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of great interest in high-grade serous ovarian cancer. How-
ever, both spatial and temporal intratumoral genetic hetero-
geneity is a major challenge for personalized medicine, and 
greater knowledge of the molecular rules that drive tumor 
evolution through space and time is required to achieve a 
long-term clinical benefit from personalized therapy.
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Introduction

High-grade serous ovarian cancer (HGSOC), the most 
common and aggressive form of the epithelial ovarian 
cancer (EOC), remains the leading cause of cancer-related 
death among all gynecological cancers in the developed 
parts of the world [1, 2].

The majority of cases show a significant, but transient 
response to standard therapy including debulking surgery 
followed by platinum-based chemotherapy, and the devel-
opment of resistance is almost permanently inscribed in 
the clinical course of the disease [3]. Therefore, the emer-
gence of drug-resistant disease is a major problem in the 
clinical management of HGSOC, and in the context of the 
still unsatisfactory treatment outcomes, deciphering the 
molecular mechanisms that contribute to drug resistance 
is the greatest challenge in the area of HGSOC molecular 
research.

The last 5 years’ studies using next-generation sequenc-
ing provided evidences that many types of solid tumors 
present spatial and temporal genetic heterogeneity and 
are composed of multiple populations of genetically dis-
tinct subclones that evolve over time following a pattern of 
branched evolution in a similar manner to the Darwinian 
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evolution of species [4–9]. This evolutionary nature of 
cancer has been proposed as the major contributor to drug 
resistance and treatment failure [10].

In this review, we present the current state of knowledge 
about the clonal evolution (CE) of HGSOC and discuss the 
challenge that CE poses for efforts to achieve an optimal 
cancer control.

Genomic instability in HGSOC

Large-scale genomic analyses demonstrated that HGSOC 
exhibits a high degree of genomic instability (GI) arising 
as a result of DNA repair defects caused mainly by TP53 
mutations and homologous recombination (HR) deficiency, 
occurring in 96% and almost 50% of cases, respectively 
[11, 12]. During tumorigenesis GI promotes the acquisi-
tion of further DNA alterations leading to genetic diver-
sity between cancer cells and creating the possibility of 
coexistence of genetically distinct subclones within the 
same tumor [13]. Therefore, GI is a source of intratumoral 
genetic heterogeneity (ITH) and one of the most impor-
tant driving forces of CE. Subclones can benefit from GI 
by acquiring new genomic events that confer a selective 
advantage during ongoing evolution, thus a high level of GI 
is generally associated with emerging of treatment resist-
ance and poor prognosis in various cancer types [14–16]. 
However, a high degree of GI can also have an unfavora-
ble effect on the fitness of cancer subclones by enabling 
the acquisition of deleterious genomic alterations that pro-
vide a selective disadvantage [17] and, consequently, limit 
tumor growth, and/or increase tumor response to the cyto-
toxic therapy. This is particularly true for HGSOC, where 
the studies have shown that a greater level of GI is asso-
ciated with improved outcomes, mainly due to a higher 
response rate to platinum-based chemotherapy [18, 19]. It 
is consistent with clinical observations that HR-deficient 
cases with a highly unstable genome exhibit enhanced 
platinum sensitivity and improved overall survival (OS) 
compared to HR-intact cases [20]. Since HR deficiency 
is associated with better response to platinum agents, the 
restoration of BRCA1 and BRCA2 function is thought to 
play an important role in emerging of platinum resistance 
[21]. Recently, the large-scale genomic analysis of chem-
oresistant HGSOC, showed HR deficiency only in 2 out 
of 12 platinum-refractory cases (both as a consequence of 
the somatic methylation of BRCA1 which cannot be con-
sidered as an equivalent to germline mutation) while rever-
sions of germline BRCA1/2 mutations have been found 
in 5 out of 10 relapse cases. Moreover, one autopsy case 
was found to have several independent subclonal BRCA2 
reversion events detected in the different tumor metastatic 
sites at the time of relapse [12]. Therefore, it appears that in 

some HGSOC cases an optimal level of GI may be required 
to provide cancer subclones with the ability to survive and 
to expand under selective pressure of chemotherapy. Fur-
ther instability, may in turn be unfavorable for subclones 
leading to their increased chemosensitivity. This hypothesis 
is supported by a recent report demonstrating an increase 
in genomic stability within the residual subclones after the 
course of neoadjuvant chemotherapy [22]. Further studies 
should evaluate how various levels of GI, which are seen in 
HGSOC, affect the ITH, the tumor evolutionary potential 
and, ultimately, the tumor response to the treatment.

Clonal evolution of pre-treatment disease

To investigate clonal heterogeneity in HGSOC, Bashashati 
et  al. obtained 29 spatially separated samples from 5 
patients with newly diagnosed stage III–IV HGSOC [7]. 
Exome sequencing, copy number analysis, target amplicon 
deep sequencing and gene expression profiling confirmed 
the presence of extensive intratumoral genomic and tran-
scriptomic heterogeneity with TP53 mutation as the clon-
ally dominant key driver event acquired early in the tumo-
rigenesis. Importantly, alterations in key driver genes such 
as PIK3CA, CTNNB1, PDGFR, NF1, SH3GL1, RBM15 
were found to be subclonal, indicating that they have been 
acquired during tumor evolution and confirming that key 
driver events contributing to cancer initiation, progression 
and maintaince are not always clonally dominant (present 
in all cancer cells), but also can be present subclonally (pre-
sent only in a subset of cancer cells) [4, 5, 23]. These sub-
clonal mutations along with non-genetic factors can lead 
to a phenotypic diversity between cancer cells and provide 
the fitness advantage to subclones, reducing clinical benefit 
of cancer therapy [23, 24]. Indeed, some of the subclonal 
mutations found by Bashashati et al. were associated with 
alteration in gene expression profile supporting their role in 
shaping subclonal phenotypes and intratumoral phenotypic 
heterogeneity.

The results reported by Hoogstrat et al. [25] highlighted 
that the patterns of CE vary across HGSOC cases. These 
findings also suggest that CE may occur independently at 
the level of mutational processes as well as genomic rear-
rangements, and alterations in genomic rearragements may, 
independently from mutations, affect the intratumoral phe-
notypic diversity. They took 15 spatially separated samples 
from different tumor sites from 2 treatment-naive patients 
with stage IIIC–IV HGSOC. The first case showed exten-
sive genomic and transcriptomic intratumoral heterogene-
ity with most marked differences in the genomic rearrange-
ment, the gene expression profile and key cancer pathways 
activation between the samples from the primary tumor 
site in the ovary and those obtained from peritoneal and 
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omental metastases. However, the second case was found 
to be much more homogenous with respect to genomic 
rearrangement, mutational profile and gene expression pat-
tern. Importantly, in the first case there were no mutations 
unique to metastatic samples and all mutations identified 
in these samples were also found in samples from the right 
ovary. In the second case only two mutations were unique 
to the tumor metastatic site, whereas all other detected 
mutations were shared between all samples. This supports 
the results from the Lee et al. [26] case report and suggests 
that in some cases of pre-treatment HGSOC, intraperito-
neal metastases may arise with only a little accumulation of 
new somatic mutations.

