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Abstract

Backgrounds: Despite continuing progress in X-ray crystallography and high-field NMR spectroscopy for determination of
three-dimensional protein structures, the number of unsolved and newly discovered sequences grows much faster than
that of determined structures. Protein modeling methods can possibly bridge this huge sequence-structure gap with the
development of computational science. A grand challenging problem is to predict three-dimensional protein structure from
its primary structure (residues sequence) alone. However, predicting residue contact maps is a crucial and promising
intermediate step towards final three-dimensional structure prediction. Better predictions of local and non-local contacts
between residues can transform protein sequence alignment to structure alignment, which can finally improve template
based three-dimensional protein structure predictors greatly.

Methods: CNNcon, an improved multiple neural networks based contact map predictor using six sub-networks and one
final cascade-network, was developed in this paper. Both the sub-networks and the final cascade-network were trained and
tested with their corresponding data sets. While for testing, the target protein was first coded and then input to its
corresponding sub-networks for prediction. After that, the intermediate results were input to the cascade-network to finish
the final prediction.

Results: The CNNcon can accurately predict 58.86% in average of contacts at a distance cutoff of 8 Å for proteins with
lengths ranging from 51 to 450. The comparison results show that the present method performs better than the compared
state-of-the-art predictors. Particularly, the prediction accuracy keeps steady with the increase of protein sequence length. It
indicates that the CNNcon overcomes the thin density problem, with which other current predictors have trouble. This
advantage makes the method valuable to the prediction of long length proteins. As a result, the effective prediction of long
length proteins could be possible by the CNNcon.
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Introduction

It is well known that discovering the three-dimensional (3D)

structure of a protein can provide important clues to understand of

the mechanism of protein functions. Unfortunately, determination

of 3D protein structure through experimental methods, such as X-

ray crystallography or NMR spectroscopy, are time consuming

and not working effectively with all kinds of proteins, especially

membrane proteins [1]. Additionally, there are more than 24

million protein sequences in UniPortKB [2] currently, among

which only about 84,508 proteins have had their structures solved

experimentally [3]. Furthermore, almost 10,000 entries are newly

added into Protein Data Bank (PDB) yearly [3]. That means more

than 2,400 years are needed to solve the currently existed protein

structures through experimental methods, under the situation of

current experimental technology and no more newly discovered

proteins. In fact, the number of newly discovered sequences grows

much faster than the number of structures solved with experi-

mental methods. The computation method is obviously the only

way to bridge the huge protein sequence-structure gap.

Although many 3D protein structure predictors (3D-JIGSAW

[4], I-TASSER [5], LOMETS [6], MODELLER [7], MODWEB

[8], ROBETTA [9], SWISS-MODEL [10] and so on) with

different accuracies have been developed in recent years, few

predictors can produce desirable resolution structures for applica-

tions in medicine, such as drug design. The latest CASP

experiment [11] shows that the progress has slowed and even

reaches the bottleneck in direct prediction from one-dimensional

(sequence) to three-dimensional (structure). With such difficulties,

residue contact maps (CM or residue-residue contact) prediction,

a matrix representation of protein residue-residue contacts, is the

most promising one among recently developed prediction ideas.
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CM of a protein is a simplified version of the protein structure

and provides a new avenue for predicting 3D protein structure

[12]. As these two-dimensional representations capture all the

important features of a protein fold, the whole complex and

difficult 3D structure prediction task can be divided into two steps.

That is solving the one-dimensional to two-dimensional prediction

firstly and then the final two-dimensional to three-dimensional

prediction. This idea of divide and conquer makes the problem

much easier and also help reconstruct final 3D structure from

predicted contact maps. Protein CM has some advantages below.

First, CM conveys strong information about the 3D protein

structure. Second, the binary CM nature can be regarded as

a classical problem of a two-state classification which has been

thoroughly studied. Third, it has been shown that the empirical

reconstruction algorithms are quite insensitive to high levels of

random noise in CM, so that it is not necessary to predict all

contacts correctly for reconstructing the protein 3D structure [12–

15]. So far, several contact maps prediction methods, such as

NNcon [16], PROFcon [17], SVMcon [18], RECON [19],

CMWeb [20] and CMAPpro [21], have been developed

successfully.

An improved multiple neural networks based contact map

predictor, CNNcon, was proposed in this paper. It’s composed of

six input sub-networks and one output network, which forms a two-

level cascaded network architecture. All the networks used are

standard back-propagation neural networks. For network inputs,

different sources of information were mixed and most of them had

been used separately in some way before.

Results and Conclusion

Assessment of the Prediction Efficiency
To score the efficiency of the CNNcon method, two widely used

and accepted statistical indices are introduced. Here, we only

sketch these scores that are described in detail in [22–25].

