since vaccination, and rows 

are values of the reproduction number R. Median and IQR of 100 simulations shown. See Table 3 for 

number of cases, which refers to the median number of people with COVID-19 included in that day’s 

analysis, and cumulative cases, which refers to the median total number of cases of COVID-19 by that 

day since vaccination (denominator 5000). 

Method A) Baseline,  

Method B) Baseline + control for risk 

Method C) Exclude past infection 

Method D) Exclude past infection + control for risk 

 

Figure 6 

Vaccine efficacy against symptomatic disease for scenario 3 (VESP = 0.9, VES = 0.9, VEP = 0 for an all-or-

nothing vaccine) with a cohort/randomized controlled trial design. Columns are days since vaccination, 

and rows are values of the reproduction number R. Median and IQR of 100 simulations shown. See Table 

3 for number of cases, which refers to the median number of people with COVID-19 included in that day’s 

analysis, and cumulative cases, which refers to the median total number of cases of COVID-19 by that 

day since vaccination (denominator 5000). 

Method A) Baseline,  

Method B) Baseline + control for risk 

Method C) Exclude past infection 

Method D) Exclude past infection + control for risk  
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