Studies showed a rather consistent picture of HGSOC 
as a dynamic entity composed of multiple populations of 
genetically and phenotypically distinct subclones evolv-
ing from a single ancestral clone following patient-specific 
patterns of branched evolution [7, 25–27]. In the context 
of complex tumor structure it is most likely that the CE of 
untreated HGSOC is mainly driven by selective pressures 
imposed by highly heterogeneous (both spatially and tem-
porally) tumor microenvironment (TME) [28, 29]. Dur-
ing ongoing evolution, subclones are selected according 
to their fitness to survive in divergent microenvironmental 
conditions [29, 30]. Selection is based on the phenotypes 
and subclones that have phenotypic advantage in given 
environmental landscape undergo further clonal expansion 
[31]. Phenotypes are not, however, the permanent features 
of cancer cells and do not result solely from cell-autono-
mously acting factors [10, 32, 33]. Beyond genetic, epige-
netic, transcriptomic and proteomic factors, also variations 
in local microenvironmental niches may affect phenotypes 
of cancer cells and consequently influence their fitness [10, 
24, 29, 34]. These interactions are not, however, directed 
unilaterally and cancer cells can likewise modulate their 
microenvironments enforcing, e.g., dynamic changes in 
their own phenotypes [24, 35]. Therefore, the TME should 
be considered not simply as a “passive" source of various 
selection forces that promote certain phenotypes, but rather 
as a dynamic, complex structure actively affecting the path-
ways of cancer cell evolution.

It appears that in an advanced-stage HGSOC the pres-
ence of extensive phenotypic diversity as well as noticable 
differences in chemosensivity between cancer cells isolated 
from different tumor deposits [36] can be in part explained 
by divergent selective pressures acting on tumor cell sub-
populations in various metastatic niches. As clinical obser-
vations indicate that in advanced-stage EOC the initial 
disease distribution is prognostically relevant regardless of 
achieving a cytoreduction to microscopic residual disease 
(RD) [37], the role of microenvironmental conditions in 
given metastatic regions in selection or “storage” of resist-
ant subclones leading to tumor maintaince and progression 

should be evaluated in further studies. There is also a need 
to assess whether the metastatic niches in the given meta-
static organ are able to promote repeatable genotypes and 
phenotypes across different HGSOC cases.

The coexistence of genetically dissimilar subclones 
widespread within the three-dimensional (3D) tumor space 
can lead to interclonal interactions which are not limited, 
however, to a simple competition for space and resources 
during ongoing selection [32, 38–40]. As a recent study 
using mouse xenograft model of breast cancer suggests, the 
heterogeneous cancer cell population may include minor 
subclones too indolent to win a competition and grow out/
expand, but able to promote proliferation of other sub-
clones [32]. Along with the results of the study in glio-
blastoma [38], it supports the potentially relevant role of 
minor subclonal populations in driving cancer growth and 
maintaining tumor heterogeneity. Moreover, a study based 
on transgenic mouse model of multiple myeloma suggests 
that the inability of minor subclones to compete efficiently 
does not necessarily lead to their exclusion from the can-
cer cell population by more agressive subclones. Dominant 
subclones may indeed supress minor subclones, but they 
also may coexist with them or even promote their prolif-
eration [40]. These findings shed new light on the role of 
interclonal interactions in cancer evolution and provide 
additional evidence to perceive tumor as a complex topo-
logical “ecosystem” rather than a simple mass of trans-
formed epithelial cells. Recently, several studies revealed 
that 3D models of EOC cell lines that reconstitute complex 
tumor architecture better reflect cancer cells behavior and 
their potential for emergence of resistance than two-dimen-
sional models [41–43] supporting the impact both cell–cell 
and cell–stroma interactions on EOC biology. Due to the 
subclonal complexity of HGSOC, further studies should 
evaluate whether interclonal interactions have a relevant 
effect on tumor evolution prior to the treatment, on tumor 
response to the treatment, as well as on the development 
of platinum-resistant and, especially, platinum-sensitive 
recurrence [44].

HGSOC evolution during the course of treatment

The emergence of treatment resistance followed by initial 
response to standard therapy resulting in tumor relapse 
remains a main clinical problem in the management of 
most HGSOC cases reducing the possibility to cure the 
advanced-stage disease [3, 45].

For heterogeneous tumor cell population, cancer therapy 
constitutes a selection pressure widely affecting the pat-
terns of tumor evolution [10]. Beyond mechanical and/
or cytotoxic eradication of sensitive subclones, treatment-
related selection forces can also favor the expansion of 
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subclones genetically and/or phenotypically best adapted 
to therapy-induced conditions leading to dynamic changes 
in the subclonal composition of cancer [46–48]. It should 
be noted, however, that because of the existence of a struc-
tural complexity of the tumor, the adaptive changes in the 
tumor subclonal architecture that occur during the course 
of treatment probably are not determined solely by the 
direct effect of cancer therapy on cancer cell vitality, but 
also by its impact on TME [49], and by its interference into 
the clonal competition or, in a broader sense, into the inter-
clonal interactions [48].

HGSOC evolution over the course of treatment have 
been analyzed in several studies. Recently, paired tumor 
samples taken before and after first line of platinum-based 
chemotherapy have been compared using whole-exome 
sequencing (WES) and single nucleotide polymorphism 
profiling [50]. While only 58% of somatic mutations were 
conserved between matched tumor biopsies, 27 and 15% 
of them were found to be relapse- and primary-unique, 
indicating the existence of substantial genetic heterogene-
ity between primary and recurrent tumors. The majority of 
tumor pairs demonstrated complex clonal dynamics, with 
some of the subclonal mutations increasing and another 
decreasing in frequency between primary and relapse sam-
ples. Although all but four biopsies contained subclonal 
mutations, its frequency was relatively low suggesting a 
rather oligoclonal than policlonal nature of HGSOC. It 
should be emphasized here that the clonality analysis of 
a single tumor biopsy is restricted to the biopsy taken for 
analysis; therefore, it does not reflect the full spectrum of 
tumor subclonality (sampling-bias) [51]. Moreover, cur-
rently used sequencing strategies have a limited ability [52] 
to detect low prevalent subclones, hence a real subclonal 
complexity of HGSOC may be underestimated. Therefore, 
further studies should use more precise sequencing strate-
gies, such as a single cell sequencing, able to identify low 
prevalent subclones and, consequently, providing a full 
insight into the spatial subclonal composition of HGSOC 
and its evolution over time [53].