The first and most frequently used one is accuracy, also referred

to as ‘Specificity’, defined as follows:

Acc~
Ncp�
Ncp

~
TP

TPzFP
ð1Þ

where Ncp� and Ncp are the number of correctly assigned contacts

and that of total predicted contacts respectively. They also

correspond to the sum of true positives (TP) and the sum of both

TPs and false positives (FT) respectively. Routinely the accuracy is

evaluated for each test protein and then averaged over the protein

set.

We also evaluate the performance on the coverage of correct

predicted contacts, also referred to as ‘Sensitivity’, defined as:

Cov~
Ncp�
Nobs

~
TP

TPzFN
ð2Þ

where Ncp� is the same in equation (1) and Nobs is the number of

observed contacts, which corresponds to the sum of TPs and false

negatives (FN).

Results

Table 1 gives the prediction results of sub-networks and the final

cascade-network, respectively. Two conclusions follow from these

results. First, the prediction accuracy of each sub-network alone is

comparable to other neural network based methods [16–18],

whose performance is showed in Table 2. It indicates that our idea

of assigning different prediction tasks to specific sub-networks

corresponding to the protein length is practicable. Second, the

remarkable improvement of accuracy from final cascade-network

with little coverage loss proves that the CNNcon method is

extremely effective and valuable.

In general, it is neither straightforward nor completely fair to

compare the performance of different contact map predictors.

First, different predictors are usually suitable for different length

range proteins. Second, there also not existed a benchmark data

set big enough and accepted widely. Therefore, the comparisons

with other current contact map predictors in Table 2 are used for

reference. The results show that the CNNcon method achieves the

best accuracy and the coverage is the second best, which is almost

as good as the best one. Moreover, the largest test data set is used

in order to make the present results reliable.

To further verify the performance of the CNNcon method, we

applied all the compared methods on the same test data set, 64

CASP10 targets. This test data set contains all the targets with

length from 51 to 450 and valid PDB codes. Since different

methods predict different number of contacts, in order to correctly

Table 1. Performance of sub-networks and final cascade-network.

Separationa Seq-Lenb THRc Chainsd Acce Erracc
f Cove Errcov

f

Sub-network 1 6 51–70 0.1 30 46.43 9.24 41.91 4.89

Sub-network 2 7 71–90 0.6 40 44.35 9.89 36.43 7.64

Sub-network 3 10 91–130 0.7 199 43.99 8.05 36.33 4.59

Sub-network 4 13 131–190 0.7 246 41.38 8.39 33.95 5.32

Sub-network 5 17 191–290 0.8 201 28.31 7.72 36.57 2.64

Sub-network 6 21 291–450 0.9 87 31.81 9.90 34.47 2.53

Average 34.01 8.87 35.44 4.60

CNNcon 51–450 803 57.86 8.07 34.28 4.52

aSequence separation: if value is s, then only contacts between pairs i,j minimally s residues apart are considered, that is Di{jD§s.
bLength Range of protein sequence of corresponding sub-network training and testing data sets.
cMinimal prediction value to determine residues contact or not.
dSize of test data set for each sub-network.
eAcc: prediction accuracy(%), defined in equation (1) and Cov: coverage(%), defined in equation (2).
fStandard error.
doi:10.1371/journal.pone.0061533.t001

CNNcon
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compare them, n predicted contacts with the highest probabilities

are selected. To increase the comparison preciseness, instead of

being assigned one value, n was assigned to T/2, 2T/3 and T,

respectively, where T was the total true contacts of the whole test

data set. Then the final compared statistical indices take the

average values. The details of the compared results are given in

Table 3. Both accuracy and coverage of the present method are

better than others.

The prediction accuracies upon all proteins in the six test sets by

corresponding sub-networks are shown in Figure 1. Clearly,

accuracies decrease sharply while protein sequence length

increases owing to the density of contacts decreasing greatly as

the inverse of the protein length [12,26]. This also troubles most

other current contact predictors. However, the prediction

accuracies from the present method almost keep the same with

the increase of protein sequence length in Figure 2. That means

the CNNcon method overcomes the thin density problem [12,26],

which suggests that it might be a valuable candidate for long

length protein prediction.

Conclusion
An improved neural network based approach for protein

contact map prediction, called CNNcon, was developed in this

paper. The method performs better on prediction accuracy than

other compared state-of-the-art methods. Further, the CNNcon

method has better consistency and stability on prediction accuracy

as protein length increases. Although training the six sub-networks

and one cascade network costs computationally more than single-

network predictors, it is one-time work. While in testing, the

CNNcon method can divide the contact map prediction task

naturally and run in parallel, based on the specially designed

architecture. This advantage makes the method almost as fast as

other single network based methods. It is expected that the

CNNcon will be used to enhance parallel performance with longer

protein length. As the neural network can be improved by adding

more input information and training with a larger training data

set, next work will be focus on combining more input information

(e.g. correlated mutation information) and adding more protein

chains to training data set. Parallel version of the CNNcon

algorithm will also be implemented and worked on super-

computers in the future.