Branched CE in the progression of HGSOC from pri-
mary to reccurent disease has also been indicated by a 
case study using WES and comparative genome hybridisa-
tion to compare samples taken during debulking surgery 
first at initial diagnosis and second at disease relapse after 
treatment with platinum-based chemotherapy in combina-
tion with bevacizumab [54]. Only 42 out of 102 somatic 
mutations were common to all samples collected whereas 
21/102, 10/102 and 7/102 were unique to biopsies obtained 
from primary tumor, intra-pelvic and extra-pelvic recur-
rence, respectively. Even lower levels of concordance 
between the primary and the relapsed disease have been 
reported recently by two other studies using targeted re-
sequencing technology to compare mutational landscape 

in terms of 65 selected pharmacologically relevant genes 
between tumor samples taken before and after treatment 
with at least one line of chemotherapy [55, 56]. As one of 
these studies showed, the clonal architecture of recurrent 
tumors was more homogeneous than their primary counter-
parts suggesting that during ongoing evolution the majority 
of the somatic mutations were eliminated from cancer cell 
population by selective forces imposed by cancer therapy 
[56].

Studies provided consistent evidence that HGSOC con-
tinues evolution during the course of treatment follow-
ing highly individual patterns of CE [50, 54–56]. To date, 
however, little is known about how the differences in the 
evolutionary potentials of the tumors affect the clinical 
outcomes. In a recent paper, 135 samples from 14 patients 
with advanced-stage HGSOC, who received platinum-
based chemotherapy, were analyzed to evaluate the rela-
tionship between ITH and survival [27]. ITH was quantified 
as the degree of clonal expansion using the novel MEDICC 
(Minimum Event Distance for Intra-tumour Copy Number 
Comparisons) algorithm. As expected, the degree of clonal 
expansion differed considerably between patients, con-
firming earlier conclusions that HGSOC exhibits patient-
specific ITH [7, 25, 50]. Importantly, patients with higher 
clonal expansion had shorter progression-free and OS com-
pared to those with low clonal expansion, suggesting that 
highly heterogeneous polygenomic tumors have a greater 
predisposition to acquire treatment resistance, and, there-
fore, are characterized by poorer outcomes.

All studies that have monitored HGSOC evolution over 
the course of treatment consistently suggest that tumor 
relapse originates from drug-resistant subclone/s originally 
present in the primary tumor that expand under selective 
pressure of therapeutic intervention [27, 50, 54–56]. In 
contrast to some other cytotoxic drugs, such as temozolo-
mide [57], there are no evidences that the mutagenic activ-
ity of platinum could result in the generation of resistance 
de novo [12, 27, 50], implying that the role of platinum-
based chemotherapy in the arising of treatment resistance 
in HGSOC is limited to the selection of already present 
resistant subclones.

The fact that in all cases adjuvant chemotherapy failed 
to destroy resistant subclones [27, 50, 54–56] highlights 
that the primary cytoreductive surgery carried out pre-
cisely is essential in the management of HGSOC. From 
the HGSOC heterogeneity point of view, malignant lesions 
should be removed to the greatest extent possible to achieve 
long-term clinical benefits from the applied therapy. Other-
wise, minor resistant subclonal populations preoperatively 
widely distributed in tumor space may persist in the RD 
contributing to the rapid development of chemoresistance. 
It is clearly reflected by clinical observations indicating 
that the amount of RD left after primary surgery is a major 
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prognostic factor for survival in patients with EOC and the 
probability of emergence of resistance increases and the 
time to resistance decreases with the volume of RD [58, 
59]. Since RD should be regarded as a reservoir of resist-
ant subclones, the current efforts to reduce its amount by 
allowing resection of additional malignant tissue that nor-
mally remains invisible during surgery represent a very 
promising way to optimize therapy [60].

Conclusions and future directions

Advances in sequencing techniques have allowed us to look 
into the evolutionary nature of HGSOC, which in the light 
of current evidences can explain the relapsing course of 
the disease observed in clinical practice. Since only mini-
mal improvement in the survival of patients treated with 
standard therapy has been observed in the last decade, 
novel molecular targeted therapies are of great interest in 
HGSOC [61]. However, both spatial and temporal ITH 
pose a major challenge for personalized medicine [62], and 
greater knowledge of the molecular rules that drive tumor 
evolution through space and time is required to achieve a 
long-term clinical benefit from personalized therapy.

Since growing amount of evidence suggests that 
HGSOC relapse arises from outgrowth of pre-existing 
drug-resistant subclonal populations, further integrative 
genomic and phenotypic analyses using precise sequencing 
techniques should be carried out to define the molecular 
and genotypic signatures of resistant subclones. These data, 
respectively cataloged, could be used to evaluate the differ-
ences in the resistance patterns between individual patients 
and also could serve as a starting point for the design of 
novel therapeutic strategies. Further pre-clinical studies 
should give answer to a number of intriguing questions: 
(1) when do resistant subclones arise during the HGSOC 
evolution? (2) Whether they are distributed randomly or 
stochastically within the primary tumor? (3) What types of 
functional relationships do link them with dominant clones 
and surrounding non-malignant cells? (4) What is the role 
of microenvironmental niches in their selection or storage? 
(5) Whether their genotypes or phenotypes have a decisive 
influence on their positive selection? (6) Whether they are 
able to lead to recurrence autonomously or need support 
from the surrounding cells?

Personalized medicine requires tools to provide precise 
data on the subclonal composition of a patient’s tumor at 
the time of diagnosis, and which will also allow for regular 
tracking of its changes in relation to the therapeutic inter-
vention [63]. With the knowledge of how the subclonal 
composition of tumor changes under therapy, we will be 
able to set the combined or sequential treatment that can 
prevent selection of resistant subclones [64]. Therefore, 

more emphasis should be placed on the improvement of 
non-invasive approaches like the circulating plasma cell-
free DNA sequencing whose usefulness in determining 
HGSOC subclonality has been recently demonstrated [65, 
66].

Although existing evidences suggest that HGSOC dis-
plays highly individual patterns of CE, they are based on 
a relatively small number of cases. Therefore, further 
genomic analyses on representative groups of cases at dif-
ferent clinical stages should assess to what extent patterns 
of evolution are reproducible between patients and to what 
extent they are predictable in individual patients.

Heterogeneity is a hallmark of HGSOC. It must, there-
fore, be taken into account during efforts to improve effi-
ciency of standard therapy, as well as during design of 
novel personalized therapeutic strategies.

Compliance with ethical standards 

Confict of interest Author Aleksander Salomon-Perzyński declares 
that he has no conflict of interest. Author Magdalena Salomon-
Perzyńska declares that she has no conflict of interest. Author Bogdan 
Michalski declares that he has no conflict of interest. Author Violetta 
Skrzypulec-Plinta declares that she has no conflict of interest.

Funding This article was not funded by any funding body.

Open Access This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

 1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo 
M, Parkin DM, Forman D, Bray F (2015) Cancer incidence 
and mortality worldwide: sources, methods and major pat-
terns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. 
doi:10.1002/ijc.29210

 2. Bowtell DD (2010) The genesis and evolution of high-grade 
serous ovarian cancer. Nat Rev Cancer 10(11):803–808. 
doi:10.1038/nrc2946

 3. Cooke SL, Brenton JD (2011) Evolution of platinum resistance 
in high-grade serous ovarian cancer. Lancet Oncol 12(12):1169–
1174. doi:10.1016/s1470-2045(11)70123-1

 4. de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, 
Yates L, Jamal-Hanjani M, Shafi S, Murugaesu N, Rowan AJ, 
Gronroos E, Muhammad MA, Horswell S, Gerlinger M, Varela 
I, Jones D, Marshall J, Voet T, Van Loo P, Rassl DM, Rintoul 
RC, Janes SM, Lee SM, Forster M, Ahmad T, Lawrence D, 
Falzon M, Capitanio A, Harkins TT, Lee CC, Tom W, Teefe E, 
Chen SC, Begum S, Rabinowitz A, Phillimore B, Spencer-Dene 
B, Stamp G, Szallasi Z, Matthews N, Stewart A, Campbell P, 
Swanton C (2014) Spatial and temporal diversity in genomic 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1002/ijc.29210
http://dx.doi.org/10.1038/nrc2946
http://dx.doi.org/10.1016/s1470-2045(11)70123-1


574 Arch Gynecol Obstet (2017) 295:569–576

1 3

instability processes defines lung cancer evolution. Science 
346(6206):251–256. doi:10.1126/science.1253462

 5. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela 
I, Fisher R, McGranahan N, Matthews N, Santos CR, Martinez P, 
Phillimore B, Begum S, Rabinowitz A, Spencer-Dene B, Gulati 
S, Bates PA, Stamp G, Pickering L, Gore M, Nicol DL, Hazell 
S, Futreal PA, Stewart A, Swanton C (2014) Genomic architec-
ture and evolution of clear cell renal cell carcinomas defined by 
multiregion sequencing. Nat Genet 46(3):225–233. doi:10.1038/
ng.2891

 6. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, 
Stebbings LA, Morsberger LA, Latimer C, McLaren S, Lin ML, 
McBride DJ, Varela I, Nik-Zainal SA, Leroy C, Jia M, Men-
zies A, Butler AP, Teague JW, Griffin CA, Burton J, Swerdlow 
H, Quail MA, Stratton MR, Iacobuzio-Donahue C, Futreal PA 
(2010) The patterns and dynamics of genomic instability in 
metastatic pancreatic cancer. Nature 467(7319):1109–1113. 
doi:10.1038/nature09460

 7. Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, Ros-
ner J, Shumansky K, Kalloger S, Senz J, Yang W, McConechy 
M, Melnyk N, Anglesio M, Luk MT, Tse K, Zeng T, Moore R, 
Zhao Y, Marra MA, Gilks B, Yip S, Huntsman DG, McAlpine 
JN, Shah SP (2013) Distinct evolutionary trajectories of primary 
high-grade serous ovarian cancers revealed through spatial muta-
tional profiling. J Pathol 231(1):21–34. doi:10.1002/path.4230

 8. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence 
MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, 
Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy 
J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M, Getz 
G, Golub TR (2014) Widespread genetic heterogeneity in mul-
tiple myeloma: implications for targeted therapy. Cancer Cell 
25(1):91–101. doi:10.1016/j.ccr.2013.12.015

 9. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, 
Marioni JC, Curtis C, Watts C, Tavare S (2013) Intratumor 
heterogeneity in human glioblastoma reflects cancer evolution-
ary dynamics. Proc Natl Acad Sci USA 110(10):4009–4014. 
doi:10.1073/pnas.1219747110

 10. Burrell RA, Swanton C (2014) Tumour heterogeneity and the 
evolution of polyclonal drug resistance. Mol Oncol 8(6):1095–
1111. doi:10.1016/j.molonc.2014.06.005

 11. Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, Dhir 
R, DiSaia P, Gabra H, Glenn P, Godwin AK, Gross J, Hartmann 
L, Huang M, Huntsman DG, Iacocca M, Imielinski M, Kallo-
ger S, Karlan BY, Levine DA, Mills GB, Morrison C, Mutch D, 
Olvera N, Orsulic S, Park K, Petrelli N, Rabeno B, Rader JS, 
Sikic BI, Smith-McCune K, Sood AK, Bowtell D, Penny R, Testa 
JR, Chang K, Dinh HH, Drummond JA, Fowler G, Gunaratne 
P, Hawes AC, Kovar CL, Lewis LR, Morgan MB, Newsham IF, 
Santibanez J, Reid JG, Trevino LR, Wu YQ, Wang M, Muzny 
DM, Wheeler DA, Gibbs RA, Getz G, Lawrence MS, Cibulskis 
K, Sivachenko AY, Sougnez C, Voet D, Wilkinson J, Bloom 
T, Ardlie K, Fennell T, Baldwin J, Gabriel S, Lander ES, Ding 
LL, Fulton RS, Koboldt DC, McLellan MD, Wylie T, Walker 
J, O’Laughlin M, Dooling DJ, Fulton L, Abbott R, Dees ND, 
Zhang Q, Kandoth C, Wendl M, Schierding W, Shen D, Harris 
CC, Schmidt H, Kalicki J, Delehaunty KD, Fronick CC, Demeter 
R, Cook L, Wallis JW, Lin L, Magrini VJ, Hodges JS, Eldred 
JM, Smith SM, Pohl CS, Vandin F, Raphael BJ, Weinstock 
GM, Mardis ER, Wilson RK, Meyerson M, Winckler W, Getz 
G, Verhaak RG, Carter SL, Mermel CH, Saksena G, Nguyen H, 
Onofrio RC, Lawrence MS, Hubbard D, Gupta S, Crenshaw A, 
Ramos AH, Ardlie K, Chin L, Protopopov A, Zhang J, Kim TM, 
Perna I, Xiao Y, Zhang H, Ren G, Sathiamoorthy N, Park RW, 
Lee E, Park PJ, Kucherlapati R, Absher M, Waite L, Sherlock G, 
Brooks JD, Li JZ, Xu J, Myers RM, Laird W, Cope L, Herman 
JG, Shen H, Weisenberger DJ, Noushmehr H, Pan F, Triche T Jr, 