Discussion

Optimized Thresholds were Crucial for Performance
Table 1 (Column ‘THR’) gives the optimized thresholds for all

sub-networks. They are minimal prediction values to determine

Table 2. Comparison results with other current methods.

Predictor Acce Cove Targetsg Method

CNNconh 57.86 34.28 803 Neural network based; Using
optimized thresholds.

NNconi 54.50 35.00 116 Neural network based; Top L/5
predicted.

PROFconj 32.40 19.60 633 Neural network based; Top L/2
predicted.

SVMconk 37.00 21.00 48 Support vector machine based;
Top L/5 predicted.

eAs in Table 1.
gSize of test data sets.
hThis work.
i,j,kResults are summarized from previous works [16–18], respectively.
doi:10.1371/journal.pone.0061533.t002

Figure 1. Prediction results upon all test proteins by corresponding sub-networks. The X axis is length range of tested proteins. The Y axis
is prediction accuracy (%). Each point represents the predicted accuracy of a protein by its belonged sub-network. The average accuracy is as high as
34.01%. However, the accuracies decrease while the length of proteins increases.
doi:10.1371/journal.pone.0061533.g001

CNNcon
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residues contact or not for corresponding sub-networks. Different

thresholds resulting in both different accuracies and different

coverages are found. And different sub-networks have their own

optimized thresholds. This was probably related to the different

contact densities of different protein length ranges, according to

which the sub-networks were introduced. Further, it is discovered

that the coverage score dropped sharply while the threshold was

once greater than a specific value. These specific values were used

as our final optimized thresholds for the corresponding sub-

networks.

Combining and Balancing Multiple Predictions Improves
Accuracies

As expected, the prediction accuracies of sub-networks are at

the same level of most single neural network based methods.

However, the final prediction accuracy is improved greatly by our

cascade-network because of the following two advantages of our

model. First, instead of being processed by a single network, each

test protein was input to its corresponding sub-network, left-next

sub-network and right-next sub-network for prediction in parallel.

This increases the opportunity of contacted amino acids to be

found. Second, three optimized balancing weights were in-

troduced to balance the predicted results of sub-networks during

final cascade-network prediction.

Materials and Methods

Contact Map Definition
The contact map of a protein with N amino acids is an N|N

binary symmetric matrix CN|N . The components Cij(ivj) are

defined as follows:

Cij~
1 if amino acid i and j are in contact

0 otherwise

�
ð3Þ

We define two amino acids as being in contact if the distance

between their Cb atoms (Ca for glycines which having a hydrogen

substituent as its side-chain) is less than 8 Å, a standard threshold

widely used [12,22,27–29].

Neural Network Architecture
The finding that number of contacts in a protein is proportional

to the protein length N, while the number of possible contacts

increases with N(N{1)=2 [12], implies the contact densities in

the map decrease as the inverse of the protein length. In other

words, long proteins have lower contact densities than short ones

[26]. This makes the contact maps of long proteins more difficult

to predict and the prediction accuracy is affected by the protein

length greatly. Six specific sub-networks for different protein

length range respectively and one cascade-network are introduced

in order to solve this problem. They are all classical feed-forward

3-layer neural networks trained with the same standard back-

propagation algorithm [30]. Architectures of all the six sub-

networks are the same and composed of 1747 input nodes, 5

hidden nodes and 1 output node. The cascade-network contains 9

input nodes, 6 hidden nodes and 1 output node. The numbers of

middle nodes are actually decided by repeated trials in experiment

depending on the balance of computation time and prediction

accuracy. Same values are assigned to the number of middle nodes

of all sub-networks. In fact, it might be more suitable to assign the

parameter of each sub-network with its different and specific

values, since each sub-network is designed for proteins with

different lengths. In next improved version of CNNcon (v2.0, also

parallel and super computer version), this work will be considered

and these optimal values of this parameter will be picked out

through experiments performed on each sub-network. Among

Figure 2. Prediction results upon all test proteins by the final cascade-network. The X axis and Y axis are the same in Figure 1. Each point
represents the predicted accuracy of a protein by the final cascade-network. The average accuracy is as high as 57.86%. Moreover, the accuracies
keep steady while the length of proteins increases.
doi:10.1371/journal.pone.0061533.g002

Table 3. Comparison results on 64 CASP10 targets.

Predictor Acce Erracc
f Cove Errcov

f

CNNcon 55.48 17.13 36.89 4.79

NNcon 46.39 11.79 31.70 9.49

PROFcon 39.90 7.02 25.55 9.87

SVMcon 38.15 9.02 25.62 10.93

e,fAs in Table 1.
doi:10.1371/journal.pone.0061533.t003

CNNcon
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these input nodes, six are coded by prediction results from sub-

networks and the remaining three are coded by balanced weights.