Berman BP, Van Den Berg DJ, Buckley J, Baylin SB, Spellman 
PT, Purdom E, Neuvial P, Bengtsson H, Jakkula LR, Durinck S, 
Han J, Dorton S, Marr H, Choi YG, Wang V, Wang NJ, Ngai J, 
Conboy JG, Parvin B, Feiler HS, Speed TP, Gray JW, Levine A, 
Socci ND, Liang Y, Taylor BS, Schultz N, Borsu L, Lash AE, 
Brennan C, Viale A, Sander C, Ladanyi M, Hoadley KA, Meng 
S, Du Y, Shi Y, Li L, Turman YJ, Zang D, Helms EB, Balu S, 
Zhou X, Wu J, Topal MD, Hayes DN, Perou CM, Getz G, Voet 
D, Saksena G, Zhang J, Zhang H, Wu CJ, Shukla S, Cibulskis K, 
Lawrence MS, Sivachenko A, Jing R, Park RW, Liu Y, Park PJ, 
Noble M, Chin L, Carter H, Kim D, Karchin R, Spellman PT, 
Purdom E, Neuvial P, Bengtsson H, Durinck S, Han J, Korkola 
JE, Heiser LM, Cho RJ, Hu Z, Parvin B, Speed TP, Gray JW, 
Schultz N, Cerami E, Taylor BS, Olshen A, Reva B, Antipin Y, 
Shen R, Mankoo P, Sheridan R, Ciriello G, Chang WK, Ber-
nanke JA, Borsu L, Levine DA, Ladanyi M, Sander C, Haussler 
D, Benz CC, Stuart JM, Benz SC, Sanborn JZ, Vaske CJ, Zhu J, 
Szeto C, Scott GK, Yau C, Hoadley KA, Du Y, Balu S, Hayes 
DN, Perou CM, Wilkerson MD, Zhang N, Akbani R, Baggerly 
KA, Yung WK, Mills GB, Weinstein JN, Penny R, Shelton T, 
Grimm D, Hatfield M, Morris S, Yena P, Rhodes P, Sherman 
M, Paulauskis J, Millis S, Kahn A, Greene JM, Sfeir R, Jensen 
MA, Chen J, Whitmore J, Alonso S, Jordan J, Chu A, Zhang J, 
Barker A, Compton C, Eley G, Ferguson M, Fielding P, Gerhard 
DS, Myles R, Schaefer C, Mills Shaw KR, Vaught J, Vockley 
JB, Good PJ, Guyer MS, Ozenberger B, Peterson J, Thomson 
E (2011) Integrated genomic analyses of ovarian carcinoma. 
Nature 474(7353):609–615. doi:10.1038/nature10166

 12. Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, 
George J, Fereday S, Nones K, Cowin P, Alsop K, Bailey PJ, 
Kassahn KS, Newell F, Quinn MC, Kazakoff S, Quek K, Wil-
helm-Benartzi C, Curry E, Leong HS, Hamilton A, Mileshkin 
L, Au-Yeung G, Kennedy C, Hung J, Chiew YE, Harnett P, 
Friedlander M, Quinn M, Pyman J, Cordner S, O’Brien P, 
Leditschke J, Young G, Strachan K, Waring P, Azar W, Mitch-
ell C, Traficante N, Hendley J, Thorne H, Shackleton M, 
Miller DK, Arnau GM, Tothill RW, Holloway TP, Semple T, 
Harliwong I, Nourse C, Nourbakhsh E, Manning S, Idrisoglu 
S, Bruxner TJ, Christ AN, Poudel B, Holmes O, Anderson 
M, Leonard C, Lonie A, Hall N, Wood S, Taylor DF, Xu Q, 
Fink JL, Waddell N, Drapkin R, Stronach E, Gabra H, Brown 
R, Jewell A, Nagaraj SH, Markham E, Wilson PJ, Ellul J, 
McNally O, Doyle MA, Vedururu R, Stewart C, Lengyel E, 
Pearson JV, Waddell N, deFazio A, Grimmond SM, Bowtell 
DD (2015) Whole-genome characterization of chemoresist-
ant ovarian cancer. Nature 521(7553):489–494. doi:10.1038/
nature14410

 13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next 
generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

 14. Lee AJ, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, 
Futreal PA, Downward J, Szallasi Z, Tomlinson IP, Howell M, 
Kschischo M, Swanton C (2011) Chromosomal instability con-
fers intrinsic multidrug resistance. Cancer Res 71(5):1858–1870. 
doi:10.1158/0008-5472.can-10-3604

 15. Bakhoum SF, Danilova OV, Kaur P, Levy NB, Compton DA 
(2011) Chromosomal instability substantiates poor prognosis in 
patients with diffuse large B-cell lymphoma. Clin Cancer Res 
17(24):7704–7711. doi:10.1158/1078-0432.ccr-11-2049

 16. Morris LG, Riaz N, Desrichard A, Senbabaoglu Y, Hakimi 
AA, Makarov V, Reis-Filho JS, Chan TA (2016) Pan-cancer 
analysis of intratumor heterogeneity as a prognostic determi-
nant of survival. Oncotarget 7(9):10051–10063. doi:10.18632/
oncotarget.7067

 17. Turner NC, Reis-Filho JS (2012) Genetic heterogeneity and can-
cer drug resistance. Lancet Oncol 13(4):e178–e185. doi:10.1016/
s1470-2045(11)70335-7

http://dx.doi.org/10.1126/science.1253462
http://dx.doi.org/10.1038/ng.2891
http://dx.doi.org/10.1038/ng.2891
http://dx.doi.org/10.1038/nature09460
http://dx.doi.org/10.1002/path.4230
http://dx.doi.org/10.1016/j.ccr.2013.12.015
http://dx.doi.org/10.1073/pnas.1219747110
http://dx.doi.org/10.1016/j.molonc.2014.06.005
http://dx.doi.org/10.1038/nature10166
http://dx.doi.org/10.1038/nature14410
http://dx.doi.org/10.1038/nature14410
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1158/0008-5472.can-10-3604
http://dx.doi.org/10.1158/1078-0432.ccr-11-2049
http://dx.doi.org/10.18632/oncotarget.7067
http://dx.doi.org/10.18632/oncotarget.7067
http://dx.doi.org/10.1016/s1470-2045(11)70335-7
http://dx.doi.org/10.1016/s1470-2045(11)70335-7


575Arch Gynecol Obstet (2017) 295:569–576 

1 3

 18. Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, 
Tan P, Tan IB, Richardson AL, Szallasi Z, Swanton C (2011) 
Paradoxical relationship between chromosomal instability and 
survival outcome in cancer. Cancer Res 71(10):3447–3452. 
doi:10.1158/0008-5472.can-10-3667

 19. Baumbusch LO, Helland A, Wang Y, Liestol K, Schaner ME, 
Holm R, Etemadmoghadam D, Alsop K, Brown P, Mitchell 
G, Fereday S, DeFazio A, Bowtell DD, Kristensen GB, Ling-
jaerde OC, Borresen-Dale AL (2013) High levels of genomic 
aberrations in serous ovarian cancers are associated with bet-
ter survival. PLoS One 8(1):e54356. doi:10.1371/journal.
pone.0054356

 20. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, 
Rendi MH, Thornton A, Norquist BM, Casadei S, Nord AS, 
Agnew KJ, Pritchard CC, Scroggins S, Garcia RL, King 
MC, Swisher EM (2014) Germline and somatic mutations in 
homologous recombination genes predict platinum response 
and survival in ovarian, fallopian tube, and peritoneal carcino-
mas. Clin Cancer Res 20(3):764–775. doi:10.1158/1078-0432.
ccr-13-2287

 21. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai 
W, Karlan BY, Taniguchi T, Swisher EM (2011) Secondary 
somatic mutations restoring BRCA1/2 predict chemotherapy 
resistance in hereditary ovarian carcinomas. J Clin Oncol 
29(22):3008–3015. doi:10.1200/jco.2010.34.2980

 22. Leary A, Genestie C, Adam J, Le Formal A, Pautier P, 
Lhomme C, Auguste A (2015) Genomic profile and immune 
infiltrate in paired ovarian cancer (OC) samples pre-and post-
neoadjuvant chemotherapy (NC). In: ASCO Annual Meeting 
Proceedings, vol 15(suppl), p 5575

 23. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi 
Z, Swanton C (2015) Clonal status of actionable driver events 
and the timing of mutational processes in cancer evolution. 
Sci Transl Med 7(283):283ra254. doi:10.1126/scitranslmed.
aaa1408

 24. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 
481(7381):306–313. doi:10.1038/nature10762

 25. Hoogstraat M, de Pagter MS, Cirkel GA, van Roosmalen MJ, 
Harkins TT, Duran K, Kreeftmeijer J, Renkens I, Witteveen PO, 
Lee CC, Nijman IJ, Guy T, van ‘t Slot R, Jonges TN, Lolkema 
MP, Koudijs MJ, Zweemer RP, Voest EE, Cuppen E, Kloost-
erman WP (2014) Genomic and transcriptomic plasticity in 
treatment-naive ovarian cancer. Genome Res 24(2):200–211. 
doi:10.1101/gr.161026.113

 26. Lee JY, Yoon JK, Kim B, Kim S, Kim MA, Lim H, Bang D, 
Song YS (2015) Tumor evolution and intratumor heteroge-
neity of an epithelial ovarian cancer investigated using next-
generation sequencing. BMC Cancer 15:85. doi:10.1186/
s12885-015-1077-4

 27. Schwarz RF, Ng CK, Cooke SL, Newman S, Temple J, Piskorz 
AM, Gale D, Sayal K, Murtaza M, Baldwin PJ, Rosenfeld N, 
Earl HM, Sala E, Jimenez-Linan M, Parkinson CA, Markowetz 
F, Brenton JD (2015) Spatial and temporal heterogeneity in high-
grade serous ovarian cancer: a phylogenetic analysis. PLoS Med 
12(2):e1001789. doi:10.1371/journal.pmed.1001789

 28. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-
environment heterogeneity on therapeutic response. Nature 
501(7467):346–354. doi:10.1038/nature12626

 29. Mumenthaler SM, Foo J, Choi NC, Heise N, Leder K, Agus DB, 
Pao W, Michor F, Mallick P (2015) The impact of microenvi-
ronmental heterogeneity on the evolution of drug resistance in 
cancer cells. Cancer Inform 14(Suppl 4):19–31. doi:10.4137/cin.
s19338

 30. Heindl A, Nawaz S, Yuan Y (2015) Mapping spatial heterogene-
ity in the tumor microenvironment: a new era for digital pathol-
ogy. Lab Invest 95(4):377–384. doi:10.1038/labinvest.2014.155

 31. Aparicio S, Caldas C (2013) The implications of clonal 
genome evolution for cancer medicine. N Engl J Med 
368(9):842–851. doi:10.1056/NEJMra1204892

 32. Marusyk A, Tabassum DP, Altrock PM, Almendro V, 
Michor F, Polyak K (2014) Non-cell-autonomous driving 
of tumour growth supports sub-clonal heterogeneity. Nature 
514(7520):54–58. doi:10.1038/nature13556

 33. Cassidy JW, Caldas C, Bruna A (2015) Maintaining tumor 
heterogeneity in patient-derived tumor xenografts. Cancer Res 
75(15):2963–2968. doi:10.1158/0008-5472.can-15-0727

 34. Caiado F, Silva-Santos B, Norell H (2016) Intra-tumour het-
erogeneity—going beyond genetics. FEBS J 283(12):2245–
2258. doi:10.1111/febs.13705

 35. Tape CJ, Ling S, Dimitriadi M, McMahon KM, Worboys JD, 
Leong HS, Norrie IC, Miller CJ, Poulogiannis G, Lauffen-
burger DA, Jorgensen C (2016) Oncogenic KRAS regu-
lates tumor cell signaling via stromal reciprocation. Cell 
165(4):910–920. doi:10.1016/j.cell.2016.03.029

 36. Fotopoulou C, Cunnea P, Rama NR, Wulandari R, Gorgy T, 
Gabra H, Stronach EA (2015) Characterising phenotypically 
relevant intratumoural heterogeneity in high grade serous ovar-
ian cancer. In: ASCO Annual Meeting Proceedings, vol 15_
suppl, p e16569

 37. Hamilton CA, Miller A, Miller C, Krivak TC, Farley JH, 
Chernofsky MR, Stany MP, Rose GS, Markman M, Ozols RF, 
Armstrong DK, Maxwell GL (2011) The impact of disease 
distribution on survival in patients with stage III epithelial 
ovarian cancer cytoreduced to microscopic residual: a Gyneco-
logic Oncology Group study. Gynecol Oncol 122(3):521–526. 
doi:10.1016/j.ygyno.2011.04.041

 38. Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW, Vanden-
berg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, Tan P, 
Depinho RA, Cavenee W, Furnari F (2010) Tumor heterogene-
ity is an active process maintained by a mutant EGFR-induced 
cytokine circuit in glioblastoma. Genes Dev 24(16):1731–
1745. doi:10.1101/gad.1890510

 39. Cleary AS, Leonard TL, Gestl SA, Gunther EJ (2014) Tumour 
cell heterogeneity maintained by cooperating subclones in 
Wnt-driven mammary cancers. Nature 508(7494):113–117. 
doi:10.1038/nature13187

 40. Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, Tiede-
mann R, Valdez R, Palmer SE, Haas SS, Stewart AK, Fonseca 
R, Kremer R, Cattoretti G, Bergsagel PL (2008) AID-depend-
ent activation of a MYC transgene induces multiple mye-
loma in a conditional mouse model of post-germinal center 
malignancies. Cancer Cell 13(2):167–180. doi:10.1016/j.
ccr.2008.01.007

 41. Lee JM, Mhawech-Fauceglia P, Lee N, Parsanian LC, Lin YG, 
Gayther SA, Lawrenson K (2013) A three-dimensional microen-
vironment alters protein expression and chemosensitivity of epi-
thelial ovarian cancer cells in  vitro. Lab Invest 93(5):528–542. 
doi:10.1038/labinvest.2013.41

 42. Zietarska M, Maugard CM, Filali-Mouhim A, Alam-Fahmy M, 
Tonin PN, Provencher DM, Mes-Masson AM (2007) Molecu-
lar description of a 3D in  vitro model for the study of epithe-
lial ovarian cancer (EOC). Mol Carcinog 46(10):872–885. 
doi:10.1002/mc.20315