The whole architecture of the CNNcon method is shown in

Figure 3.

Each sub-network was trained and tested with its corresponding

data set. The data sets and length range divisions are mentioned in

section of data sets below. While for testing, the target protein was

coded first and input to its corresponding sub-networks for

prediction. We defined the sub-network id as 1 to 6 as increase of

its length coverage and the particular sub-network with length

range covering the target protein length defined as i. Thus for each

target protein, its corresponding sub-networks were i{1, i and

iz1, that is just local communication needed while in parallel.

After prediction by its corresponding sub-networks, the interme-

diate results along with three optimized balance factors were input

to the cascade-network to finish the final prediction.

Input Codings
The basic input coding method used here is the same as

previously introduced in [31]. Each residue pair is characterized

by an vector containing 210 elements (20|(20z1)=2), represent-

ing all the possible ordered couples of residues. The input coding

vectors of each residue couple and its symmetric ones are the

same.

In the method, multiple sequence information instead of single

sequence was used, since evolutionary information had been

proved to improve prediction performance greatly [17]. Multiple

sequence alignment information of each protein sequence was

gained from its corresponding HSSP file [32]. Considering the

prediction performance and our computing resource, we chose as

most as 100 multiple sequence alignment sequences (including the

target one) with the identity of each aligned sequence less than

80%.

For each sequence in the alignment, a pair of residues in

position i and j were counted. The final input coding, representing

the frequency of each pair in the alignment, was normalized to the

number of the aligned sequences [31].

Conservation weights and secondary structures [33] information

from HSSP file were also coded with one and three elements

Figure 3. Architectures of sub-neural network (left) and cascade-neural network (right). Since architectures of all the six sub-networks are
the same, only one of them is shown here (left).
doi:10.1371/journal.pone.0061533.g003

CNNcon
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respectively. Thus the length of the input coding vector becomes

218 (210z(1z3)|2).

To obtain local information of each residue, similar to [17], we

used two content windows of size 2 centered around i and j

(window of i: fi{2,i{1,i,iz1,iz2g, window of j:

fj{2,j{1,j,jz1,jz2g) respectively. That means that, for each

residue pair fi,jg, we incorporated information from all residues in

those two windows of five consecutive residues. Thus, the length of

the input coding vector was increased to 1090 (218|5).

Further, we introduced a segment window with size of 2 to code

information from the segment connecting i and j. For each residue

pair fi,jg, we incorporated information from all residues in the

window centered around k (k~i=2zj=2), which was the middle

position of i and j. Thus, the segment window spanned the interval

fk{2,k{1,k,kz1,kz2g) and the length of our input coding

vector again was added to 1744 (1090z218|3).

Finally, we used sequence separation, sequence length and

segment separation length to represent the global information

from the entire protein. The size of our input coding vector was

lastly set to 1747 (1744z3).

Data Sets
Data set used here for training and testing was extracted from

the March 2012 25% pdb_select list [34–37] with 5,300 chains

and 788,447 residues.

For the goal of algorithm design, we removed all protein chains

of non-X-ray determined structures, all chains with resolution

greater than 1.5 Å, all backbone broken chains (contain missing

backbone atoms in the PDB files), all chains containing non-

standard residues in its corresponding PDB files and all chains with

obsolete PDB ID (e.g. 3G62 is obsolete and replaced by 4F1U).

We reduced the data set further by excluding all protein chains

longer than 450 residues. Without loss of generality, all chains

shorter than 51 residues were removed as well. After above

processing, our final data set contains 1,103 chains (1,082 proteins)

and 192,640 residues.

As prediction performances greatly depend on protein length

distribution, here we give the protein length distribution of data set

to make assessment more reasonable. 7.25% of the proteins have

a length from 51 to 70 residues (sub-network 1), 8.16% comprise

from 71 to 90 residues (sub-network 2); 22.57% from 91 to 130

residues (sub-network 3); 26.84% from 131 to 190 residues (sub-

network 4); 22.76% from 191 to 290 residues (sub-network 5);

12.42% from 291 to 450 residues (sub-network 6). These

distributions are also the partitions of length range coverage of

sub-networks. That’s also why six sub-networks are needed in the

CNNcon method. The data set was split into six subsets according

to the above length range distributions. Each sub-network was

trained with 50 samples randomly selected from its corresponding

data set and tested by the remaining. We used all the six test

subsets (803 protein chains in total) to test the final cascaded

network.

Balanced Training
To address the extreme disproportion distribution of true

(contacts) and false (non-contacts) samples during the training

phase, we used balanced training to reduce back-propagation

learning cycles [38]. A balancing probability factor was also

introduced to further reduce the false samples and the whole

training data set size in a random way.
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