 43. Yang Z, Zhao X (2011) A 3D model of ovarian cancer cell lines 
on peptide nanofiber scaffold to explore the cell-scaffold interac-
tion and chemotherapeutic resistance of anticancer drugs. Int J 
Nanomed 6:303–310. doi:10.2147/ijn.s15279

 44. Chien J, Kuang R, Landen C, Shridhar V (2013) Platinum-sen-
sitive recurrence in ovarian cancer: the role of tumor microenvi-
ronment. Front Oncol 3:251. doi:10.3389/fonc.2013.00251

 45. Narod S (2016) Can advanced-stage ovarian cancer be cured? Nat 
Rev Clin Oncol 13(4):255–261. doi:10.1038/nrclinonc.2015.224

http://dx.doi.org/10.1158/0008-5472.can-10-3667
http://dx.doi.org/10.1371/journal.pone.0054356
http://dx.doi.org/10.1371/journal.pone.0054356
http://dx.doi.org/10.1158/1078-0432.ccr-13-2287
http://dx.doi.org/10.1158/1078-0432.ccr-13-2287
http://dx.doi.org/10.1200/jco.2010.34.2980
http://dx.doi.org/10.1126/scitranslmed.aaa1408
http://dx.doi.org/10.1126/scitranslmed.aaa1408
http://dx.doi.org/10.1038/nature10762
http://dx.doi.org/10.1101/gr.161026.113
http://dx.doi.org/10.1186/s12885-015-1077-4
http://dx.doi.org/10.1186/s12885-015-1077-4
http://dx.doi.org/10.1371/journal.pmed.1001789
http://dx.doi.org/10.1038/nature12626
http://dx.doi.org/10.4137/cin.s19338
http://dx.doi.org/10.4137/cin.s19338
http://dx.doi.org/10.1038/labinvest.2014.155
http://dx.doi.org/10.1056/NEJMra1204892
http://dx.doi.org/10.1038/nature13556
http://dx.doi.org/10.1158/0008-5472.can-15-0727
http://dx.doi.org/10.1111/febs.13705
http://dx.doi.org/10.1016/j.cell.2016.03.029
http://dx.doi.org/10.1016/j.ygyno.2011.04.041
http://dx.doi.org/10.1101/gad.1890510
http://dx.doi.org/10.1038/nature13187
http://dx.doi.org/10.1016/j.ccr.2008.01.007
http://dx.doi.org/10.1016/j.ccr.2008.01.007
http://dx.doi.org/10.1038/labinvest.2013.41
http://dx.doi.org/10.1002/mc.20315
http://dx.doi.org/10.2147/ijn.s15279
http://dx.doi.org/10.3389/fonc.2013.00251
http://dx.doi.org/10.1038/nrclinonc.2015.224


576 Arch Gynecol Obstet (2017) 295:569–576

1 3

 46. Melchardt T, Hufnagl C, Weinstock DM, Kopp N, Neureiter 
D, Trankenschuh W, Hackl H, Weiss L, Rinnerthaler G, Hart-
mann TN, Greil R, Weigert O, Egle A (2016) Clonal evolu-
tion in relapsed and refractory diffuse large B-cell lymphoma 
is characterized by high dynamics of subclones. Oncotarget. 
doi:10.18632/oncotarget.9860

 47. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch 
JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD, 
McMichael JF, Wallis JW, Lu C, Shen D, Harris CC, Dooling 
DJ, Fulton RS, Fulton LL, Chen K, Schmidt H, Kalicki-Veizer 
J, Magrini VJ, Cook L, McGrath SD, Vickery TL, Wendl MC, 
Heath S, Watson MA, Link DC, Tomasson MH, Shannon WD, 
Payton JE, Kulkarni S, Westervelt P, Walter MJ, Graubert TA, 
Mardis ER, Wilson RK, DiPersio JF (2012) Clonal evolu-
tion in relapsed acute myeloid leukaemia revealed by whole-
genome sequencing. Nature 481(7382):506–510. doi:10.1038/
nature10738

 48. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson 
K, Lawrence MS, Sougnez C, Stewart C, Sivachenko A, Wang 
L, Wan Y, Zhang W, Shukla SA, Vartanov A, Fernandes SM, 
Saksena G, Cibulskis K, Tesar B, Gabriel S, Hacohen N, Mey-
erson M, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ 
(2013) Evolution and impact of subclonal mutations in chronic 
lymphocytic leukemia. Cell 152(4):714–726. doi:10.1016/j.
cell.2013.01.019

 49. Skolekova S, Matuskova M, Bohac M, Toro L, Durinikova E, 
Tyciakova S, Demkova L, Gursky J, Kucerova L (2016) Cispl-
atin-induced mesenchymal stromal cells-mediated mechanism 
contributing to decreased antitumor effect in breast cancer cells. 
Cell Commun Signal CCS 14:4. doi:10.1186/s12964-016-0127-0

 50. Lambrechts S, Smeets D, Moisse M, Braicu EI, Vander-
stichele A, Zhao H, Van Nieuwenhuysen E, Berns E, Sehouli J, 
Zeillinger R, Darb-Esfahani S, Cacsire Castillo-Tong D, Lam-
brechts D, Vergote I (2016) Genetic heterogeneity after first-line 
chemotherapy in high-grade serous ovarian cancer. Eur J Cancer 
53:51–64. doi:10.1016/j.ejca.2015.11.001

 51. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, 
Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Var-
ela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones 
D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, 
Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szal-
lasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor 
heterogeneity and branched evolution revealed by multiregion 
sequencing. N Engl J Med 366(10):883–892. doi:10.1056/
NEJMoa1113205

 52. Griffith M, Miller CA, Griffith OL, Krysiak K, Skidmore ZL, 
Ramu A, Walker JR, Dang HX, Trani L, Larson DE, Demeter 
RT, Wendl MC, McMichael JF, Austin RE, Magrini V, McGrath 
SD, Ly A, Kulkarni S, Cordes MG, Fronick CC, Fulton RS, 
Maher CA, Ding L, Klco JM, Mardis ER, Ley TJ, Wilson RK 
(2015) Optimizing cancer genome sequencing and analysis. Cell 
Syst 1(3):210–223. doi:10.1016/j.cels.2015.08.015

 53. Zhang X, Marjani SL, Hu Z, Weissman SM, Pan X, Wu S (2016) 
Single-cell sequencing for precise cancer research: progress and 
prospects. Cancer Res 76(6):1305–1312. doi:10.1158/0008-
5472.can-15-1907

 54. Mota A, Trivino JC, Rojo-Sebastian A, Martinez-Ramirez A, 
Chiva L, Gonzalez-Martin A, Garcia JF, Garcia-Sanz P, Moreno-
Bueno G (2015) Intra-tumor heterogeneity in TP53 null High 
Grade Serous Ovarian Carcinoma progression. BMC Cancer 
15:940. doi:10.1186/s12885-015-1952-z

 55. Paracchini L, Mannarino L, Craparotta I, Romualdi C, Fruscio 
R, Grassi T, Fotia V, Caratti G, Perego P, Calura E, Clivio L, 
D’Incalci M, Beltrame L, Marchini S (2016) Regional and tem-
poral heterogeneity of epithelial ovarian cancer tumor biopsies: 

implications for therapeutic strategies. Oncotarget. doi:10.18632/
oncotarget.10505

 56. Beltrame L, Di Marino M, Fruscio R, Calura E, Chapman 
B, Clivio L, Sina F, Mele C, Iatropoulos P, Grassi T, Fotia V, 
Romualdi C, Martini P, Noris M, Paracchini L, Craparotta I, 
Petrillo M, Milani R, Perego P, Ravaggi A, Zambelli A, Ron-
chetti E, D’Incalci M, Marchini S (2015) Profiling cancer gene 
mutations in longitudinal epithelial ovarian cancer biopsies by 
targeted next-generation sequencing: a retrospective study. Ann 
Oncol 26(7):1363–1371. doi:10.1093/annonc/mdv164

 57. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean 
CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, 
Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, 
Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, 
Moore RA, Mungall AJ, Jones SJ, Hirst M, Marra MA, Saito 
N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor 
BS, Costello JF (2014) Mutational analysis reveals the ori-
gin and therapy-driven evolution of recurrent glioma. Science 
343(6167):189–193. doi:10.1126/science.1239947

 58. Horowitz NS, Miller A, Rungruang B, Richard SD, Rodriguez 
N, Bookman MA, Hamilton CA, Krivak TC, Maxwell GL 
(2015) Does aggressive surgery improve outcomes? Interaction 
between preoperative disease burden and complex surgery in 
patients with advanced-stage ovarian cancer: an analysis of GOG 
182. J Clin Oncol 33(8):937–943. doi:10.1200/jco.2014.56.3106

 59. Winter WE 3rd, Maxwell GL, Tian C, Carlson JW, Ozols RF, 
Rose PG, Markman M, Armstrong DK, Muggia F, McGuire WP 
(2007) Prognostic factors for stage III epithelial ovarian cancer: a 
Gynecologic Oncology Group Study. J Clin Oncol 25(24):3621–
3627. doi:10.1200/jco.2006.10.2517

 60. Hoogstins CE, Tummers QR, Gaarenstroom KN, de Kroon 
CD, Trimbos JB, Bosse T, Smit VT, Vuyk J, van de Velde CJ, 
Cohen AF, Low PS, Burggraaf J, Vahrmeijer AL (2016) A Novel 
tumor-specific agent for intraoperative near-infrared fluorescence 
imaging: a translational study in healthy volunteers and patients 
with ovarian cancer. Clin Cancer Res 22(12):2929–2938. 
doi:10.1158/1078-0432.ccr-15-2640

 61. Petrillo M, Nero C, Amadio G, Gallo D, Fagotti A, Scambia 
G (2016) Targeting the hallmarks of ovarian cancer: the 
big picture. Gynecol Oncol 142(1):176–183. doi:10.1016/j.
ygyno.2016.03.037

 62. Blair BG, Bardelli A, Park BH (2014) Somatic alterations as the 
basis for resistance to targeted therapies. J Pathol 232(2):244–
254. doi:10.1002/path.4278

 63. Frenel JS, Carreira S, Goodall J, Roda D, Perez-Lopez R, 
Tunariu N, Riisnaes R, Miranda S, Figueiredo I, Nava-Rodrigues 
D, Smith A, Leux C, Garcia-Murillas I, Ferraldeschi R, Lor-
ente D, Mateo J, Ong M, Yap TA, Banerji U, Gasi Tandefelt D, 
Turner N, Attard G, de Bono JS (2015) Serial next-generation 
sequencing of circulating cell-free DNA evaluating tumor clone 
response to molecularly targeted drug administration. Clin Can-
cer Res 21(20):4586–4596. doi:10.1158/1078-0432.ccr-15-0584

 64. Hiley C, de Bruin EC, McGranahan N, Swanton C (2014) 
Deciphering intratumor heterogeneity and temporal acquisi-
tion of driver events to refine precision medicine. Genome Biol 
15(8):453. doi:10.1186/s13059-014-0453-8

 65. Arend RC, Londono AI, Alvarez RD, Huh WK, Bevis KS, Leath 
CA (2016) Straughn JM Circulating cell-free DNA: The future 
of personalized medicine in ovarian cancer management. In: 
ASCO Annual Meeting Proceedings, vol 15_suppl, p 5577

 66. Londono AI, Yeh C-H, Alvarez RD, Leath CA, Straughn JM, 
Arend RC (2016) Correlation of mutation status between tissue 
and blood-drop liquid biopsies from ovarian cancer patients fol-
lowing chemotherapy. In: ASCO Annual Meeting Proceedings, 
vol 15_suppl, p e13108

http://dx.doi.org/10.18632/oncotarget.9860
http://dx.doi.org/10.1038/nature10738
http://dx.doi.org/10.1038/nature10738
http://dx.doi.org/10.1016/j.cell.2013.01.019
http://dx.doi.org/10.1016/j.cell.2013.01.019
http://dx.doi.org/10.1186/s12964-016-0127-0
http://dx.doi.org/10.1016/j.ejca.2015.11.001
http://dx.doi.org/10.1056/NEJMoa1113205
http://dx.doi.org/10.1056/NEJMoa1113205
http://dx.doi.org/10.1016/j.cels.2015.08.015
http://dx.doi.org/10.1158/0008-5472.can-15-1907
http://dx.doi.org/10.1158/0008-5472.can-15-1907
http://dx.doi.org/10.1186/s12885-015-1952-z
http://dx.doi.org/10.18632/oncotarget.10505
http://dx.doi.org/10.18632/oncotarget.10505
http://dx.doi.org/10.1093/annonc/mdv164
http://dx.doi.org/10.1126/science.1239947
http://dx.doi.org/10.1200/jco.2014.56.3106
http://dx.doi.org/10.1200/jco.2006.10.2517
http://dx.doi.org/10.1158/1078-0432.ccr-15-2640
http://dx.doi.org/10.1016/j.ygyno.2016.03.037
http://dx.doi.org/10.1016/j.ygyno.2016.03.037
http://dx.doi.org/10.1002/path.4278
http://dx.doi.org/10.1158/1078-0432.ccr-15-0584
http://dx.doi.org/10.1186/s13059-014-0453-8

	High-grade serous ovarian cancer: the clone wars
	Abstract 
	Background 
	Methods 
	Results and conclusions 

	Introduction
	Genomic instability in HGSOC
	Clonal evolution of pre-treatment disease
	HGSOC evolution during the course of treatment
	Conclusions and future directions
	References


